Volume XXI ISSN: 1555-3760 PROCEEDINGS of the 50TH ANNUAL MEETING COMMONWEALTH of PENNSYLVANIA UNIVERSITY BIOLOGISTS April 12

Total Page:16

File Type:pdf, Size:1020Kb

Volume XXI ISSN: 1555-3760 PROCEEDINGS of the 50TH ANNUAL MEETING COMMONWEALTH of PENNSYLVANIA UNIVERSITY BIOLOGISTS April 12 Volume XXI ISSN: 1555-3760 PROCEEDINGS OF THE 50TH ANNUAL MEETING COMMONWEALTH OF PENNSYLVANIA UNIVERSITY BIOLOGISTS April 12-13, 2019 Hosted By: Department of Biology and Health Services Edinboro University Edinboro, Pennsylvania Proceedings of the Commonwealth of Pennsylvania University Biologists 50TH Annual Meeting, April 12-13, 2019 Hosted by the Department of Biology and Health Services Edinboro University Edinboro, PA Table of Contents Schedule of Events………………………………………………………………………………………………………. 2 Wi-Fi Login Information……………………………………………………………………………………………… 4 Keynote Speaker Biography…………………………………………………………………………………………..5 Outstanding Student Award Recipients………………………………………………………………………… 6 Student CPUB Research Grant Recipients…………………………………………………………… …….…14 Schedule of Platform Presentations……………………………………………………………………………..15 Schedule of Poster Presentations…………………………………………………………………………………21 Abstracts……………………………………………………………………………………………………………….........31 Historical Highlights of APSCUF/CPUB…………………………………………………………………………72 CPUB Officers…………………………………………………………………………………………………….……..…74 CPUB Presidents………………………………………………………………………………………………………....75 Schedule of CPUB Annual Meetings……………………………………………………………………….……..77 Acknowledgements……………………………………………………………………………………………………..78 Maps……………………………………………………………………………………………………………………..........80 Sponsors..…………………………………………………………………………………………………………….………81 Commonwealth of Pennsylvania University Biologists 50TH Annual Meeting, April 12-13, 2019 Schedule of Events: FRIDAY, APRIL 12 6:00 – 7:30 PM Registration, Cooper Hall Lobby SATURDAY, APRIL 13 7:30 – 9:00 AM Registration, Cooper Hall Lobby 7:30 – 9:00 AM Poster Set-up, Cooper Hall, First Floor 8:00 – 8:45 AM CPUB Directors' Meeting, Cooper Hall, Room 173 9:00 – 9:15 AM Welcome and Introduction, Van Houten South Dining Hall 9:15 – 10:30 AM Keynote Address: “Pseudoscience Debate in Medicine and its Ethical Implications” Delivered by Dr. Kia Aramesh, Director of the James F. Drane Bioethics Institute, Edinboro University Van Houten South Dining Hall 10:45 – 11:45 AM Platform Presentations (Session 1, 2, 3), Cooper Hall, First Floor Platform Session I - Graduate – Room 170 Platform Session II - Undergraduate - Cell/Molecular – Room 171 Platform Session III - Undergraduate - Ecology/ Organismal – Room 172 2 12:00 – 1:00 PM Lunch, Cooper Hall Lobby 1:15 – 2:15 PM Poster Presentations, Group “A”: Odd Numbered Abstracts Cooper Hall 2:15 – 3:15 PM Poster Presentations, Group “B”: Even Numbered Abstracts Cooper Hall 3:15 – 4:15 PM Platform Presentations (Sessions 4, 5, 6, 7), Cooper Hall, First Floor Session IV – Undergraduate - Cell/ Molecular & Ecology/ Organismal– Room 170 Session V - Undergraduate - Cell/ Molecular – Room 171 Session VI - Undergraduate - Ecology/Organismal - Room 172 4:30 – 5:15 PM SCOTS Talks (Workshops), Cooper Hall, First Floor 1) “Art as a Forensic Tool” – Cooper Hall, Room 171 Michelle Vitali, MFA, Professor, Art Department, Fellow at the Institute of Forensic Sciences Edinboro University 2) “Science of Brewing” – Cooper Hall, Room 172 Adam Hoke, Voodoo Brewing Company Edinboro University (B.S. Biology 2012, M.S. Biology 2015) 3) “Curiosity-Driven Research: Looking at Autism Spectrum Disorders Through a New Lens” – Cooper Hall, Room 173 Vytas A. Bankaitis, PhD, University Distinguished Professor E.L. Wehner-Welch Foundation Chair in Chemistry Department of Molecular and Cellular Medicine Texas A&M Health Science Center 3 5:30 PM Poster tear down, Cooper Hall 5:15 – 6:15 PM CPUB Business Meeting, Cooper Hall, Room 172 6:00 – 8:00 PM Banquet and Awards, Van Houten South Dining Hall GUEST WI-FI FOR CPUB MEETING Step 1: To connect, choose "EU-GUEST" from the available wireless networks. Step 2: Once you connect to EU-GUEST, you will be redirected to the following page. If you are not automatically directed you may need to launch a browser and go to www.edinboro.edu. Click on the Create Account link to create a guest wireless account. Step 3: Enter your name, your organization name (if you do not represent an organization then enter your name again) and your email address. Then