Redalyc.THE UNIVERSAL ANCESTOR an UNFINISHED

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.THE UNIVERSAL ANCESTOR an UNFINISHED Mètode Science Studies Journal ISSN: 2174-3487 [email protected] Universitat de València España Becerra, Arturo; Delaye, Luis THE UNIVERSAL ANCESTOR AN UNFINISHED RECONSTRUCTION Mètode Science Studies Journal, núm. 6, 2016, pp. 145-149 Universitat de València Valencia, España Available in: http://www.redalyc.org/articulo.oa?id=511754471021 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative MONOGRAPH MÈTODE Science Studies Journal, 6 (2016): 145–149. University of Valencia. DOI: 10.7203/metode.6.4981 ISSN: 2174-3487. Article received: 14/03/2015, accepted: 30/06/2015. THE UNIVERSAL ANCESTOR AN UNFINISHED RECONSTRUCTION ARTURO BECERRA AND LUIS DElaYE The cenancestor is defined as the last common ancestor of every currently living being. Its nature has been inferred from the identification of homologous genes between archaea, bacteria, and eukaryotic lineages. These inferences indicate that the cenancestor had a relatively modern protein translation system, similar in complexity to that of a current cell. However, the key enzymes for the replication of genetic material and for cell membrane biosynthesis are not homologous in bacteria, archaea, and eukaryotes. Here, we briefly review the history of the concept of the last universal common ancestor and the different hypotheses proposed for its biology. Keywords: universal phylogeny, LUCA, horizontal transference, early evolution, common ancestor. Evolutionary biologists are in the same logical predica- ment as historians and can only present arguments based on the assumption that, of all the plausible historical sequences, one is more likely to be a correct description of the past events than another. Lynn Margulis, 1975, 29:21-38 n THE CONCEPT OF HOMOLOGY AND THE UNIVERSAL TREE OF LIFE They say that a picture is worth a thousand words. In the theory of evolution, one of the most suggestive images can be found in a notebook written by Darwin Pascual before On the origin of species was published (Figure 1). In the book, we can appreciate how Darwin Delaye represents the origin of different species from a Sofía by common ancestor in his drawing. As we can see, Darwin’s theory of evolution suggests that the different species living today have Drawing evolved away (diversified) from each other from Figure 1. Darwin outlined the evolution of a group of species from common ancestors. This apparently simple idea an ancestral species in a notebook known as «Notebook B». profoundly changed the way we understand living beings. For instance, when we compare the limbs of different mammals, we find that their bones are very similar to each other (Figure 2). According to Darwin, this similarity exists because those limbs «DARWIN’S THEORY OPENS evolved from a common ancestor; that is, they are THE POSSIBILITY THAT ALL LIVING homologous. In fact, Darwin wrote in On the origin (1859, p. 415): BEINGS ARE RELATED THROUGH A GREAT UNIVERSAL TREE OF LIFE AND EVOLVED What can be more curious than that the hand of a man, formed for grasping, that of a mole for digging, the leg FROM A SINGLE COMMON ANCESTOR» MÈTODE 145 Rebeca Plana. Untitled, 2015. Mixed technique on linen, 160 × 200 cm. MONOGRAPH On the origin of life of the horse, the paddle of the porpoise, and the wing of the bat, should all be constructed on the same pattern […]? The concept of homology allows us to deduce some of the features of the common ancestor for a certain group of organisms. For instance, in the case of the mammals in Figure 2, we can deduce that the common ancestor for all of them had these bones in the same relative positions. Darwin’s theory opens the possibility that all living beings are related through a great universal tree of life and evolved from a single common ancestor. Indeed, Darwin suggested in On the origin (1859, p. 455): «[…that] all the organic beings which have ever lived on this earth have Human Dog Bird Whale descended from some one primordial form.» Modified