Chapter 8 Waves

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 8 Waves Chapter 8 Waves Abstract Chapter 8 deals with waves. The topics covered are wave equation, pro- gressive and stationary waves, vibration of strings, wave velocity in solids, liquids and gases, capillary waves and gravity waves, the Doppler effect, shock wave, rever- beration in buildings, stationary waves in pipes and intensity level. 8.1 Basic Concepts and Formulae The travelling wave: The simple harmonic progressive wave travelling in the posi- tive x-direction can be variously written as 2π y = A sin (vt − x) λ t x = A sin 2π − T λ = A sin(ωt − kx) x = A π f t − sin 2 v (8.1) where A is the amplitude, f the frequency and v the wave velocity, λ the wave- length, ω = 2π f the angular frequency and k = 2π/λ, the wave number. Similarly, the wave in the negative x-direction can be written as 2π y = A (vt + x) sin λ (8.2) and so on. The superposition principle states that when two or more waves traverse the same region independently, the displacement of any particle at a given time is given by the vector addition of the displacement due to the individual waves. Interference of waves: Interference is the physical effect caused by the superposi- tion of two or more wave trains crossing the same region simultaneously. The wave trains must have a constant phase difference. 339 340 8Waves Vibrating strings: Stationary waves are formed by the superposition of two similar progressive waves travelling in the opposite direction over a taut string clamped by rigid supports. Wave equation: ∂2 y F ∂2 y = (8.3) ∂t2 μ ∂x2 Wave velocity: v = F/μ (8.4) where F is the tension in the string and μ is the linear density, i.e. mass per unit length. The general solution of (8.3)is y = f1(vt − x) + f2(vt + x) (8.5) Harmonic solution: y = 2A sin kx cos ωt (8.6) When the displacement in the y-direction is maximum (antinode) the amplitude is 2A, the antinodes are located at x = λ/4, 3λ/4, 5λ/4 ... and are spaced half a wavelength apart. The amplitude has a minimum value of zero (nodes). The nodes are located at x = 0, λ/2, λ... and are also spaced half a wavelength apart. Ends of the strings are always nodes. Neighbouring nodes and antinodes are spaced one- quarter wavelength apart. The frequency of vibration is given by v N F N F f = = = (8.7) λ 2L μ 2L ρ A where ρ is the density and A the cross-sectional area of the string and N = 1, 2, 3,.... Vibration with N = 1 is called the fundamental or the first harmonic, N = 2 is called the first overtone or the second harmonic, etc. Power: The energy per unit length of the string is given by = 1 μ 2 E 2 V0 (8.8) where V0 is the velocity amplitude of any particle on the string. Since the wave is travelling with velocity v, the power (P) is given by 1 1 P = Ev = μV 2v = V 2 Fμ (8.9) av 2 0 2 0 8.1 Basic Concepts and Formulae 341 Waves in Solids In solids, compressional and shearing forces are readily transmitted. (i) Transverse waves in wires/strings in which the elastic properties of the material are disregarded: v = F/μ (8.4) (ii) Transverse waves in bars/wires 1 V ∝ Y/ρ λ (8.10) where Y is Young’s modulus of elasticity. (iii) Longitudinal waves in wires and bars V = Y/ρ (8.11) (iv) Torsional vibrations in wires/bars V = η/ρ (8.12) where η is the shear modulus of elasticity. In all these cases the material of restricted dimension is considered. Waves in Liquids The wave motion through liquids is influenced by the gravity and the characteristics of the medium such as the depth and surface tension. Canal Waves If the wavelength is large compared with the wave amplitude, surface tension effect is small. The controlling factors are then basically gravity (g) and the boundary con- ditions. Furthermore, if the surface is sufficiently extensive so that the wall effects are negligible then the depth (h) alone is the main boundary condition. The velocity (v) of the canal waves is given by V = gh (8.13) Surface Waves These are the waves found on relatively deep water. The velocity of deep water waves is given by V = gλ/2π (8.14) 342 8Waves For long waves in shallow water V = gh (8.15) Capillary Waves Surface waves are modified by surface tension S.Ifh is large compared with λ 2πs gλ V 2 = + (8.16) ρλ 2π The