enter the security code and check the “I accept the terms of use” box. Click on the Register button to create and display your Guest wireless account information. Step 4: Review your account username and guest password (jot it down) and click on the “Log In” button for network access. Your account credentials will also be emailed to the email address you entered. Your account for that specific device will be valid for 48 hours. If you use a different device or need to access our wireless network after 48 hours has expired, then you will have to follow steps 1 thru 4 to setup new guest access credentials. Go to the following link to find out more: http://www.edinboro.edu/directory/offices-services/information-technology- services/networks-telecommunications/WirelessGuestAccessInstructions5-24-2017.pdf 4 Keynote Address Kiarash Aramesh M.D., Ph.D. Director of the James F. Drane Bioethics Institute Dr. Aramesh is an assistant professor at the Department of Biology and Health Sciences. He also serves as the director of the James F. Drane Bioethics Institute. He is a physician and his specialty is in community medicine. He also holds a PhD in Healthcare Ethics. Before joining the Edinboro University, he had worked as a Visiting Scholar at the Center for Healthcare Ethics at Duquesne University in 2017-18 and at the department of bioethics at the National Institutes of Health (NIH) in 2013-14. He also worked as a faculty member at the Medical Ethics and History of Medicine Research Center of Tehran University of Medical Sciences from 2005 to 2018. He has published several books and articles on various aspects of biomedical ethics in English and Persian and delivered numerous presentations as invited lecturer in different domestic and international conferences. His current research interests include Global Bioethics, Clinical Research Ethics, and Biopolitics. “Science-Pseudoscience Debate in Medicine and its Ethical Implications” Is it ethically justified to practice or promote homeopathy, energy therapy, acupuncture, or quantum healing? Are they alternative approached to medicine or just quackery and unreliable collections of pseudoscientific claims? How we, as patients or professionals, can evaluate each treatment approach in terms of its scientific validity? This presentation addresses the demarcation problem and discusses how to differentiate science from pseudoscience in medical practice and clinical research. Also, it will explore the ethical implications of the science vs. pseudoscience debate and the reasons behind the ethical wrongness of promoting or practicing pseudoscience in medicine. It argues that social value and scientific validity are two important ethical requirements in the realm of clinical research and concludes that the clinical practitioners are ethically obliged to use and prescribe only the treatment methods and medicines whose efficacy and safety are proved by the evidence-based methodology. 5 2019 OUTSTANDING STUDENT AWARD RECIPIENTS In 1977, CPUB initiated an Outstanding Student Awards Program to honor a life science student at each Pennsylvania SSHE University who best exemplifies scientific scholarship and academic achievement. These awards are presented each year at the CPUB Annual Meeting. The criteria for student selection are established by the department members at each university. Student award winners are provided funding by CPUB and the individual departments so that they can attend the Annual Meeting. This honor of distinction is given to one student at each SSHE University, but it represents the academic virtues possessed by numerous students who attend these Pennsylvania Universities. Many of the previous CPUB Award winners are presently attending various graduate and medical programs. Others have graduated and are presently involved in scientific research, teaching, or medical professions. Andrew Cross, Bloomsburg University Andrew Cross is a senior biology, pre-medical sciences major and chemistry minor. Andrew has achieved a 4.00 GPA and plans to attend Penn State College of Medicine. He has served as a patient companion on the medical/surgery floor at Geisinger Bloomsburg Hospital and has health care shadowing experience in cardiology and orthopedic surgery. Andrew’s outstanding achievements have been recognized by a host of honors and awards including dean’s list each semester and selection for membership in the Phi