by Sofía Delaye Pascual from http://en.wikipedia.org/wiki/Homology_(biology) However, Darwin, as cautious as ever in his scientific statements, never dared to represent the Figure 2. Limb homologues from different mammals. evolution of every living being in a single tree. Ernst Haeckel n THE UNIVERSAL ANCESTOR, was the one of the first to «THE ADVENT HISTORY OF THE CONCEPT draw a universal tree. As we OF MOLECULAR BIOLOGY can appreciate from Figure 3, In the middle of the twentieth Haeckel suggests that living BROUGHT THE ISSUE century, Frederick Sanger beings diverge from a common OF THE NATURE OF THE developed the necessary trunk into plants, animals, and LAST COMMON ANCESTOR techniques to understand the protists. TO THE FOREGROUND amino acid and nucleotide Subsequently, during the sequences that make up proteins OF RESEARCH» first half of the twentieth and DNA, respectively. The century, Chatton (1938) and, information generated with even more clearly, Stanier and these techniques allowed Emile van Niel (1941) suggested that living beings should Zuckerkandl and Linus Pauling to suggest that it was be classified in two main groups, i.e., prokaryotes possible to reconstruct the history of living beings by and eukaryotes (Figure 4). The main features of comparing these biomolecules. eukaryotes are that they possess internal membranes, In 1977, using molecular techniques, one of the like the nuclear membrane and the endoplasmic most surprising discoveries about the diversity of reticulum, and that they divide by mitosis, while life on Earth was published. Carl Woese and George prokaryotes do not have internal membranes and Fox discovered that, regarding the similarities and divide by fission. In the words of Stanier and van Niel differences in the small subunit of the ribosomal (1941, p. 464): «…the Monera kingdom, composed RNA molecule (SSU rRNA), living beings are divided of microorganisms without true nuclei, plastids, and into three groups (Woese & Fox, 1977a). These sexual reproduction.» three groups (or lineages) are: (a) eubacteria; (b) In 1969, the ecologist Robert Whittaker suggested the eukaryotic nucleus-cytoplasm; and (c) a group that living beings should be classified into four of prokaryotes named archaebacteria. These three great eukaryotic kingdoms (Plantae, Animalia, groups are currently known as Bacteria, Eukaryotes, Protists, and Fungi) and one prokaryote kingdom and Archaea. (Monera). This classification scheme was adapted by Based on this universal division, Woese and Fox Lynn Margulis and combined with the prokaryote/ suggested that there was a primitive entity in the eukaryote division to accommodate the origin of divergence of these three cell lineages, when the mitochondria and chloroplasts, respectively, from relationship between genotype and phenotype had alphaproteobacteria and cyanobacteria (Figure 5). not yet evolved to its current form (Woese & Fox, However, the advent of molecular biology brought the 1977b, p. 1). They named this ancestral biological issue of the nature of the last common ancestor to the entity a progenote: «This primitive entity is called foreground of research. a progenote, to recognize the possibility that it had 146 MÈTODE MONOGRAPH On the origin of life D r a w in g b y So fía De laye Pascual Drawing by Sofía Delaye Pascual On the left, Figure 3, tree of life inspired by Generelle Morphologie der Organismen (1866), by Ernst Haeckel. Above, Figure 4, on a cellular level, we can classify all the living beings as prokaryotes and eukaryotes. On the right, Figure 5, the five kingdoms classification-scheme amended by Lynn Drawing modified by Sofía Delaye Pascual Margulis (1996). In the picture, we can see the cytological division of all living not yet completed evolving the beings into prokaryotes and eukaryotes. However, the phylogeny link between genotype and We can also observe how prokaryotes proposed by Woese and Fox phenotype». Some years later, (Archaea and Bacteria) originate eukaryotes lacks a root, because it does not Fitch and Upper (1987, p. 