minimum value of λ is given by minimizing (8.16) s λ = 2π (8.17) min gρ If λ is sufficiently large the second term dominates and the controlling factor being mainly gravity. Thus, the velocity of the gravity waves is given by V = gλ/2π (8.18) If λ is very small, the first term in (8.16) dominates and the motion is mainly con- trolled by capillarity and 2πs V = ρλ (8.19) Acoustic Waves ∂2ξ ∂2ξ = V 2 (plane wave equation for displacement) (8.20) ∂t2 ∂x2 ∂2 P ∂2 P = V 2 (plane wave equation for pressure) (8.21) ∂t2 ∂x2 where V = B/ρ0 (8.22) B being the bulk modulus of elasticity. Sound Velocity in a Gas γ P V = ρ (Laplace formula) (8.23) 8.1 Basic Concepts and Formulae 343 Sound Velocity in a Liquid γ Bτ V = ρ (8.24) where BT is the isothermal bulk modulus. The energy in length λ is given by 1 2 2 Eλ = ρ ω A λ (8.25) 2 0 The energy density 1 2 2 E = Eλ/λ = ρ ω A (8.26) 2 0 The intensity, i.e. the time rate of flow of energy per unit area of the wave front 1 I = ρVA2ω2 (8.27) 2 Intensity Level (IL):Decibel Scale IL = 10 log(I/I0) (8.28) where log is logarithmic to base 10, I0 is the reference intensity (the zero of the scale) and IL is expressed in decibels. Stationary Waves in Pipes (i) Closed pipe (pipe closed at one end and opened at the other) f1 = V/4L, f2 = 3V/4L, f3 = 5V/4L ... (ii) Open pipe_(pipe opened at both ends) f1 = V/2L, f2 = V/L, f3 = 3V/2L ... Doppler effect is the apparent change in frequency of a wave motion when there is relative motion between the source and the observer. (a) Moving Source but Stationary Observer If the source of waves of frequency f moves with velocity v and if vs is the sound velocity in still air then the apparent frequency f would be / f v f = (8.29) v ± vs where the minus sign is for approach and plus sign for separation. 344 8Waves (b) Source is At Rest, Observer in Motion Let the observer be moving with speed v0. Then (v ± v ) f = f 0 v (8.30) where the plus sign is for motion towards the source and the minus sign for motion away from the source. (c) Both Source and Observer in Motion (v ± v ) f = f 0 (8.31) (v ∓ vs) (d) If the medium moves with velocity W relative to the ground along the line join- ing source and observer, (v + W ± v ) f = f 0 (8.32) (v + W ∓ vs) Shock waves are emitted when the observer’s velocity or the source velocity exceeds the sound velocity and Doppler’s formulae break down. The wave front assumes the shape of a cone with the moving body at the apex. The surface of the cone makes an angle with the line of flight of the source such that sin θ = v/vs (8.33) The ratio vs/v is called Mach number. An example of shock waves is the wave resulting from a bow boat speeding on water, a second example is a jet-plane or missile moving at the supersonic speed, a third example is the emission of Cerenkov radiation when a charged particle moves through a transparent medium with a speed exceeding that of the phase velocity of light in that medium. Echo is defined as direct reflection of short duration sound from the surface of a large area. If d is the distance of the reflector, V the speed of sound then the time interval between the direct and reflected waves is T = 2d/v (8.34) Reverberation: A sound once produced in a room will get reflected repeatedly from the walls and become so feeble that it will not be heard. The time t taken for the steady intensity level to reach the inaudible level is called the time of reverberation: TR = 0.16V/KS (Sabine law) (8.35) 8.2 Problems 345 where V is in cubic metres and S in square metre for the volume and surface area of the room, respectively, and K is the absorption coefficient of the material of the floor, ceiling, walls, etc. summed over these components. Beats: When two wave trains of slightly different frequencies travel through the same region, a regular swelling and fading of the sound is heard, a phenomenon called beats. At a given point let the displacements produced by the two waves be y = A sin ω1t (8.36) y = A sin ω2t (8.37) By the superposition principle, the resultant displacement is given by y = y1 + y2 =[2A cos 2π( f1 − f2)t/2] sin 2π( f1 + f2)t/2 (8.38) The resulting vibration has a frequency f = ( f1 + f2)/2 (8.39) and an amplitude given by the expression in the square bracket of (8.38).