Kappa Phi Honor Society and the Tri-Beta Biology Honor Society. He is a recipient of the Phi Kappa Phi Outstanding Freshman Award and the Bloomsburg University Academic Excellence Scholarship. Active in undergraduate research, Andrew has received grants from CPUB, Tri-Beta Biology Honor Society, and Bloomsburg University to support his investigations on oxidative stress in honey bees exposed to neonicotinoid pesticides. Andrew is active in the campus and local community. He is a member of the Pre-medical Sciences Club, the historian of Tri-Beta Biology Honor Society, and the treasurer of the Rideau Rod and Gun Club. He volunteers his time as a peer tutor in Biology, Anatomy and Physiology, and Genetics. Andrew has excelled and is recognized by department faculty for his scholarship, leadership and service. 6 Eric Moeller, California University Eric Moeller is a Biology major, Chemistry minor, with a 3.763 GPA. He is a member of the Honors program and is involved in several departmental clubs, including the Biology
Recommended publications
  • UMNP Mountains Manual 2017
    Mountain Adventures Manual utahmasternaturalist.org June 2017 UMN/Manual/2017-03pr Welcome to Utah Master Naturalist! Utah Master Naturalist was developed to help you initiate or continue your own personal journey to increase your understanding of, and appreciation for, Utah’s amazing natural world. We will explore and learn aBout the major ecosystems of Utah, the plant and animal communities that depend upon those systems, and our role in shaping our past, in determining our future, and as stewards of the land. Utah Master Naturalist is a certification program developed By Utah State University Extension with the partnership of more than 25 other organizations in Utah. The mission of Utah Master Naturalist is to develop well-informed volunteers and professionals who provide education, outreach, and service promoting stewardship of natural resources within their communities. Our goal, then, is to assist you in assisting others to develop a greater appreciation and respect for Utah’s Beautiful natural world. “When we see the land as a community to which we belong, we may begin to use it with love and respect.” - Aldo Leopold Participating in a Utah Master Naturalist course provides each of us opportunities to learn not only from the instructors and guest speaKers, But also from each other. We each arrive at a Utah Master Naturalist course with our own rich collection of knowledge and experiences, and we have a unique opportunity to share that Knowledge with each other. This helps us learn and grow not just as individuals, but together as a group with the understanding that there is always more to learn, and more to share.
    [Show full text]
  • Fleas, Hosts and Habitat: What Can We Predict About the Spread of Vector-Borne Zoonotic Diseases?
    2010 Fleas, Hosts and Habitat: What can we predict about the spread of vector-borne zoonotic diseases? Ph.D. Dissertation Megan M. Friggens School of Forestry I I I \, l " FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? by Megan M. Friggens A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Forest Science Northern Arizona University May 2010 ?Jii@~-~-u-_- Robert R. Parmenter, Ph. D. ~",l(*~ l.~ Paulette L. Ford, Ph. D. --=z:r-J'l1jU~ David M. Wagner, Ph. D. ABSTRACT FLEAS, HOSTS AND HABITAT: WHAT CAN WE PREDICT ABOUT THE SPREAD OF VECTOR-BORNE ZOONOTIC DISEASES? MEGAN M. FRIGGENS Vector-borne diseases of humans and wildlife are experiencing resurgence across the globe. I examine the dynamics of flea borne diseases through a comparative analysis of flea literature and analyses of field data collected from three sites in New Mexico: The Sevilleta National Wildlife Refuge, the Sandia Mountains and the Valles Caldera National Preserve (VCNP). My objectives were to use these analyses to better predict and manage for the spread of diseases such as plague (Yersinia pestis). To assess the impact of anthropogenic disturbance on flea communities, I compiled and analyzed data from 63 published empirical studies. Anthropogenic disturbance is associated with conditions conducive to increased transmission of flea-borne diseases. Most measures of flea infestation increased with increasing disturbance or peaked at intermediate levels of disturbance. Future trends of habitat and climate change will probably favor the spread of flea-borne disease.
