Standing Waves

Total Page:16

File Type:pdf, Size:1020Kb

Standing Waves Chapter 21. Superposition Chapter 21. Superposition The combination of two or more waves is called a superposition of waves. Applications of superposition range from musical instruments to the colors of an oil film to lasers. Chapter Goal: To understand and use the idea of superposition. 1 2 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Principal of superposition Chapter 21. Superposition Topics: • The Principle of Superposition • Standing Waves • Transverse Standing Waves • Standing Sound Waves and Musical Superimposed Superposition Acoustics N • Interference in One Dimension = + + + = • The Mathematics of Interference Dnet D1 D2 ... DN ∑Di i=1 • Interference in Two and Three Dimensions • Beats 3 4 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. When a wave pulse on a string reflects from a hard boundary, how is the reflected pulse related to the incident pulse? A. Shape unchanged, amplitude unchanged Chapter 21. Reading Quizzes B. Shape inverted, amplitude unchanged C. Shape unchanged, amplitude reduced D. Shape inverted, amplitude reduced E. Amplitude unchanged, speed reduced 5 6 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. When a wave pulse on a string reflects There are some points on a standing from a hard boundary, how is the wave that never move. What are reflected pulse related to the incident these points called? pulse? A. Shape unchanged, amplitude unchanged A. Harmonics B. Shape inverted, amplitude unchanged B. Normal Modes C. Shape unchanged, amplitude reduced C. Nodes D. Shape inverted, amplitude reduced D. Anti-nodes E. Amplitude unchanged, speed reduced E. Interference 7 8 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. There are some points on a standing Two sound waves of nearly equal wave that never move. What are frequencies are played simultaneously. these points called? What is the name of the acoustic phenomena you hear if you listen to these two waves? A. Harmonics B. Normal Modes C. Nodes A. Beats D. Anti-nodes B. Diffraction E. Interference C. Harmonics D. Chords E. Interference 9 10 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Two sound waves of nearly equal frequencies are played simultaneously. The various possible standing What is the name of the acoustic waves on a string are called the phenomena you hear if you listen to these two waves? A. antinodes. A. Beats B. resonant nodes. B. Diffraction C. normal modes. C. Harmonics D. incident waves. D. Chords E. Interference 11 12 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The various possible standing The frequency of the third harmonic waves on a string are called the of a string is A. antinodes. B. resonant nodes. A. one-third the frequency of the fundamental. C. normal modes. B. equal to the frequency of the fundamental. D. incident waves. C. three times the frequency of the fundamental. D. nine times the frequency of the fundamental. 13 14 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The frequency of the third harmonic of a string is Chapter 21. Basic Content and Examples A. one-third the frequency of the fundamental. B. equal to the frequency of the fundamental. C. three times the frequency of the fundamental. D. nine times the frequency of the fundamental. 15 16 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The Principle of Superposition If wave 1 displaces a particle in the medium by D1 and wave 2 simultaneously displaces it by D2, the net displacement of the particle is simply D1 + D2. 17 18 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Standing Waves 19 20 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. The Mathematics of Standing Waves The Mathematics of Standing Waves According to the principle of superposition, the net A sinusoidal wave traveling to the right along the x-axis displacement of the medium when both waves are present is with angular frequency ω = 2 πf, wave number k = 2 π/λ and the sum of D and D : amplitude a is R L We can simplify this by using a trigonometric identity, and An equivalent wave traveling to the left is arrive at Where the amplitude function A(x) is defined as We previously used the symbol A for the wave amplitude, but here we will use a lowercase a to represent the amplitude of each individual wave and reserve A for the amplitude of the net wave. The amplitude reaches a maximum value of Amax = 2 a at 21 points where sin kx = 1. 22 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Examples: Waves on Strings Examples: Waves on Pipes 23 24 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EXAMPLE 21.1 Node spacing on a string EXAMPLE 21.1 Node spacing on a string QUESTIONS: 25 26 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EXAMPLE 21.1 Node spacing on a string EXAMPLE 21.1 Node spacing on a string 27 28 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Standing Waves on a String Standing Waves on a String For a string of fixed length L, the boundary conditions can be satisfied only if the wavelength has one of the values A standing wave can exist on the string only if its wavelength is one of the values given by Equation 21.13. Because λf = v for a sinusoidal wave, the oscillation λ frequency corresponding to wavelength m is 29 30 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Standing Waves on a String EXAMPLE 21.4 Cold spots in a microwave There are three things to note about the normal modes of a oven string. QUESTION: 1. m is the number of antinodes on the standing wave, not the number of nodes. You can tell a string’s mode of oscillation by counting the number of antinodes. λ 2. The fundamental mode , with m = 1, has 1 = 2 L, not λ 1 = L. Only half of a wavelength is contained between the boundaries, a direct consequence of the fact that the spacing between nodes is λ/2. 