761), (Animals, Plants, Fungi, and Protists) through show whether any of the lineages symbiogenesis. when studying the evolution of is older than the other two. The the genetic code, coined the term first approach to identifying the cenancestor, defined as: «the most recent common root of the universal tree was independently made ancestor to all the organisms that are alive today». by two research groups using universally-conserved It is important to note the differences between both duplicate genes. Both analyses suggested that the concepts. The progenote implies a primitive state, root of the universal tree would be the bacteria while the concept of the cenancestor does not, at least branch (Figure 7). This reinforced the idea that the not necessarily. The cenancestor, also known as the cenancestor was prokaryotic in nature. Last Universal Common Ancestor or LUCA, is the last common ancestor only of n RNA OR DNA? currently living beings, and it could be as simple as a progenote In 1996, Mushegian and Koonin or as complex as a current cell. compared the genomes of Thanks to the development two bacteria, Haemophilus of DNA sequencing technology influenzae and Mycoplasma and to the accumulation of a genitalium, in order to propose vast quantity and diversity of the minimal and sufficient set sequences in databases, it was of genes necessary to support possible to start identifying the cellular life. They also looked for Figure 6. Methodology used by Lazcano, Fox, genes conserved in Bacteria, and Oró to identify the genes present in the genes that were homologues to H. Archaea, and Eukaryotes (Figure cenancestor. influenzae and M. genitalium in 6). This enabled a simple Archaea and Eukaryotes, in order methodology to infer the genes to identify universally conserved that were already present in «THE CENANCESTOR, genes and to deduce the nature the cenancestor genome.
Recommended publications
  • Lecture 20 - the History of Life on Earth
    Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection.
    [Show full text]
  • Chapter 22 Notes: Introduction to Evolution
    NOTES: Ch 22 – Descent With Modification – A Darwinian View of Life Our planet is home to a huge variety of organisms! (Scientists estimate of organisms alive today!) Even more amazing is evidence of organisms that once lived on earth, but are now . Several hundred million species have come and gone during 4.5 billion years life is believed to have existed on earth So…where have they gone… why have they disappeared? EVOLUTION: the process by which have descended from . Central Idea: organisms alive today have been produced by a long process of . FITNESS: refers to traits and behaviors of organisms that enable them to survive and reproduce COMMON DESCENT: species ADAPTATION: any inherited characteristic that enhances an organism’s ability to ~based on variations that are HOW DO WE KNOW THAT EVOLUTION HAS OCCURRED (and is still happening!!!)??? Lines of evidence: 1) So many species! -at least (250,000 beetles!) 2) ADAPTATIONS ● Structural adaptations - - ● Physiological adaptations -change in - to certain toxins 3) Biogeography: - - and -Examples: 13 species of finches on the 13 Galapagos Islands -57 species of Kangaroos…all in Australia 4) Age of Earth: -Rates of motion of tectonic plates - 5) FOSSILS: -Evidence of (shells, casts, bones, teeth, imprints) -Show a -We see progressive changes based on the order they were buried in sedimentary rock: *Few many fossils / species * 6) Applied Genetics: “Artificial Selection” - (cattle, dogs, cats) -insecticide-resistant insects - 7) Homologies: resulting from common ancestry Anatomical Homologies: ● comparative anatomy reveals HOMOLOGOUS STRUCTURES ( , different functions) -EX: ! Vestigial Organs: -“Leftovers” from the evolutionary past -Structures that Embryological Homologies: ● similarities evident in Molecular/Biochemical Homologies: ● DNA is the “universal” genetic code or code of life ● Proteins ( ) Darwin & the Scientists of his time Introduction to Darwin… ● On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection.