    [Show full text]
  • Fleas and Flea-Borne Diseases
    International Journal of Infectious Diseases 14 (2010) e667–e676 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Review Fleas and flea-borne diseases Idir Bitam a, Katharina Dittmar b, Philippe Parola a, Michael F. Whiting c, Didier Raoult a,* a Unite´ de Recherche en Maladies Infectieuses Tropicales Emergentes, CNRS-IRD UMR 6236, Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France b Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, USA c Department of Biology, Brigham Young University, Provo, Utah, USA ARTICLE INFO SUMMARY Article history: Flea-borne infections are emerging or re-emerging throughout the world, and their incidence is on the Received 3 February 2009 rise. Furthermore, their distribution and that of their vectors is shifting and expanding. This publication Received in revised form 2 June 2009 reviews general flea biology and the distribution of the flea-borne diseases of public health importance Accepted 4 November 2009 throughout the world, their principal flea vectors, and the extent of their public health burden. Such an Corresponding Editor: William Cameron, overall review is necessary to understand the importance of this group of infections and the resources Ottawa, Canada that must be allocated to their control by public health authorities to ensure their timely diagnosis and treatment. Keywords: ß 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Flea Siphonaptera Plague Yersinia pestis Rickettsia Bartonella Introduction to 16 families and 238 genera have been described, but only a minority is synanthropic, that is they live in close association with The past decades have seen a dramatic change in the geographic humans (Table 1).4,5 and host ranges of many vector-borne pathogens, and their diseases.
    [Show full text]
  • Overwintering in Tegu Lizards
    Overwintering in Tegu Lizards DENIS V. ANDRADE,1 COLIN SANDERS,1, 2 WILLIAM K. MILSOM,2 AND AUGUSTO S. ABE1 1 Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP, Brasil 2 Department of Zoology, University of British Columbia, Vancouver, BC, Canada Abstract. The tegu, Tupinambis merianae, is a large South American teiid lizard, which is active only during part of the year (hot summer months), spending the cold winter months sheltered in burrows in the ground. This pattern of activity is accompanied by seasonal changes in preferred body temperature, metabolism, and cardiorespiratory function. In the summer months these changes are quite large, but during dormancy, the circadian changes in body temperature observed during the active season are abandoned and the tegus stay in the burrow and al- low body temperature to conform to the ambient thermal profile of the shelter. Metabolism is significantly depressed during dormancy and relatively insensitive to alterations in body temperature. As metabolism is lowered, ventilation, gas exchange, and heart rate are adjusted to match the level of metabolic demand, with concomitant changes in blood gases, blood oxygen transport capacity, and acid-base equilibrium. Seasonality and the Tegu Life Cycle As with any other ectothermic organism, the tegu lizard, Tupinambis merianae, depends on external heat sources to regulate body temperature. Although this type of thermoregulatory strategy conserves energy by avoiding the use of me- tabolism for heat production (Pough, 1983), it requires that the animal inhabit a suitable thermal environment to sustain activity. When the environment does not provide the range of temperatures that enables the animal to be active year round, many species of ectothermic vertebrates become seasonally inactive (Gregory, 1982).
    [Show full text]
  • Appendix 1 Host and Flea Traits/Properties
    1 Oikos OIK-02178 Krasnov, B. R., Shenbrot, G. I., Khokhlova, I: S. and Degen, A. A. 2015. Trait-based and phylogenetic associations between parasites and their hosts: a case study with small mammals and fleas in the Palearctic. – Oikos doi: 10.1111/oik.02178 Appendix 1 Host and flea traits/properties: explanations and data sources Hosts Body mass Body mass is the central characteristic of a species and is commonly employed in developing hypotheses related to physiological and behavioural responses. For example, Peters (1983) presented a large number of allometric relations between various animal characteristics and body mass. From a parasite perspective, host body mass may influence parasite’s abundance (due to the obvious reasons) and host specificity. For example, a host body mass is associated with persistence of a host individual in time merely because a larger host species lives longer and, thus, represents a more predictable resource for a parasite (Peters 1983). As a result, parasite species with higher host specificity are expected to exploit large hosts, whereas small-bodied hosts are expected to be exploited mainly by generalist parasites. Indeed, our earlier findings indicated that the exploitation of large-bodied, and therefore long-lived, host species has likely promoted specialization in fleas (Krasnov et al. 2006a). Data on mean body mass of a host species were obtained from Silva and Downing (1995), Degen (1977) or PanTHERIA database (Jones et al. 2009). Basal metabolic rate Investment of host in a high basal metabolic rate (BMR) could be associated with parasitism as a compensation for a costly immune response when parasite challenges are either strong (e.g., in case of highly abundant parasite) or diverse (in case of attacks by multiple parasites) (Morand and Harvey 2000).