Recommended publications
  • Rotational and Translational Waves in a Bowed String Eric Bavu, Manfred Yew, Pierre-Yves Pla•Ais, John Smith and Joe Wolfe
    Proceedings of the International Symposium on Musical Acoustics, March 31st to April 3rd 2004 (ISMA2004), Nara, Japan Rotational and translational waves in a bowed string Eric Bavu, Manfred Yew, Pierre-Yves Pla•ais, John Smith and Joe Wolfe School of Physics, University of New South Wales, Sydney Australia [email protected] relative motion of the bow and string, and therefore the Abstract times of commencement of stick and slip phases, We measure and compare the rotational and transverse depends on both the transverse and torsional velocity velocity of a bowed string. When bowed by an (Fig 2). Consequently, torsional waves can introduce experienced player, the torsional motion is phase-locked aperiodicity or jitter to the motion of the string. Human to the transverse waves, producing highly periodic hearing is very sensitive to jitter [9]. Small amounts of motion. The spectrum of the torsional motion includes jitter contribute to a sound's being identified as 'natural' the fundamental and harmonics of the transverse wave, rather than 'mechanical'. Large amounts of jitter, on the with strong formants at the natural frequencies of the other hand, sound unmusical. Here we measure and torsional standing waves in the whole string. Volunteers compare translational and torsional velocities of a with no experience on bowed string instruments, bowed bass string and examine the periodicity of the however, often produced non-periodic motion. We standing waves. present sound files of both the transverse and torsional velocity signals of well-bowed strings. The torsional y string signal has not only the pitch of the transverse signal, but kink it sounds recognisably like a bowed string, probably because of its rich harmonic structure and the transients and amplitude envelope produced by bowing.
    [Show full text]
  • Lab 12. Vibrating Strings
    Lab 12. Vibrating Strings Goals • To experimentally determine the relationships between the fundamental resonant frequency of a vibrating string and its length, its mass per unit length, and the tension in the string. • To introduce a useful graphical method for testing whether the quantities x and y are related by a “simple power function” of the form y = axn. If so, the constants a and n can be determined from the graph. • To experimentally determine the relationship between resonant frequencies and higher order “mode” numbers. • To develop one general relationship/equation that relates the resonant frequency of a string to the four parameters: length, mass per unit length, tension, and mode number. Introduction Vibrating strings are part of our common experience. Which as you may have learned by now means that you have built up explanations in your subconscious about how they work, and that those explanations are sometimes self-contradictory, and rarely entirely correct. Musical instruments from all around the world employ vibrating strings to make musical sounds. Anyone who plays such an instrument knows that changing the tension in the string changes the pitch, which in physics terms means changing the resonant frequency of vibration. Similarly, changing the thickness (and thus the mass) of the string also affects its sound (frequency). String length must also have some effect, since a bass violin is much bigger than a normal violin and sounds much different. The interplay between these factors is explored in this laboratory experi- ment. You do not need to know physics to understand how instruments work. In fact, in the course of this lab alone you will engage with material which entire PhDs in music theory have been written.
    [Show full text]
  • The Science of String Instruments
    The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D.
    [Show full text]
  • Standing Waves and Sound
    Standing Waves and Sound Waves are vibrations (jiggles) that move through a material Frequency: how often a piece of material in the wave moves back and forth. Waves can be longitudinal (back-and- forth motion) or transverse (up-and- down motion). When a wave is caught in between walls, it will bounce back and forth to create a standing wave, but only if its frequency is just right! Sound is a longitudinal wave that moves through air and other materials. In a sound wave the molecules jiggle back and forth, getting closer together and further apart. Work with a partner! Take turns being the “wall” (hold end steady) and the slinky mover. Making Waves with a Slinky 1. Each of you should hold one end of the slinky. Stand far enough apart that the slinky is stretched. 2. Try making a transverse wave pulse by having one partner move a slinky end up and down while the other holds their end fixed. What happens to the wave pulse when it reaches the fixed end of the slinky? Does it return upside down or the same way up? Try moving the end up and down faster: Does the wave pulse get narrower or wider? Does the wave pulse reach the other partner noticeably faster? 3. Without moving further apart, pull the slinky tighter, so it is more stretched (scrunch up some of the slinky in your hand). Make a transverse wave pulse again. Does the wave pulse reach the end faster or slower if the slinky is more stretched? 4. Try making a longitudinal wave pulse by folding some of the slinky into your hand and then letting go.
    [Show full text]
  • The Physics of Sound 1
    The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans).