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Darwin's “Tree of Life”
    Icons of Evolution? Why Much of What Jonathan Wells Writes about Evolution is Wrong Alan D. Gishlick, National Center for Science Education DARWIN’S “TREE OF LIFE” mon descent. Finally, he demands that text- books treat universal common ancestry as PHYLOGENETIC TREES unproven and refrain from illustrating that n biology, a phylogenetic tree, or phyloge- “theory” with misleading phylogenies. ny, is used to show the genealogic relation- Therefore, according to Wells, textbooks Iships of living things. A phylogeny is not should state that there is no evidence for com- so much evidence for evolution as much as it mon descent and that the most recent research is a codification of data about evolutionary his- refutes the concept entirely. Wells is complete- tory. According to biological evolution, organ- ly wrong on all counts, and his argument is isms share common ancestors; a phylogeny entirely based on misdirection and confusion. shows how organisms are related. The tree of He mixes up these various topics in order to life shows the path evolution took to get to the confuse the reader into thinking that when current diversity of life. It also shows that we combined, they show an endemic failure of can ascertain the genealogy of disparate living evolutionary theory. In effect, Wells plays the organisms. This is evidence for evolution only equivalent of an intellectual shell game, put- in that we can construct such trees at all. If ting so many topics into play that the “ball” of evolution had not happened or common ances- evolution gets lost. try were false, we would not be able to discov- THE CAMBRIAN EXPLOSION er hierarchical branching genealogies for ells claims that the Cambrian organisms (although textbooks do not general- Explosion “presents a serious chal- ly explain this well).
    [Show full text]
  • Species Change Over Time
    KEY CONCEPT Species change over time. BEFORE, you learned NOW, you will learn • Fossils are evidence of earlier • About early ideas and observa- life tions on evolution • More complex organisms have • How Darwin developed his developed over time theory of natural selection • Mass extinctions contributed to • How new species arise from the development of Earth’s older species history VOCABULARY THINK ABOUT evolution p. 797 How have telephones changed over time? natural selection p. 801 adaptation p. 802 Today people across the world can speciation p. 804 communicate in many different ways. One of the most common ways is over the telephone. Looking at the two pictures, can you describe how this form of communication has changed over time? Scientists explore the concept of evolution. MAIN IDEA AND DETAILS In a general sense, evolution involves a change over time. You could Make a chart for the main say that the way humans communicate has evolved. Certainly idea scientists explore the concept of evolution. telephones have changed over time. The first telephones were the size Include details about scien- of a shoebox. Today a telephone can fit in the palm of your hand and tists’ observations. can send images as well as sound. In biology,evolution refers to the process though which species change over time. The change results from a change in the genetic material of an organism and is passed from one generation to the next. Check Your Reading What is evolution? Chapter 23: History of Life 797 Early Ideas reading tip In the early 1800s, a French scientist named Jean Baptiste de Lamarck The word acquire comes was the first scientist to propose a model of how life evolves.
    [Show full text]
  • The Evolution of Life
    Study Guide # 2 - Spring, 2000 Geology 230 - Evolution of the Earth THE EVOLUTION OF LIFE Lynn S. Fichter James Madison University Topics to be covered and general objectives: During this period, we will cover the following topics in lecture: ( The record of life on earth. Are there recognizable patterns, or is it all just random and unpredictable? " An introduction to non-equilibrium thermodynamics (chaos/complexity theories). " Evolution of Moneran biochemical pathways. " Symbiosis and the origin of the Protist kingdom. " The Origin of multicellularity. " The Phanerozoic record of multicellular life. ( A sampling of the significant scientific problems in the history of life on earth. Just how much do we know and understand after more than a century of study? " The principles of non-equilibrium thermodynamics [Prigogine's Dissipative Structures and Bronowski's Stratified Stabilities]. How can life get more complex when the second law of thermodynamics says everything in the universe should be running down? " Evolutionary Theory. Many problems exist in science which are very difficult to solve, and which do not have simple solutions. Evolutionary theory is much more than Darwin's theory of natural selection. " The Gaia hypothesis for the coevolution of life and the earth. To what degree are the Earth and life related? PROCESS #1 "Any phenomenon which shows continuous change in time"; #2 "A series of actions or operations definitely conducing to an end." GEOLOGY 230 STUDY GUIDE: THE EVOLUTION OF LIFE SPRING SEMESTER, 2000 - 2 Theory-free science makes about as much sense as value-free politics. Both terms are oxymoronic. All thinking about the natural world must be informed by theory, whether or not we articulate our preferred structure of explanation to ourselves.