3. The frequencies of the normal modes form a series: f1, 2f1, 3 f1, …The fundamental frequency f1 can be found as the difference between the frequencies of any two adjacent modes. That is, f = ∆f = f – f . 1 m+1 m 31 32 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EXAMPLE 21.4 Cold spots in a microwave EXAMPLE 21.4 Cold spots in a microwave oven oven 33 34 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Standing Sound Waves • A long, narrow column of air, such as the air in a tube or pipe, can support a longitudinal standing sound wave. • A closed end of a column of air must be a displacement node. Thus the boundary conditions—nodes at the ends— are the same as for a standing wave on a string. • It is often useful to think of sound as a pressure wave rather than a displacement wave. The pressure oscillates around its equilibrium value. • The nodes and antinodes of the pressure wave are interchanged with those of the displacement wave. 35 36 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. 37 38 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EXAMPLE 21.6 The length of an organ pipe QUESTION: 39 40 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EXAMPLE 21.6 The length of an organ pipe EXAMPLE 21.6 The length of an organ pipe 41 42 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EXAMPLE 21.6 The length of an organ pipe EXAMPLE 21.7 The notes on a clarinet QUESTION: 43 44 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. EXAMPLE 21.7 The notes on a clarinet EXAMPLE 21.7 The notes on a clarinet 45 46 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Interference in One Dimension The Mathematics of Interference The pattern resulting from the superposition of two waves is As two waves of equal amplitude and frequency travel often called interference. In this section we will look at the together along the x-axis, the net displacement of the interference of two waves traveling in the same direction.
Recommended publications
  • Lab 12. Vibrating Strings
    Lab 12. Vibrating Strings Goals • To experimentally determine the relationships between the fundamental resonant frequency of a vibrating string and its length, its mass per unit length, and the tension in the string. • To introduce a useful graphical method for testing whether the quantities x and y are related by a “simple power function” of the form y = axn. If so, the constants a and n can be determined from the graph. • To experimentally determine the relationship between resonant frequencies and higher order “mode” numbers. • To develop one general relationship/equation that relates the resonant frequency of a string to the four parameters: length, mass per unit length, tension, and mode number. Introduction Vibrating strings are part of our common experience. Which as you may have learned by now means that you have built up explanations in your subconscious about how they work, and that those explanations are sometimes self-contradictory, and rarely entirely correct. Musical instruments from all around the world employ vibrating strings to make musical sounds. Anyone who plays such an instrument knows that changing the tension in the string changes the pitch, which in physics terms means changing the resonant frequency of vibration. Similarly, changing the thickness (and thus the mass) of the string also affects its sound (frequency). String length must also have some effect, since a bass violin is much bigger than a normal violin and sounds much different. The interplay between these factors is explored in this laboratory experi- ment. You do not need to know physics to understand how instruments work. In fact, in the course of this lab alone you will engage with material which entire PhDs in music theory have been written.
    [Show full text]
  • The Physics of Sound 1
    The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans).
    [Show full text]
  • The Musical Kinetic Shape: a Variable Tension String Instrument
    The Musical Kinetic Shape: AVariableTensionStringInstrument Ismet Handˇzi´c, Kyle B. Reed University of South Florida, Department of Mechanical Engineering, Tampa, Florida Abstract In this article we present a novel variable tension string instrument which relies on a kinetic shape to actively alter the tension of a fixed length taut string. We derived a mathematical model that relates the two-dimensional kinetic shape equation to the string’s physical and dynamic parameters. With this model we designed and constructed an automated instrument that is able to play frequencies within predicted and recognizable frequencies. This prototype instrument is also able to play programmed melodies. Keywords: musical instrument, variable tension, kinetic shape, string vibration 1. Introduction It is possible to vary the fundamental natural oscillation frequency of a taut and uniform string by either changing the string’s length, linear density, or tension. Most string musical instruments produce di↵erent tones by either altering string length (fretting) or playing preset and di↵erent string gages and string tensions. Although tension can be used to adjust the frequency of a string, it is typically only used in this way for fine tuning the preset tension needed to generate a specific note frequency. In this article, we present a novel string instrument concept that is able to continuously change the fundamental oscillation frequency of a plucked (or bowed) string by altering string tension in a controlled and predicted Email addresses: [email protected] (Ismet Handˇzi´c), [email protected] (Kyle B. Reed) URL: http://reedlab.eng.usf.edu/ () Preprint submitted to Applied Acoustics April 19, 2014 Figure 1: The musical kinetic shape variable tension string instrument prototype.
