Stat5a Regulation by Serine Phosphorylation in Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Stat5a Regulation by Serine Phosphorylation in Breast Cancer Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2021 STAT5A REGULATION BY SERINE PHOSPHORYLATION IN BREAST CANCER Alicia E. Woock Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Disease Modeling Commons, and the Neoplasms Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/6537 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Alicia Woock, March 2021 All Rights Reserved. i STAT5A REGULATION BY SERINE PHOSPHORYLATION IN BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University by ALICIA E. WOOCK B.S., Chemistry Appalachian State University, 2012 Director: Charles V. Clevenger, M.D., Ph.D., Chair, Department of Pathology Virginia Commonwealth University Richmond, Virginia March, 2021 ii Abstract The neuroendocrine hormone prolactin (PRL) and its cognate receptor (PRLr) have been implicated in the pathogenesis of breast cancer. PRL signaling relies on activating kinases such as the tyrosine kinase Jak2 and serine/threonine kinases ERK1/2, NEK3, PI3K, and AKT. In the canonical pathway of PRL signaling, JAK2 phosphorylates the transcription factor STAT5a at tyrosine residue 694 (pY694-STAT5a), preceding STAT5a nuclear translocation and transcriptional activity. However, STAT5a exists with functional duality as a transcription factor, having both pro-differentiative and pro-proliferative target genes. Other STAT family members (STATs 1, 3, and 6) have been shown to have transcriptional activity in the un-tyrosine- phosphorylated (upY) state, distinct from that of pY-STAT activity. This distinction (upY vs. pY) may underlie the duality of STAT5a, coupled with additional regulatory non-canonical post- translational modifications. Within this notion, STAT5a contains two serine residues, S726 and S780, whose phosphorylation are necessary for hematopoietic transformation. However, their functions in PRL-mediated breast cancer pathogenesis have not been examined. We hypothesize that STAT5a serine phosphorylation regulates STAT5a nuclear activity in a non-canonical fashion, contributing to its role in mammary oncogenesis, specifically in luminal breast cancer. As shown in a tissue microarray (TMA), human breast cancer tissues express both pS726- and pS780- STAT5a. Nuclear Allred score for pS726-STAT5a increases two-fold with increasing tumor grade, with no difference in staining associated with estrogen or progesterone receptor (ER, PR) status, nor other clinical characteristics. Likewise, patient derived xenograft (PDX) tumors of various molecular subtypes express pS726- and pS780-STAT5a. Phosphorylation of S726-STAT5a is PRL-responsive in vitro. To examine the functional significance of STAT5a serine phosphorylation in vitro, we have performed STAT5a knockdown (KD) in the breast cancer cell iii line MCF7. Following STAT5a KD, cells were rescued with phospho-site specific STAT5a mutant constructs targeting Y694, S726 and S780. Characteristics of breast cancer examined in these mutation-carrying cells, including anchorage-independent growth and proliferation, show distinct phenotypes compared to controls. Further, PRL-inducible gene expression changes on the global transcriptomic level showed differential effects of the STAT5a mutations compared to wild type STAT5a, specifically enrichment of different oncogenic signatures and transcription factor programs. Mechanistic studies examine the ability of these STAT5a mutant proteins to undergo nuclear translocation and their regulatory role on phosphorylation of STAT5a tyrosine residue 694. Collectively, these studies provide novel insights into the role of the non-canonical pathway of STAT5a activation in breast cancer pathogenesis. iv Acknowledgments “Great things are not done by impulse, but by a series of small things brought together.”-Vincent van Gogh Completion of this thesis would not have been possible without the help of others. First, I’d like to acknowledge my committee members, Dr. Larisa Litovchick, Dr. Chuck Harrell, Dr. Joyce Lloyd, and Dr. Devanand Sarkar, for their support of my project and for pushing my science and understanding further. I’d also like to acknowledge my co-authors on my manuscript submitted February 5, 2021, who provided tissue samples, performed analyses, and gave constructive feedback on the manuscript. Drs. Michael Idowu and Patricija Zot provided tissues for the tissue microarray and analysis. Dr. Chuck Harrell provided PDX samples, which were prepared by either Tia H. Turner or Mohammad A. Alzubi. Amy L. Olex performed the RNA-seq quality control and alignment and performed/provided guidance on RNA-seq analysis. She was extremely helpful throughout the process of analyzing the RNA-seq. Finally, Jackie M. Grible: not only a co-author and former lab member, but a friend. Jackie helped with technical aspects of my research, performing and analyzing the soft agar assay. But she was also a sounding board for ideas, and I appreciate her letting me hang out with her dogs, Tommy and Sammy, when I needed dog cuddles. I’d also like to acknowledge our laboratory technicians, Shannon E. Hedrick and Madhavi Puchalapalli for their technical support. Shannon’s knowledge of molecular biology, and