Phylum Ascomycota Reino Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Phylum Ascomycota Reino Fungi REINO FUNGI PHYLUM ASCOMYCOTA REINO FUNGI SUBREINO Filogenia del Reino Fungi Chytridiomycota Mucoromycotina Glomeromycota Ascomycota Asco + ascósporas Cuerpos de Woronin Basidiomycota HIFAS MONO Y DI-CARIOTICAS * ESTRUCTURAS PLECTENQUIMATICAS ASOCIADAS A PRODUCCIÓN DE ESPORAS *CONIDIOS Y SISTEMA DISPERSIÓN COMPLEJOS PLECTÉNQUIMA : PSEUDOPARÉNQUIMA o PROSÉNQUIMA PARED CAPA EXTERNA DELGADA Y DENSA Y CAPA INTERNA GRUESA Y TRASLUCIDA FORMACIÓN LIBRE DE CÉLULAS CUERPOS DE WORONIN (N, S y P + alto) ORGANELAS DEL PORO SEPTAL PHYLUM ASCOMYCOTA SUBPHYLUM TAPHRINOMYCOTINA (n) SUBPHYLUM SACCHAROMYCOTINA (2n o n+2n SUBPHYLUM PEZIZOMYCOTINA CL. ORBILIOMYCETES CL. PEZIZOMYCETES CL. DOTHIDEOMYCETES CL. ARTHONIOMYCETES CL. EUROTIOMYCETES CL. LABOULBENIOMYCETES CL. LICHINOMYCETES CL. LECANOROMYCETES CL. LEOTIOMYCETES CL. SORDARIOMYCETES SUBPHYLUM PEZIZOMYCOTINA ORBILIOMYCETES ASCOS NO OPERCULADOS, ASCOMA APOTECIOIDE PEZIZOMYCETES ASCOS OPERCULADOS, ASCOMA APOTECIOIDE “DISCOMYCETES” LAHMIALES MEDEOLARIALES TRIBLIDIALES DOTHIDEOMYCETES DESARROLLO ASCOSTROMÁTICO ASCOS BITUNICADOS “LOCULOASCOMYCETES” P/PLÍQUENES ARTHONIOMYCETES LÍQUENES EUROTIOMYCETES “PLECTOMYCETES”, ASCOMA CLEISTOTECIOIDE P/PLÍQUENES LABOULBENIOMYCETES SIMBIONTES DE INSECTOS LICHINOMYCETES LÍQUENES LECANOROMYCETES LÍQUENES LEOTIOMYCETES ASCOMA APOTECIOIDE, PEQUEÑOS, ASCOS NO OPERCULADOS , CON PORO, UNITUNICADOS SORDARIOMYCETES ASCOMA PERITECIOIDE (EXCEP. CLEISTOTECIOIDE) ASCOS NO PERCULADOS, UNITUNICADOS O PROTOTUNICADOS “PIRENOMYCETES” ¿Cuáles son los primeros registros fósiles que se conocen? Mass extinction at K-T boundary; fungal ‘spike’ Rhynie Chert Increasing diversity of angiosperms, mammals, birds Gymnosperms dominant, evolution of angiosperms; first birds Gymnosperms become dominant, first dinosaurs, first mammals Mass extinction of ~95% of all species; fungal ‘spike’ Origin of insects, ferns, seed plants Earliest terrestrial vascular plants Paleopyrenomycites devonicus (Sordariomyces) marine animals diversify; first appearance of most animal phyla; diverse algae Modified from Blackwell, 2000 TELEOMORFO ASCO ASCOSPORAS ESTADO PERFECTO (+) (-) ASCOGONIO ANTERIDIO ANAMORFO ESTADO CONIDIO IMPERFECTO MITÓSPORA EXTERNA TIPOS DE ASCOS PROTOTUNICADO UNITUNICADO NO OPERCULADO OPERCULADO BITUNICADO ANTERIDIO ASCOGONIO UNCÍNULO REPRODUCCIÓN SEXUAL 1. FUSIÓN DE GAMETANGIOS SIMILARES 2. GAMETANGIOS UNI O PLURINUCLEADOS ANTERIDIO Y ASCOGONIO ESPERMACIOS O MICRO- o MACRO-CONIDIOS (+) (-) Neurospora crassa ¿EN QUE SE BASA LA CLASIFICACIÓN? Basidiomycota NO FORMAN ASCOMA Schizosaccharomycetes TAPHRINOMYCOTINA Pneumocystidiomycetes Neolectomycetes Ascomycota Taphrinomycetes SACCHAROMYCOTINA Orbiliomycetes Pezizomycetes Lecanoromycetes Eurotiomycetes Lichinomycetes PEZIZOMYCOTINA Geoglossaceae Leotiomycetes FORMAN ASCOMA Sordariomycetes Laboulbeniomycetes CLEISTOTECIOIDE Dothideomycetes Arthoniomycetes GlomeromycotaPERITECIOIDE APOTECIOIDE ASCOSTROMA TAPHRINOMYCOTINA Schizosaccharomyces pombe “fission yeast” NO