    [Show full text]
  • Experiment 12
    Experiment 12 Velocity and Propagation of Waves 12.1 Objective To use the phenomenon of resonance to determine the velocity of the propagation of waves in taut strings and wires. 12.2 Discussion Any medium under tension or stress has the following property: disturbances, motions of the matter of which the medium consists, are propagated through the medium. When the disturbances are periodic, they are called waves, and when the disturbances are simple harmonic, the waves are sinusoidal and are characterized by a common wavelength and frequency. The velocity of propagation of a disturbance, whether or not it is periodic, depends generally upon the tension or stress in the medium and on the density of the medium. The greater the stress: the greater the velocity; and the greater the density: the smaller the velocity. In the case of a taut string or wire, the velocity v depends upon the tension T in the string or wire and the mass per unit length µ of the string or wire. Theory predicts that the relation should be T v2 = (12.1) µ Most disturbances travel so rapidly that a direct determination of their velocity is not possible. However, when the disturbance is simple harmonic, the sinusoidal character of the waves provides a simple method by which the velocity of the waves can be indirectly determined. This determination involves the frequency f and wavelength λ of the wave. Here f is the frequency of the simple harmonic motion of the medium and λ is from any point of the wave to the next point of the same phase.
    [Show full text]
  • Chapter 5 Waves I: Generalities, Superposition & Standing Waves
    Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a liquid make relatively small oscillatory motions but collectively give a pattern which travels for long distances. This kind of motion also includes the phenomenon of sound, where the molecules in the air around us make small oscillations but collectively give a disturbance which can travel the length of a college classroom, all the way to the students dozing in the back. We can even view the up–and–down motion of inebriated spectators of sports events as wave motion, since their small individual motions give rise to a disturbance which travels around a stadium. The mathematics of wave motion also has application to electromagnetic waves (including visible light), though the physical origin of those traveling disturbances is quite different from the mechanical waves we study in this chapter; so we will hold off on studying electromagnetic waves until we study electricity and magnetism in the second semester of our physics course. Obviously, wave motion is of great importance in physics and engineering. 5.1.2 Types of Waves In some types of wave motion the motion of the elements of the medium is (for the most part) perpendicular to the motion of the traveling disturbance. This is true for waves on a string and for the people–wave which travels around a stadium. Such a wave is called a transverse wave. This type of wave is the easiest to visualize.
    [Show full text]
  • AN INTRODUCTION to MUSIC THEORY Revision A
    AN INTRODUCTION TO MUSIC THEORY Revision A By Tom Irvine Email: [email protected] July 4, 2002 ________________________________________________________________________ Historical Background Pythagoras of Samos was a Greek philosopher and mathematician, who lived from approximately 560 to 480 BC. Pythagoras and his followers believed that all relations could be reduced to numerical relations. This conclusion stemmed from observations in music, mathematics, and astronomy. Pythagoras studied the sound produced by vibrating strings. He subjected two strings to equal tension. He then divided one string exactly in half. When he plucked each string, he discovered that the shorter string produced a pitch which was one octave higher than the longer string. A one-octave separation occurs when the higher frequency is twice the lower frequency. German scientist Hermann Helmholtz (1821-1894) made further contributions to music theory. Helmholtz wrote “On the Sensations of Tone” to establish the scientific basis of musical theory. Natural Frequencies of Strings A note played on a string has a fundamental frequency, which is its lowest natural frequency. The note also has overtones at consecutive integer multiples of its fundamental frequency. Plucking a string thus excites a number of tones. Ratios The theories of Pythagoras and Helmholz depend on the frequency ratios shown in Table 1. Table 1. Standard Frequency Ratios Ratio Name 1:1 Unison 1:2 Octave 1:3 Twelfth 2:3 Fifth 3:4 Fourth 4:5 Major Third 3:5 Major Sixth 5:6 Minor Third 5:8 Minor Sixth 1 These ratios apply both to a fundamental frequency and its overtones, as well as to relationship between separate keys.