    [Show full text]
  • Natural Reward Drives the Advancement of Life
    Rethinking Ecology 5: 1–35 (2020) doi: 10.3897/rethinkingecology.5.58518 PERSPECTIVES http://rethinkingecology.pensoft.net Natural reward drives the advancement of life Owen M. Gilbert1 1 University of Texas at Austin, Austin, USA Corresponding author: Owen Gilbert ([email protected]) Academic editor: S. Boyer | Received 10 September 2020 | Accepted 10 November 2020 | Published 27 November 2020 Citation: Gilbert OM (2020) Natural reward drives the advancement of life. Rethinking Ecology 5: 1–35. https://doi. org/10.3897/rethinkingecology.5.58518 Abstract Throughout the history of life on earth, rare and complex innovations have periodically increased the efficiency with which abiotic free energy and biotic resources are converted to biomass and organismal diversity. Such macroevolutionary expansions have increased the total amount of abiotic free energy uti- lized by life and shaped the earth’s ecosystems. Meanwhile, Darwin’s theory of natural selection assumes a historical, worldwide state of effective resource limitation, which could not possibly be true if life evolved from one or a few original ancestors. In this paper, I analyze the self-contradiction in Darwin’s theory that comes from viewing the world and universe as effectively resource limited. I then extend evolutionary theory to include a second deterministic evolutionary force, natural reward. Natural reward operates on complex inventions produced by natural selection and is analogous to the reward for innovation in human economic systems. I hypothesize that natural reward, when combined with climate change and extinction, leads to the increased innovativeness, or what I call the advancement, of life with time. I then discuss ap- plications of the theory of natural reward to the evolution of evolvability, the apparent sudden appearance of new forms in the fossil record, and human economic evolution.
    [Show full text]
  • 9Th Grade Biology: History of Life and the Theory of Evolution April 14 – April 17 Time Allotment: 40 Minutes Per Day
    9th Grade Biology: History of Life and the Theory of Evolution April 14 – April 17 Time Allotment: 40 minutes per day Student Name: ________________________________ Period: ______ Teacher Name: Ms. Carstens 9th Biology – History of Life and the Theory of Evolution April 14 – April 17 Packet Overview Date Objective(s) Page # Monday, April 6 NO CLASS Tuesday, April 7 1. Describe Charles Darwin’s contributions to scientific thinking 2 about evolution. 2. Analyze the reasoning in Darwin’s theory of evolution by natural selection. Wednesday, April 8 1. Identify inferences on the history of life that are supported by 5 fossils and strata. 2. Explain how biogeography provides evidence that species evolve adaptations to their environments. Thursday, April 9 1. Explain how the anatoMy and developMent of organisMs provide 8 evidence of shared ancestry. Friday, April 10 1. Describe how convergent evolution and divergent evolution affect 13 species diversity. 2. CoMpare and contrast natural selection and artificial selection. Additional Notes: Greetings! As a reminder, in addition to email, you may attend my Zoom office hours to seek support for your weekly work. These sessions are intended for the purpose of answering questions, clarifying instructions, and seeking more information on the content topics for the week. If you need to attend, please join the session that corresponds with your class schedule. The times are listed below: • 1st Period – Mondays, Wednesdays from 10:00-10:50 am • 3rd Period – Mondays, Wednesdays from 1:00-1:50 pm • 4th Period – Tuesdays, Thursdays from 10:00-10:50 am • 6th Period – Tuesdays, Thursdays from 1:00-1:50 pm A minor assessment is found on pgs.