FORMAN ASCOMA Taphrina deformans Taphrina pruni Taphrina alni NO FORMAN ASCOMA Basidiomycota Schizosaccharomycetes TAPHRINOMYCOTINA Pneumocystidiomycetes Neolectomycetes Ascomycota Taphrinomycetes SACCHAROMYCOTINA Orbiliomycetes Pezizomycetes Lecanoromycetes Eurotiomycetes Lichinomycetes PEZIZOMYCOTINA Geoglossaceae Leotiomycetes Sordariomycetes Laboulbeniomycetes Dothideomycetes Arthoniomycetes Glomeromycota NO FORMAN ASCOMA SACCHAROMYCOTINA Saccharomyces cereviseae FORMAN ASCOMA CLEISTOTECIOIDE PERITECIOIDE APOTECIOIDE ASCOSTROMA Basidiomycota Schizosaccharomycetes TAPHRINOMYCOTINA Pneumocystidiomycetes Neolectomycetes Ascomycota Taphrinomycetes SACHAROMYCOTINA Orbiliomycetes Pezizomycetes Lecanoromycetes Eurotiomycetes PEZIZOMYCOTINA Lichinomycetes Geoglossaceae Leotiomycetes Sordariomycetes Laboulbeniomycetes Dothideomycetes Arthoniomycetes Glomeromycota FORMAN ASCOMA CLEISTOTECIOIDE Eurotium sp. PERITECIOIDE ASCOMA MÚLTIPLE Melanospora zamiae Podospora sp. Epichloe typhina APOTECIOIDE Peziza cerea ASCOMA MÚLTIPLE ASCOSTROMA UNILOCULAR MULTILOCULAR PARÁSITOS DE PLANTAS Uncinula sp. PARÁSITOS DE ANIMALES SIMBIONTE DE INSECTOS PARÁSITOS DE HONGOS Cordyceps capitata parasitando Elaphomyces sp. Hyphomyces sobre Ganoderma SAPRÓFITOS Chlorociboria sp. Discoxylaria myrmecophila Hypocreodendron (anamorfo) Peziza sp. ENDÓFITOS Hifas de un endófito (Epicholoe sp.) en la capa de aleurona de cariopses de Festuca hyeronimi SIMBIÓTICOS LÍQUENES MICORRIZAS COMESTIBLES Morchella sculenta Daldinia concentrica ¿QUÉ IMPORTANCIA TIENEN? •*SAPRÓFITOS •*PARÁSITOS DE HONGOS, INSECTOS, ETC. •*FERMENTACIÓN •*ANTIBIÓTICOS •*METABOLITOS SECUNDARIOS •*MICOTOXINAS (CICLOPÉPTIDOS), ALCALOIDES, FEROMONAS •*PATÓGENOS DE PLANTAS Y ANIMALES •*COMESTIBLES •*MICORRÍCICOS •INVESTIGACIONES BIOLÓGICAS (Neurospora crassa control genético en producción de enzimas 1958, premio Nobel a George Wells Beadle y Edward L. Tatum. Hipótesis “Un gen, una enzima”. Rickiella edulis (Sarcociphaceae) Phillipcia PHYLUM BASIDIOMYCOTA NO FORMAN ASCOMA Schizosaccharomycetes (n)( fisión) SUBPHYLUM TAPHRINOMYCOTINA Pneumocystidiomycetes Neolectomycetes PHYLUM Taphrinomycetes ASCOMYCOTA SUBPHYLUM SACCHAROMYCOTINA (n+2n – 2n) Orbiliomycetes Pezizomycetes SUBPHYLUM Lecanoromycetes PEZIZOMYCOTINA Eurotiomycetes Lichinomycetes FORMAN ASCOMA Geoglossaceae Leotiomycetes Sordariomycetes Laboulbeniomycetes Dothideomycetes Arthoniomycetes Glomeromycota TAPHRINOMYCOTINA Taphrina deformans Taphrina populina Taphrina entomospora s/Nothofagus pumilio Taphrina amentorum frutos de Alder Alnus Pneumocystidiomycetes Pneumocystis carinii, Class Pneumocystidiomycetes, the causal agent of a lung disease that affects many AIDS sufferers, fits into the Subphylum Taphrinomycotina PHYLUM NO FORMAN CUERPOS DE FRUCTIFICACIÓN BASIDIOMYCOTA Schizosaccharomycetes (n) SUBPHYLUM TAPHRINOMYCOTINA Pneumocystidiomycetes Neolectomycetes PHYLUM Taphrinomycetes ASCOMYCOTA SUBPHYLUM SACCHAROMYCOTINA (n+2n – 2n) Orbiliomycetes FORMAN CUERPOS DE Pezizomycetes FRUCTIFICACIÓN Lecanoromycetes Eurotiomycetes SUBPHYLUM Lichinomycetes Geoglossaceae