her time, were so appreciated. Her technical support on my project ranged from performing the IHC for the TMA, to teaching me how to clone, run PCR, and analyze DNA gels. I would not be the scientist I am today without her. v I’d like to acknowledge my mentor and Principal Investigator, Dr. Charles Clevenger. His guidance and support of my project got it to where it is today. In my time in his lab I have learned so much about science and the process of research. His mentoring allowed me to become an independent researcher, and for that I am thankful. Lastly, I’d also like to acknowledge my family and friends, who supported me, kept encouraging me, and helped balance me. Our use of FaceTime has been impressive. vi Abbreviations (v/v) Volume per volume ratio (w/v) Weight per volume ratio A Alanine AA Amino acid ABL Abelson AKT Protein kinase B AML Acute myeloid leukemia ANOVA Analysis of variance APC Adenomatous polyposis coli APS Ammonium persulfate AR Androgen receptor ATCC American Type Culture Collection bcl6 B-cell lymphoma 6 BLAST Basic local alignment search tool BLG β-lactoglobulin gene BME β-mercaptoethanol bp Base pairs BRCA Breast cancer BSA Bovine serum albumin C Celsius C- Carboxy c-Src Cellular-Src CBP CREB-binding protein CC3 Cleaved caspase 3 CC7 Cleaved caspase 7 CCND1 Cyclin D1 vii cDNA Complementary deoxyribonucleic acid ChIP Chromatin immunoprecipitation CISH Cytokine-inducible SH2-containing protein CML Chronic myeloid leukemia CMV Cytomegalovirus Co-IP Co-immunoprecipitation CO2 Carbon dioxide CTCF CCCTC-binding factor CypA Cyclophilin A d Day DAPI 4',6-Diamidino-2-Phenylindole, Dihydrochloride DCIS Ductal carcinoma in situ DEG Differential gene expression Dex Dexamethasone dH2O Distilled water DMEM Dulbecco’s modified eagle’s medium DMSO Dimethylsulfoxide DN Dominant-negative DNA Deoxyribonucleic acid DNase Deoxyribonuclease DPBS Dulbecco’s phosphate-buffered saline E2 Estrogen ECL Enhanced chemiluminescence ECM Extracellular matrix EDTA Ethylene diamine tetra acetic acid EGFR Epidermal growth factor receptor EGTA Ethylene glycol-bis (aminoethylether) N,N,N',N'-tetraacetic acid viii EMSA Electrophoretic mobility shift assay EMT Epithelial-to-mesenchymal transition EPO Erythropoietin ER Estrogen receptor ERE Estrogen response element ERK Extracellular signal-related kinase ES Enrichment score EV Empty vector EZH2 Enhancer of zeste homolog 2 F Phenylalanine FAK Focal adhesion kinase FBS Fetal bovine serum FDR False discovery rate FL Full length For Forward g Gram GAS Gamma-activated sequence GEF Guanine nucleotide exchange factor GFP Green fluorescent protein GH Growth hormone GHR Growth hormone receptor Gly Glycine GM-CSF Granulocyte-macrophage colony-stimulating factor GR Glucocorticoid receptor GSEA Gene set enrichment analysis h Hour H3K27me3 Histone H3 tri-methylation of lysine 27 ix HCl Hydrochloric acid HDAC6 Histone deacetylase 6 HEK293T Human embryonic kidney HMGN2 High-mobility group N2 HP1 Heterochromatin protein 1 HRP Horseradish peroxidase HUVEC Human umbilical vein endothelial cell IB Immunoblotting ICS-2 Interferon consensus sequence 2 IF Immunofluorescence IFN Interferon IGF Insulin-like growth factor IgG Immunoglobulin G IHC Immunohistochemistry IL Interleukin IP Immunoprecipitation IPA Ingenuity pathway analysis IRF Interferon regulatory factor Jak Janus kinase kb Kilobases KD Knockdown KDa Kilo Dalton KiPIK Kinase inhibitor profiling to identify kinases KO Knockout LB Luria-Bertani broth LSP Leu-Ser-Pro motif LTE2 Long-term estrogen independence x M Molar mAb Monoclonal antibody MAPK Mitogen-activated protein kinase MEF Mouse embryonic fibroblast MEK Mitogen-activated protein kinase kinase mg Milligram MGT Mammary gland tumor min Minutes ml Milliliter mM Millimolar MMTV-PyMT Mammary tumor virus-polyoma middle tumor-antigen mRNA Messenger ribonucleic acid MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide N- amino NaCl Sodium chloride NEB New England Biolabs
Recommended publications
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Distinguishing Pleiotropy from Linked QTL Between Milk Production Traits
    Cai et al. Genet Sel Evol (2020) 52:19 https://doi.org/10.1186/s12711-020-00538-6 Genetics Selection Evolution RESEARCH ARTICLE Open Access Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle Zexi Cai1*†, Magdalena Dusza2†, Bernt Guldbrandtsen1, Mogens Sandø Lund1 and Goutam Sahana1 Abstract Background: Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that afect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Efect-bearing variants often afect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic efects of variants in candidate genes. However, large sample sizes are required to achieve sufcient power. Multi-trait meta-analysis is one approach to deal with this prob- lem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance. Results: For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis com- pared with the subjective assessment of overlapping of single-trait QTL confdence intervals. Pleiotropic efects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confrmed by bivariate association analysis. The previously reported pleiotropic efects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic efects of variants in GHR on milk yield and fat yield were con- frmed.