    [Show full text]
  • Physics 1240: Sound and Music
    Physics 1240: Sound and Music Today (7/29/19): Percussion: Vibrating Beams *HW 3 due at the front, HW 4 now posted (due next Mon.) Next time: Percussion: Vibrating Membranes Review Types of Instruments (Hornbostel–Sachs classification) • Chordophones: vibrating strings • Aerophones: vibrating columns of air • Idiophones: vibrating the whole instrument • Membranophones: vibrating membrane/skin • Electrophones: vibrating loudspeaker Review Aerophones e.g. flute, e.g. clarinet e.g. saxophone, recorder oboe, bassoon • Free (no standing waves) • Flute-type (edge tones) • Reed-type (vibrating reed/lips) = = = 2 4 1 • How to create waves: Edge tones Bernoulli effect Review • Tone holes, valves: decrease/increase effective length L • Register holes, octave holes: excite 3rd/2nd harmonics • Ear canal: tube closed at one end 1 3 BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … C) 143, 429, 715, … D) 286, 857, 1429, … E) 172, 343, 515, … BA Clicker Question 14.1 A 1 m long, homemade PVC pipe flute has a large, open tone hole that is a distance 0.6 m from the source end of the flute. What frequencies are present in the spectrum (in Hz)? A) 286, 572, 857, … B) 143, 286, 429, … • Flute: open-open tube C) 143, 429, 715, … • Tone hole: decreases L D) 286, 857, 1429, … from 1 m to 0.6 m E) 172, 343, 515, … 343 m/s = = 2(0.6 m) = (286 Hz) 2 BA Clicker Question 14.2 An oboe can be modelled as a cone open at one end.
    [Show full text]
  • Standing Waves Physics Lab I
    Standing Waves Physics Lab I Objective In this series of experiments, the resonance conditions for standing waves on a string will be tested experimentally. Equipment List PASCO SF-9324 Variable Frequency Mechanical Wave Driver, PASCO PI-9587B Digital Frequency Generator, Table Rod, Elastic String, Table Clamp with Pulley, Set of 50 g and 100 g Masses with Mass Holder, Meter Stick. Theoretical Background Consider an elastic string. One end of the string is tied to a rod. The other end is under tension by a hanging mass and pulley arrangement. The string is held taut by the applied force of the hanging mass. Suppose the string is plucked at or near the taut end. The string begins to vibrate. As the string vibrates, a wave travels along the string toward the ¯xed end. Upon arriving at the ¯xed end, the wave is reflected back toward the taut end of the string with the same amount of energy given by the pluck, ideally. Suppose you were to repeatedly pluck the string. The time between each pluck is 1 second and you stop plucking after 10 seconds. The frequency of your pluck is then de¯ned as 1 pluck per every second. Frequency is a measure of the number of repeating cycles or oscillations completed within a de¯nite time frame. Frequency has units of Hertz abbreviated Hz. As you continue to pluck the string you notice that the set of waves travelling back and forth between the taut and ¯xed ends of the string constructively and destructively interact with each other as they propagate along the string.
    [Show full text]
  • Ch 12: Sound Medium Vs Velocity
    Ch 12: Sound Medium vs velocity • Sound is a compression wave (longitudinal) which needs a medium to compress. A wave has regions of high and low pressure. • Speed- different for various materials. Depends on the elastic modulus, B and the density, ρ of the material. v B/ • Speed varies with temperature by: v (331 0.60T)m/s • Here we assume t = 20°C so v=343m/s Sound perceptions • A listener is sensitive to 2 different aspects of sound: Loudness and Pitch. Each is subjective yet measureable. • Loudness is related to Energy of the wave • Pitch (highness or lowness of sound) is determined by the frequency of the wave. • The Audible Range of human hearing is from 20Hz to 20,000Hz with higher frequencies disappearing as we age. Beyond hearing • Sound frequencies above the audible range are called ultrasonic (above 20,000 Hz). Dogs can detect sounds as high as 50,000 Hz and bats as high as 100,000 Hz. Many medicinal applications use ultrasonic sounds. • Sound frequencies below 20 Hz are called infrasonic. Sources include earthquakes, thunder, volcanoes, & waves made by heavy machinery. Graphical analysis of sound • We can look at a compression (pressure) wave from a perspective of displacement or of pressure variations. The waves produced by each are ¼ λ out of phase with each other. Sound Intensity • Loudness is a sensation measuring the intensity of a wave. • Intensity = energy transported per unit time across a unit area. I≈A2 • Intensity (I) has units power/area = watt/m2 • Human ear can detect I from 10-12 w/m2 to 1w/m2 which is a wide range! • To make a sound twice as loud requires 10x the intensity.