    [Show full text]
  • The Musical Kinetic Shape: a Variable Tension String Instrument
    The Musical Kinetic Shape: AVariableTensionStringInstrument Ismet Handˇzi´c, Kyle B. Reed University of South Florida, Department of Mechanical Engineering, Tampa, Florida Abstract In this article we present a novel variable tension string instrument which relies on a kinetic shape to actively alter the tension of a fixed length taut string. We derived a mathematical model that relates the two-dimensional kinetic shape equation to the string’s physical and dynamic parameters. With this model we designed and constructed an automated instrument that is able to play frequencies within predicted and recognizable frequencies. This prototype instrument is also able to play programmed melodies. Keywords: musical instrument, variable tension, kinetic shape, string vibration 1. Introduction It is possible to vary the fundamental natural oscillation frequency of a taut and uniform string by either changing the string’s length, linear density, or tension. Most string musical instruments produce di↵erent tones by either altering string length (fretting) or playing preset and di↵erent string gages and string tensions. Although tension can be used to adjust the frequency of a string, it is typically only used in this way for fine tuning the preset tension needed to generate a specific note frequency. In this article, we present a novel string instrument concept that is able to continuously change the fundamental oscillation frequency of a plucked (or bowed) string by altering string tension in a controlled and predicted Email addresses: [email protected] (Ismet Handˇzi´c), [email protected] (Kyle B. Reed) URL: http://reedlab.eng.usf.edu/ () Preprint submitted to Applied Acoustics April 19, 2014 Figure 1: The musical kinetic shape variable tension string instrument prototype.
    [Show full text]
  • University of California Santa Cruz the Vietnamese Đàn
    UNIVERSITY OF CALIFORNIA SANTA CRUZ THE VIETNAMESE ĐÀN BẦU: A CULTURAL HISTORY OF AN INSTRUMENT IN DIASPORA A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in MUSIC by LISA BEEBE June 2017 The dissertation of Lisa Beebe is approved: _________________________________________________ Professor Tanya Merchant, Chair _________________________________________________ Professor Dard Neuman _________________________________________________ Jason Gibbs, PhD _____________________________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Table of Contents List of Figures .............................................................................................................................................. v Chapter One. Introduction ..................................................................................................................... 1 Geography: Vietnam ............................................................................................................................. 6 Historical and Political Context .................................................................................................... 10 Literature Review .............................................................................................................................. 17 Vietnamese Scholarship .............................................................................................................. 17 English Language Literature on Vietnamese Music
    [Show full text]
  • Experiment 12
    Experiment 12 Velocity and Propagation of Waves 12.1 Objective To use the phenomenon of resonance to determine the velocity of the propagation of waves in taut strings and wires. 12.2 Discussion Any medium under tension or stress has the following property: disturbances, motions of the matter of which the medium consists, are propagated through the medium. When the disturbances are periodic, they are called waves, and when the disturbances are simple harmonic, the waves are sinusoidal and are characterized by a common wavelength and frequency. The velocity of propagation of a disturbance, whether or not it is periodic, depends generally upon the tension or stress in the medium and on the density of the medium. The greater the stress: the greater the velocity; and the greater the density: the smaller the velocity. In the case of a taut string or wire, the velocity v depends upon the tension T in the string or wire and the mass per unit length µ of the string or wire. Theory predicts that the relation should be T v2 = (12.1) µ Most disturbances travel so rapidly that a direct determination of their velocity is not possible. However, when the disturbance is simple harmonic, the sinusoidal character of the waves provides a simple method by which the velocity of the waves can be indirectly determined. This determination involves the frequency f and wavelength λ of the wave. Here f is the frequency of the simple harmonic motion of the medium and λ is from any point of the wave to the next point of the same phase.
    [Show full text]
  • Chapter 5 Waves I: Generalities, Superposition & Standing Waves
    Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a liquid make relatively small oscillatory motions but collectively give a pattern which travels for long distances. This kind of motion also includes the phenomenon of sound, where the molecules in the air around us make small oscillations but collectively give a disturbance which can travel the length of a college classroom, all the way to the students dozing in the back. We can even view the up–and–down motion of inebriated spectators of sports events as wave motion, since their small individual motions give rise to a disturbance which travels around a stadium. The mathematics of wave motion also has application to electromagnetic waves (including visible light), though the physical origin of those traveling disturbances is quite different from the mechanical waves we study in this chapter; so we will hold off on studying electromagnetic waves until we study electricity and magnetism in the second semester of our physics course. Obviously, wave motion is of great importance in physics and engineering. 5.1.2 Types of Waves In some types of wave motion the motion of the elements of the medium is (for the most part) perpendicular to the motion of the traveling disturbance. This is true for waves on a string and for the people–wave which travels around a stadium. Such a wave is called a transverse wave. This type of wave is the easiest to visualize.