    [Show full text]
  • Molecular Characterization of Adult Diapause in the Northern House Mosquito, Culex Pipiens
    MOLECULAR CHARACTERIZATION OF ADULT DIAPAUSE IN THE NORTHERN HOUSE MOSQUITO, CULEX PIPIENS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Rebecca M. Robich, M.S. ***** The Ohio State University 2005 Dissertation Committee: Professor David L. Denlinger, Advisor Approved by Professor Donald H. Dean ________________________ Professor Glen R. Needham Advisor Graduate Program in Entomology Professor Brian H. Smith ABSTRACT In the northern United States, Culex pipiens (L.), a major avian vector of several arthropod-borne viruses, spends a good portion of the year in a state of developmental arrest (diapause). Although the physiological and hormonal aspects of Cx. pipiens diapause have been well-documented, there is little known on the molecular aspects of this important stage. Using suppressive subtractive hybridization (SSH), 40 genes differentially expressed in diapause were identified and their expression profiles were probed by northern blot hybridization. These genes have been classified into 8 distinct groupings: regulatory function, food utilization, stress response, metabolic function, cytoskeletal, ribosomal, transposable elements, and genes with unknown functions. Among 32 genes confirmed by northern blot hybridization, 6 are upregulated specifically in early diapause, 17 are upregulated in late diapause, and 2 are upregulated throughout diapause. In addition, 2 genes are diapause downregulated and 5 remained unchanged during diapause. Two regulatory genes upregulated in late diapause, ribosomal protein (rp) S3A and rpS6, are of particular interest for their potential involvement in developmental arrest. In other mosquito species, these genes are upregulated prior to oogenesis, and their suppression leads to a disruption in ovarian development.
    [Show full text]
  • Department of the Interior
    Vol. 80 Thursday, No. 63 April 2, 2015 Part V Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Threatened Species Status for the Northern Long-Eared Bat With 4(d) Rule; Final Rule and Interim Rule VerDate Sep<11>2014 21:11 Apr 01, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\02APR3.SGM 02APR3 tkelley on DSK3SPTVN1PROD with RULES3 17974 Federal Register / Vol. 80, No. 63 / Thursday, April 2, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR midwest/Endangered. Comments and northern long-eared bat (Myotis materials we received, as well as septentrionalis) as a threatened species. Fish and Wildlife Service supporting documentation we used in The basis for our action: Under the preparing the final listing rule, are Endangered Species Act, we can 50 CFR Part 17 available for public inspection at http:// determine that a species is an endangered or threatened species based [Docket No. FWS–R5–ES–2011–0024; www.regulations.gov, and by 4500030113] appointment, during normal business on any of five factors: (A) The present hours at: U.S. Fish and Wildlife Service, or threatened destruction, modification, RIN 1018–AY98 Twin Cities Ecological Services Office, or curtailment of its habitat or range; (B) overutilization for commercial, Endangered and Threatened Wildlife 4101 American Blvd. East, Bloomington, MN 55425; telephone (612) 725–3548, recreational, scientific, or educational and Plants; Threatened Species Status purposes; (C) disease or predation; (D) for the Northern Long-Eared Bat With ext. 2201; or facsimile (612) 725–3609.
    [Show full text]
  • Minimal Overwintering Temperatures of Red-Sided Garter Snakes (Thamnophis Sirtalis Parietalis): a Possible Cue for Emergence?