    [Show full text]
  • Waves and Music
    Team: Waves and Music Part I. Standing Waves Whenever a wave ( sound, heat, light, ...) is confined to a finite region of space (string, pipe, cavity, ... ) , something remarkable happens − the space fills up with a spectrum of vibrating patterns called “standing waves”. Confining a wave “quantizes” the frequency. Standing waves explain the production of sound by musical instruments and the existence of stationary states (energy levels) in atoms and molecules. Standing waves are set up on a guitar string when plucked, on a violin string when bowed, and on a piano string when struck. They are set up in the air inside an organ pipe, a flute, or a saxophone. They are set up on the plastic membrane of a drumhead, the metal disk of a cymbal, and the metal bar of a xylophone. They are set up in the “electron cloud” of an atom. Standing waves are produced when you ring a bell, drop a coin, blow across an empty soda bottle, sing in a shower stall, or splash water in a bathtub. Standing waves exist in your mouth cavity when you speak and in your ear canal when you hear. Electromagnetic standing waves fill a laser cavity and a microwave oven. Quantum-mechanical standing waves fill the space inside atomic systems and nano devices. A. Normal Modes. Harmonic Spectrum. A mass on a spring has one natural frequency at which it freely oscillates up and down. A stretched string with fixed ends can oscillate up and down with a whole spectrum of frequencies and patterns of vibration. Mass on Spring String with Fixed Ends (mass m, spring constant k) (length L, tension F, mass density µ) ___ ___ f = (1/2 π) √k/m f1 = (1/2L) √F/ µ Fundamental nd f2 = 2f 1 2 harmonic rd f3 = 3f 1 3 harmonic th f4 = 4f 1 4 harmonic • • • These special “Modes of Vibration” of a string are called STANDING WAVES or NORMAL MODES .
    [Show full text]
  • Lab 5A: Mersenne's Laws & Melde's Experiment
    CSUEB Physics 1780 Lab 5a: Mersenne & Melde Page 1 Lab 5a: Mersenne’s Laws & Melde's experiment Introduction Vincenzo Galilei (1520 –1591), the father of Galileo Galilei, was an Italian lutenist, composer, and music theorist. It is reported that he showed that the pitch of a vibrating string was proportional to the square root of its tension. In other words, in order to increase the pitch by an octave (factor of 2 in frequency) it would require the tension to be quadrupled. Marin Mersenne (1588-1648, see picture), often called the “father of acoustics” , around 1630 published a book summarizing the properties of sound, based on the earlier work of Vincenzo and Galileo. He established that: • Frequency is inversely proportional to length of string • Frequency is inversely proportional to the diameter of the string • Frequency is proportional to the root of the tension • Frequency is inversely proportional to the root of the mass (density) of the string. So in summary, if you want a low note, use a fat (massive) long string under low tension. For a high pitch, use a thin short string under high tension. We can summarize all of his results with a single equation showing that the frequency “f” is proportional to: 1 F f ∝ , (1) L µ where “L” is the length of the violin string, “F” is the tension (in Newtons of force) and µ (“mu”) is the mass density of the string (in units of mass per unit length, e.g. kg per meter). In this experiment the string is assumed to be vibrating in its “fundamental” mode, like this, (figure 1).
    [Show full text]
  • Fundamental Frequency Estimation
    Fundamental frequency estimation summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Robel¨ Institute of communication science TU-Berlin IRCAM Analysis/Synthesis Team 25th August 2006 KW - TU Berlin/IRCAM - Analysis/Synthesis Team AMT Part V: Fundamental frequency estimation 1/27 Contents 1 Pitch and fundamental frequency 1.1 Relation between pitch and fundamental frequency 1.2 Harmonic sound sources 2 Fundamental frequency estimation problem 3 Algorithms 3.1 direct evaluation of periodicity 3.2 frequency domain harmonic matching 3.3 spectral period evaluation 3.4 psycho acoustic approaches 3.5 Properties of the auditory processing model KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents AMT Part V: Fundamental frequency estimation 2/27 3.6 half wave rectification 3.7 Performance KW - TU Berlin/IRCAM - Analysis/Synthesis Team Contents AMT Part V: Fundamental frequency estimation 3/27 1 Pitch and fundamental frequency Pitch • perceived tone frequency of a sound in comparison with the perceptively best match with a pure sinusoid. fundamental frequency • inverse of the signal period of a periodic or quasi periodic signal, • spectrum contains energy mostly at integer multiples of the fundamental frequency. • the sinusoids above the fundamental are called the harmonics of the fundamental frequency. IRCAM - Analysis/Synthesis Team Contents AMT Part V: Fundamental frequency estimation 4/27 1.1 Relation between pitch and fundamental frequency • For many signals both terms are closely related, if the higher harmonics are strongly amplified due to formants the pitch may be located not at th first but a higher harmonic. • if a sound signal contains in-harmonically related sinusoids more then one pitch may be perceived while the signal is actually not periodic.
    [Show full text]