    [Show full text]
  • FAM83A and FAM83B As Prognostic Biomarkers and Potential New Therapeutic Targets in NSCLC
    cancers Article FAM83A and FAM83B as Prognostic Biomarkers and Potential New Therapeutic Targets in NSCLC Sarah Richtmann 1,2 , Dennis Wilkens 3, Arne Warth 4, Felix Lasitschka 4, Hauke Winter 2,5, Petros Christopoulos 2,6 , Felix J. F. Herth 2,7, Thomas Muley 1,2, Michael Meister 1,2 and Marc A. Schneider 1,2,* 1 Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, D-69126 Heidelberg, Germany; [email protected] (S.R.); [email protected] (T.M.); [email protected] (M.M.) 2 Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), D-69120 Heidelberg, Germany; [email protected] (H.W.); [email protected] (P.C.); [email protected] (F.J.F.H.) 3 Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; [email protected] 4 Institute of Pathology, Heidelberg University Hospital, D-69120 Heidelberg, Germany; [email protected] (A.W.); [email protected] (F.L.) 5 Department of Surgery, Thoraxklinik at Heidelberg University Hospital, D-69126 Heidelberg, Germany 6 Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, D-69126 Heidelberg, Germany 7 Department of Pneumology and Critical Care Medicine, Thoraxklinik at Heidelberg University Hospital, D-69126 Heidelberg, Germany * Correspondence: [email protected] Received: 27 March 2019; Accepted: 9 May 2019; Published: 11 May 2019 Abstract: Although targeted therapy has improved the survival rates in the last decade, non-small-cell lung cancer (NSCLC) is still the most common cause of cancer-related death.
    [Show full text]
  • FAM83 Family Oncogenes Are Broadly Involved in Human Cancers: an Integrative Multi-Omics Approach Antoine M
    FAM83 family oncogenes are broadly involved in human cancers: an integrative multi-omics approach Antoine M. Snijders1, Sun-Young Lee1, Bo Hang1, Wenshan Hao2, Mina J. Bissell1 and Jian-Hua Mao1 1 Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, CA, USA 2 Nanjing Biotech and Pharmaceutical Valley Development Center, China Keywords The development of novel targeted therapies for cancer treatment requires copy number variation; FAM83 family; gene identification of reliable targets. FAM83 (‘family with sequence similarity mutation; multi-omics approach; oncogenes 83’) family members A, B, and D were shown recently to have oncogenic potential. However, the overall oncogenic abilities of FAM83 family genes Correspondence J.-H. Mao, A. M. Snijders and M. J. Bissell, remain largely unknown. Here, we used a systematic and integrative geno- Biological Systems and Engineering mics approach to investigate oncogenic properties of the entire FAM83 fam- Division, Lawrence Berkeley National ily members. We assessed transcriptional expression patterns of eight Laboratory, 1 Cyclotron Road, Berkeley, CA FAM83 family genes (FAM83A-H) across tumor types, the relationship 94720, USA between their expression and changes in DNA copy number, and the associa- E-mails: [email protected]; tion with patient survival. By comparing the gene expression levels of [email protected] and [email protected] FAM83 family members in cancers from 17 different tumor types with those (Received 5 August 2016, revised 16 in their corresponding normal tissues, we identified consistent upregulation September 2016, accepted 21 October of FAM83D and FAM83H across the majority of tumor types, which is lar- 2016, available online 9 January 2017) gely driven by increased DNA copy number.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Protein Interactions in the Cancer Proteome† Cite This: Mol
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG.