    771 NOTE / NOTE Minimal overwintering temperatures of red-sided garter snakes (Thamnophis sirtalis parietalis): a possible cue for emergence? Deborah I. Lutterschmidt, Michael P. LeMaster, and Robert T. Mason Abstract: Red-sided garter snakes (Thamnophis sirtalis parietalis (Say in James, 1823)) in Manitoba, Canada, undergo 8 months of continuous winter dormancy prior to spring emergence. As in other ectothermic species, increases in ground temperature may be the cue for emergence from winter dormancy in these populations. To test this hypothesis, we meas- ured body temperatures during winter dormancy by surgically implanting small temperature loggers into 32 female red- sided garter snakes before they entered their native hibernaculum. The following spring, we recaptured seven of the snakes implanted with temperature loggers. Body temperature declined gradually from mid-September (14.7 ± 0.24 8C, mean ± SE) to early April (1.1 ± 0.16 8C, mean ± SE) during winter dormancy, reaching minimal values approximately 1 month prior to spring emergence. Body temperatures of emerging snakes ranged from 0.5 8C during early spring to 6.3 8C during late spring (3.4 ± 0.84 8C, mean ± SE). These results do not support the hypothesis that an increase in ground temperature (and hence body temperature) is necessary for emergence from winter dormancy. We suggest that critically low tempera- tures (i.e., 0.5–1 8C) are a Zeitgeber entraining an endogenous circannual cycle that regulates snake emergence. These re- sults offer new insight into the mechanisms regulating seasonal emergence from winter dormancy. Re´sume´ : Les couleuvres raye´es a` flancs rouges (Thamnophis sirtalis parietalis (Say in James, 1823)) du Manitoba, Can- ada, comple`tent 8 mois continus de dormance d’hiver avant leur e´mergence au printemps.
    [Show full text]
  • Sylvatic Plague Studies. the Vector Efficiency of Nine Species of Fleas
    [ 371 ] SYLVATIC PLAGUE STUDIES THE VECTOR EFFICIENCY OF NINE SPECIES OF FLEAS COMPARED WITH XENOPSYLLA CHEOPIS BY ALBERT LAWRENCE BURROUGHS*, M.S., PH.D. From the George Williams Hooper Foundation, University of California, San Francisco, California (With Plates 4 and 5) CONTENTS PAOE PAGE Introduction .371 Discussion ....... 388 Historical 372 Mass transmissions ..... 388 Individual transmissions .... 389 Materials and methods 376 Estimation of vector efficiency 390 Selection of fleas 376 Method of determining if the variation in the Source of fleas for study .... 376 vector efficiencies obtained in two experi- Rearing the fleas ...... 376 ments is real or due to chance . 390 Maintenance of pure cultures of fleas . 377 Feeding infected fleas 377 Xenopsylla cheopis 390 Infecting the fleas 378 Diamanus montanus . .391 Echidnophaga gallinacea . 379 Malaraeus telchinum ..... 392 Experimental 379 Orchopeas sexdentatus sexdentatus . 392 Nosopsyllus fasciatus ..... 393 Xenopsylla cheopis . .379 Opisodasys nesiotus 393 Determination of the number of organisms Echidnophaga gallinacea .... 393 present in the regurgitant of a blocked flea. 381 Oropsylla idahoensis . .393 Mass transmissions with Xenopsylla cheopis . 383 Pulex irritans ...... 393 Diamanus montanus . .383 Megabothris abantis ..... 393 Nosopsyllus fasciatus . .383 Malaraeus telchinum ..... 384 Orchopeas sexdentatus sexdentatus . 385 Conclusions ....... 394 Opisodasys nesiotus . .385 Echidnophaga gallinacea . 386 Summary ........ 394 Oropsylla idahoensis 386 Pulex irritans 387 Megabothris abanlis ..... 387 References........ 395 INTRODUCTION Russian workers, as well as American, having The discovery of the existence of a large wild-rodent become aware of the widespread existence of reservoir of plague in the western United States sylvatic plague in the steppes, valleys, foothills and during the last forty years stimulated interest in the mountains encompassing thousands upon thousands study of the vectors infecting these rodent popula- of square miles, undertook a study of the vector tions.