    [Show full text]
  • Paleontology and the History of Life
    36954_u01.qxd 7/11/08 2:01 PM Page 80 Paleontology and the History of Life Michael Benton And out of the ground the Lord God formed every beast of the field, and every fowl of the air; and brought them unto Adam to see what he would call them: and whatsoever Adam called every living creature, that was the name thereof. Genesis 2:19 People have always been astounded by the diversity of life, although perhaps in different ways. In prescientific times farmers saw how their crops and live- stock were merely part of a much larger richness of life, and people have al- ways striven to understand the complexity and arrangement of living things. From Aristotle to Linnaeus, scientists attempted to catalog life and to under- stand where it had come from. During the eighteenth century it became clear to all savants that the earth had been populated formerly by strange and mar- velous creatures that had since become extinct. By 1820 some rough picture of the succession of floras and faunas through geological time was beginning to emerge. Charles Darwin, during the voyage of HMS Beagle in the early 1830s, became increasingly convinced that life was more diverse than he had imagined—every island he visited sported a new crop of plants and animals. He saw the lateral (geographic) and vertical (historic) links between species and realized by 1837 that species were all linked by a great tree. The tree con- cept made it clear why species that in his time were geographically close should also be genealogically close.
    [Show full text]
  • Evidence for Evolution
    CHAPTER 3 Evidence for Evolution VOLUTIONARY BIOLOGY HAS PROFOUNDLY altered our view of nature and of ourselves. At the beginning of this book, we showed the practical application of Eevolutionary biology to agriculture, biotechnology, and medicine. More broadly, evolutionary theory underpins all our knowledge of biology, explains how organisms came to be (both describing their history and identi- fying the processes that acted), and explains why they are as they are (why organisms reproduce sexually, why they age, and so on). How- ever, arguably its most important influence has been on how we view ourselves and our place in the world. The radical scope of evolution- ary biology has for many been hard to accept, and this has led to much misunderstanding and many objections. In this chapter, we summarize the evidence for evolution, clarify some common misun- derstandings, and discuss the wider implications of evolution by natural selection. Biological evolution was widely accepted soon after the publication of On the Origin of Species in 1859 (Chapter 1.x). Charles Darwin set out “one long argument” for the “descent with modification” of all liv- ing organisms, from one or a few common ancestors. He marshaled evidence from classification of organisms, from the fossil record, from geographic distribution of organisms, and by analogy with artificial se- lection. As we saw in Chapter 1, the detailed processes that cause evo- lution remained obscure until after the laws of heredity were established in the early 20th century. By the time of the Evolutionary Synthesis,in the mid-20th century, these processes were well understood and, cru- cially, it was established that adaptation is due to natural selection (Chapter 1.x).
    [Show full text]
  • Chapter 14: the History of Life Computer Test Bank Oparin, Miller and Urey, Fox, and Others Journals the Experiments They Research
    UnitUnit 55 Unit 5 UnitUnit 55 Change Advance Planning ChangeChange Chapter 14 Through Time I Order diatomaceous earth for MiniLab 14-1. Unit Overview ThroughThrough I Order the chemicals for the In this unit, students will study Alternative Lab. I the concepts and principles of Order a live culture or pre- evolution and classification. TimeTime served slides of Oscillatoria for Chapter 14 deals with the history the Quick Demo. I of life on Earth, and some Life on Earth has a history of change Order live cultures or pre- hypotheses about how life began. served slides of bacteria and that is called evolution. An enormous Students will learn about fos- cyanobacteria for the Biology sils—what they are, how they are variety of fossils, such as those of early Journal. formed, and how they can be birds, provide evidence of evolution. Chapter 15 used to reconstruct the history of Genetic studies of populations of bacteria, I Order bacterial cultures, nutri- life on Earth. In Chapter 15, protists, plants, insects, and even humans ent agar, and other materials Darwin’s theory of evolution by for the Alternative Lab. natural selection is discussed. provide further evidence of the history The role of natural selection in Unit Projects Chapter 16 of change among organisms that live or I the evolution of new species is Obtain casts of various fossil have lived on Earth. presented. In Chapter 16, evi- hominids and ape skulls for the dence of the ancestry of humans BioLab. is explored. Chapter 17 intro- Chapter 17 duces taxonomy and the diversity UNIT CONTENTS I Obtain guidebooks that have of organisms.
    [Show full text]