    [Show full text]
  • CSE642 Final Version
    Eindhoven University of Technology MASTER Dimensionality reduction of gene expression data Arts, S. Award date: 2018 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology MASTER THESIS Dimensionality Reduction of Gene Expression Data Author: S. (Sako) Arts Daily Supervisor: dr. V. (Vlado) Menkovski Graduation Committee: dr. V. (Vlado) Menkovski dr. D.C. (Decebal) Mocanu dr. N. (Nikolay) Yakovets May 16, 2018 v1.0 Abstract The focus of this thesis is dimensionality reduction of gene expression data. I propose and test a framework that deploys linear prediction algorithms resulting in a reduced set of selected genes relevant to a specified case. Abstract In cancer research there is a large need to automate parts of the process of diagnosis, this is mainly to reduce cost, make it faster and more accurate.
    [Show full text]
  • FAM83A Is Amplified and Promotes Cancer Stem Cell-Like Traits And
    OPEN Citation: Oncogenesis (2017) 6, e300; doi:10.1038/oncsis.2017.3 www.nature.com/oncsis ORIGINAL ARTICLE FAM83A is amplified and promotes cancer stem cell-like traits and chemoresistance in pancreatic cancer S Chen1,5, J Huang2,5, Z Liu3,5, Q Liang4, N Zhang4 and Y Jin4 Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), contribute to tumorigenesis, resistance to chemoradiotherapy and recurrence in human cancers, suggesting targeting CSCs may represent a potential therapeutic strategy. In the current study, we found family with sequence similarity 83, member A (FAM83A) is significantly overexpressed and associated with poorer overall survival and disease-free survival in pancreatic cancer. Overexpression of FAM83A markedly promoted, whereas inhibition of FAM83A decreased, CSC-like traits and chemoresistance both in vitro and in an in vivo mouse model of pancreatic cancer. Furthermore, overexpression of FAM83A activated the well-characterized CSC-associated pathways transforming growth factor-β (TGF-β) signaling and Wnt/β-catenin signaling. Importantly, the FAM83A locus was amplified in a number of human cancers and silencing FAM83A in associated cancer cell lines inhibited activation of the WNT/β-catenin and TGF-β signaling pathways and reduced tumorigenicity. Taken together, these results indicate that FAM83A has a vital oncogenic role to promote pancreatic cancer progression and may represent a potential clinical target. Oncogenesis (2017) 6, e300; doi:10.1038/oncsis.2017.3; published online 13 March 2017 INTRODUCTION in pancreatic cancer progression. Therefore, targeting pancreatic Pancreatic cancer is the seventh leading cause of cancer-related CSCs could potentially increase chemosensitivity and thus mortality.1,2 Despite advances in modern medical technology, improve the response to treatment.
    [Show full text]
  • PRODUCT SPECIFICATION Anti-C22orf23 Product Datasheet
    Anti-C22orf23 Product Datasheet Polyclonal Antibody PRODUCT SPECIFICATION Product Name Anti-C22orf23 Product Number HPA000650 Gene Description chromosome 22 open reading frame 23 Clonality Polyclonal Isotype IgG Host Rabbit Antigen Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: LQCSPTSSQRVLPSKQIASPIYLPPILAARPHLRPANMCQANGAYSREQF KPQATRDLEKEKQRLQNIFATGKDMEERKRKAPPARQKAPAPELDRFEEL VKEIQERKEFLADMEALGQGKQYRGIILAEISQKLREMEDIDHRRSEE Purification Method Affinity purified using the PrEST antigen as affinity ligand Verified Species Human Reactivity Recommended ICC-IF (Immunofluorescence) Applications - Fixation/Permeabilization: PFA/Triton X-100 - Working concentration: 0.25-2 µg/ml Characterization Data Available at atlasantibodies.com/products/HPA000650 Buffer 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. Concentration Lot dependent Storage Store at +4°C for short term storage. Long time storage is recommended at -20°C. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. For protocols, additional product information, such as images and references, see atlasantibodies.com. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Metastatic Adrenocortical Carcinoma Displays Higher Mutation Rate and Tumor Heterogeneity Than Primary Tumors
    ARTICLE DOI: 10.1038/s41467-018-06366-z OPEN Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors Sudheer Kumar Gara1, Justin Lack2, Lisa Zhang1, Emerson Harris1, Margaret Cam2 & Electron Kebebew1,3 Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is 1234567890():,; unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37–57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs. 1 Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 2 Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 3 Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA. Correspondence and requests for materials should be addressed to E.K. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:4172 | DOI: 10.1038/s41467-018-06366-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06366-z drenocortical carcinoma (ACC) is a rare malignancy with types including primary ACC from the TCGA to understand our A0.7–2 cases per million per year1,2.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]