    [Show full text]
  • Technical Report 148
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 148 INVENTORY OF ARTHROPODS OF THE WEST SLOPE SHRUBLAND AND ALPINE ECOSYSTEMS OF HALEAKALA NATIONAL PARK September 2007 Paul D. Krushelnycky 1,2, Lloyd L. Loope 2, and Rosemary G. Gillespie 1 1 Department of Environmental Science, Policy & Management, 137 Mulford Hall, University of California, Berkeley, CA, 94720-3114 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Haleakala Field Station, P.O. Box 369, Makawao, HI 96768 2 TABLE OF CONTENTS Acknowledgments…………………………………………………………………. 3 Introduction………………………………………………………………………… 4 Methods……………………………………………………………………………..5 Results and Discusion……………………………………………………………….8 Literature Cited…………………………………………………………………….. 10 Table 1 – Summary of captures……………………………………………………. 14 Table 2 – Species captures in different elevational zones…………………………..15 Table 3 – Observed and estimated richness………………………………………... 16 Figure 1 – Sampling localities……………………………………………………... 17 Figure 2 – Species accumulation curves…………………………………………… 18 Appendix: Annotated list of arthropod taxa collected……………………………... 19 Class Arachnida……………………………………………………………. 20 Class Entognatha…………………………………………………………… 25 Class Insecta………………………………………………………………...26 Class Malacostraca………………………………………………………..... 51 Class Chilopoda……………………………………………………………. 51 Class Diplopoda……………………………………………………………. 51 3 ACKNOWLEDGMENTS We would like to thank first and foremost the many specialists who identified or confirmed identifications of many of our specimens, or helped by pointing us in the right direction. Without this help, an inventory of this nature would simply not be possible. These specialists include K. Arakaki, M. Arnedo, J. Beatty, K. Christiansen, G. Edgecombe, N. Evenhuis, C. Ewing, A. Fjellberg, V. Framenau, J. Garb, W. Haines, S. Hann, J. Heinze, F. Howarth, B. Kumashiro, J. Liebherr, I. MacGowan, K. Magnacca, S.
    [Show full text]
  • 12. Kootenay Boundary Field Guide
    Wildlife Habitat Features Field Guide (Kootenay Boundary Region) 12. A Bat Hibernaculum 1) Definition A bat hibernaculum (plural: hibernacula) means a site where one or more bats hibernate in winter. Figure 43 shows the entrance to a cave hibernaculum. Figure 43. Townsend’s Big-Eared Bat hibernaculum located in a cave. (Photo: Anna Roberts) 2) Importance of a Bat Hibernaculum A bat hibernaculum is a site where bats hibernate over the winter. A specific hibernaculum may only be used for part of the winter and may or may not be used every year. The lack of use in a given year does not mean that the hibernaculum has been abandoned. Hibernacula occur most often in caves (Figure 43), rock or cliff crevices (Figure 44), or abandoned mines. Note: Only naturally occurring bat hibernacula are considered wildlife habitat features. Hibernacula provide cold, constant temperatures and protection from weather and predators. Rock features with suitable characteristics for hibernation by bats are relatively scarce across the landscape and therefore are typically used by several species of bats at once. The cool, moist microclimate of a hibernaculum allows bats to enter a torpid state where breathing rate, metabolic rate and heart rate are significantly decreased from active levels and body temperatures drop to match the air temperature. Bats naturally awaken infrequently over the winter from this torpid state. Recent work on wintering bats in British Columbia has revealed that bats are far more active in winter than previously assumed. Movements appear to occur during warmer periods in winter. During these periods’ bats may move to different roosting areas within the hibernation site or move outside the underground feature to roost in adjacent large roost trees 77 Wildlife Habitat Features Field Guide (Kootenay Boundary Region) within 500 m of a hibernaculum opening.
    [Show full text]
  • General Introduction
    GENERAL INTRODUCTION Rodents pose a threaten towards crops in fields and stores. In addition, they may attack people and their domestic animals spreading many infectious diseases via their endo- and ectoparasites. The control of Norway rat (Rattus norvegicus Berk.), the most prevailing species lives close to man, depends mainly on rodenticides such as metal phosphides, fluoroacetamide, hypercalcemics and the worldwide commonly used coumarin-derived anticoagulants. Constituting over 40% of all mammal species, Rodents are the largest and most successful group of mammals worldwide. They have a high rate of reproduction and a good ability to adapt to a wide variety of habitats (Parshad 1999) Although rodents are often only associated with infrastructural damages, crop attacking and eating or spoiling of stored food and products, the veterinary and zoonotic risks of rodents are frequently underestimated. Wild rodents can be reservoirs and vectors of a number of agents that cause serious diseases for human and domestic animal; there are more than 20 transmissible diseases that are known to be directly transmitted by rodents to humans, by the assistance of blood- sucking parasites like fleas, ticks and mites (Khatoon et al. 2004). Wild rodents act as definitive and/or intermediate hosts of many parasites, which are common to domestic animals, and humans. Some rodent parasites are epidemiologically important as they are prevalent parasites of humans and their domestic animals. The eggs of parasites are passed out in rodent droppings in fields, grain stores and amongst foodstuffs in houses, and are responsible for disease spread (Khatoon et al. 2004). As rodents live in a close proximity with human and their animals and expose to the blood-sucking arthropods, the possibility for transmission of parasites increases.
    [Show full text]