    [Show full text]
  • AN INTRODUCTION to MUSIC THEORY Revision A
    AN INTRODUCTION TO MUSIC THEORY Revision A By Tom Irvine Email: [email protected] July 4, 2002 ________________________________________________________________________ Historical Background Pythagoras of Samos was a Greek philosopher and mathematician, who lived from approximately 560 to 480 BC. Pythagoras and his followers believed that all relations could be reduced to numerical relations. This conclusion stemmed from observations in music, mathematics, and astronomy. Pythagoras studied the sound produced by vibrating strings. He subjected two strings to equal tension. He then divided one string exactly in half. When he plucked each string, he discovered that the shorter string produced a pitch which was one octave higher than the longer string. A one-octave separation occurs when the higher frequency is twice the lower frequency. German scientist Hermann Helmholtz (1821-1894) made further contributions to music theory. Helmholtz wrote “On the Sensations of Tone” to establish the scientific basis of musical theory. Natural Frequencies of Strings A note played on a string has a fundamental frequency, which is its lowest natural frequency. The note also has overtones at consecutive integer multiples of its fundamental frequency. Plucking a string thus excites a number of tones. Ratios The theories of Pythagoras and Helmholz depend on the frequency ratios shown in Table 1. Table 1. Standard Frequency Ratios Ratio Name 1:1 Unison 1:2 Octave 1:3 Twelfth 2:3 Fifth 3:4 Fourth 4:5 Major Third 3:5 Major Sixth 5:6 Minor Third 5:8 Minor Sixth 1 These ratios apply both to a fundamental frequency and its overtones, as well as to relationship between separate keys.
    [Show full text]
  • Class Summer Vacation, 2021-22 Subject
    HOLIDAY HOMEWORK: Class 10 IG Summer Vacation, 2021-22 Subject : English Literature Time to be Spent One hour for fifteen days (Hours per day for ___ Days) : Work Read the text of Shakespeare’s Othello. Specification : Materials Hard copy or soft copy of the text of the drama Othello Required : Read the original text and the paraphrase. Make a presentation in about 15 slides . Some online resources are shared below: https://www.youtube.com/watch?v=2aRr6-XXAD8 Instructions / https://www.youtube.com/watch?v=95Vfcb7VvCA Guidelines : https://www.youtube.com/watch?v=Bp6LqSgukOU https://www.youtube.com/watch?v=lN4Kpj1PFKM https://www.youtube.com/watch?v=5z19M1A8MtY Any other Information: 1. List of the characters. 2. Theme of the drama 3. Act wise summary Date of Submission: 30th June 2021 ( you have to present your research in classroom) Head of the Department HOLIDAY HOMEWORK: Class 10 IG Summer Vacation, 2021-22 Subject : BUSINESS STUDIES (0450) Time to be Spent 6 Hours (1 ½ Hours per day for 4 Days) : Past papers for both components. Work Specification : Materials BUSINESS STUDIES (0450) TEXT BOOK Required : Students are expected to take printout of papers using the link: https://drive.google.com/file/d/1RJO1dBuq2eceLwKZ3ptolKL5JZP76rKW/view?usp=sharing Student should strictly avoid copying the answers from the books/ marking Instructions / scheme for their own benefit and well- being. Guidelines: Students are expected to take a print of all the papers given, get them spiral-bind and solve them in the space provided in the question paper itself and avoid taking extra sheet. Any other Information: Answers must fulfill all the criteria of assessment objectives.
    [Show full text]
  • Physics 1240: Sound and Music
    Physics 1240: Sound and Music Today (7/29/19): Percussion: Vibrating Beams *HW 3 due at the front, HW 4 now posted (due next Mon.) Next time: Percussion: Vibrating Membranes Review Types of Instruments (Hornbostel–Sachs classification) • Chordophones: vibrating strings • Aerophones: vibrating columns of air • Idiophones: vibrating the whole instrument • Membranophones: vibrating membrane/skin • Electrophones: vibrating loudspeaker Review Aerophones e.g. flute, e.g. clarinet e.g. saxophone, recorder oboe, bassoon • Free (no standing waves) • Flute-type (edge tones) • Reed-type (vibrating reed/lips) = = = 2 4 1 • How to create waves: Edge tones Bernoulli effect Review • Tone holes, valves: decrease/increase effective length L • Register holes, octave holes: excite 3rd/2nd harmonics • Ear canal: tube closed at one end 1 3 BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … C) 143, 429, 715, … D) 286, 857, 1429, … E) 172, 343, 515, … BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … • Flute: open-open tube C) 143, 429, 715, … • Tone hole: decreases L D) 286, 857, 1429, … from 1 m to 0.6 m E) 172, 343, 515, … 343 m/s = = 2(0.6 m) = (286 Hz) 2 BA Clicker Question 14.2 An oboe can be modelled as a cone open at one end.
    [Show full text]