PEZIZOMYCOTINA Leotiomycetes Sordariomycetes Laboulbeniomycetes Dothideomycetes Arthoniomycetes Glomeromycota HAPLONTE HAPLOBIONTE Schizosaccharomyces octosporus Beijer PHYLUM NO FORMAN CUERPOS DE FRUCTIFICACIÓN BASIDIOMYCOTA Schizosaccharomycetes (n) SUBPHYLUM TAPHRINOMYCOTINA Pneumocystidiomycetes Neolectomycetes PHYLUM Taphrinomycetes ASCOMYCOTA SUBPHYLUM SACCHAROMYCOTINA (n+2n – 2n) Orbiliomycetes FORMAN CUERPOS DE Pezizomycetes FRUCTIFICACIÓN Lecanoromycetes Eurotiomycetes SUBPHYLUM Lichinomycetes Geoglossaceae PEZIZOMYCOTINA Leotiomycetes Sordariomycetes Laboulbeniomycetes Dothideomycetes Arthoniomycetes Glomeromycota NO FORMAN CUERPOS DE FRUCTIFICACIÓN SACCHAROMYCOTINA Saccharomyces cereviseae Saccharomyces ludwigi - Parte de la micota normal (piel y mucosas) Candida albicans 25% micosis cutáneas REPRODUCCIÓN ASEXUAL Son ubicuas: en ambientes acuáticos y terrestres asociadas a suelos y aire plantas y animales Importancia : # relación con la sociedad humana (aproximadamente 5,000 años) #en procesos biotecnológicos (obtención de vitaminas del complejo B, pigmentos, proteínas de organismos unicelulares, biomasa, etc. Té de Kombucha ( Asia y Europa y China, más de 5000 años) Conocido por civilizaciones como faraones Egipcios, los Mayas y los Incas. Beneficios: potencia el sistema inmunológico, desintoxicante. AZÚCARES ALCOHOL AC. ACÉTICO Simbiosis entre levaduras (Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii y Zygosaccharomyces bailii.)y acetobacterias, (ej.Bacterium xylinum) http://comunidad.ainia.es/web/ainiacomunidad/blogs/biotecnologia/-/articulos/Dfu9/content/por-que-las- levaduras-son-compuestos-importantes-para-la-industria TÉ de Kombucha PROPIEDADES MEDICINALES : Es laxante delicado , diurético , astringente , estimulante del organismo , eficaz antioxidante , prepara al cuerpo para defenderse de las infecciones y de los desequilibrios del sistema inmunológico . Es un reconstituyente general y combate la debilidad , el cansancio y la fatiga . ENFERMEDADES QUE COMBATE: En los distintos informes, tanto antiguos como modernos, se menciona una gran cantidad de enfermedades que se combaten con el Ti de Kombucha: - Regula la actividad del tubo digestivo - Estimula la defecación - Cura las hemorroides - El reumatismo y la artritis - Regenera las paredes celulares y cura asma la arterioesclerosis (normaliza la presión alta, quita la ansiedad, la irritabilidad, el dolor de cabeza, el mareo, etc.) - Combate las enfermedades seniles y prolonga así la vida - Elimina rápidamente indigestiones - Tiene efectos depurativos, disuelve las impurezas y es excelente para eczemas malignos del rostro - Elimina dolores de articulaciones - Elimina la gota - Los cálculos en los riñones, vesícula y en los vasos capilares del cerebro - Regula el nivel de colesterol Normaliza la presión arterial y enfermedades nerviosas - Elimina forúnculos - Evita y elimina la formación de grasas - Cura la amigdalitis - El catarro estomacal - Se utiliza con éxito también contra la disentería, impotencia, flujos extraños y cáncer, sobre todo en sus faces iníciales También se recomienda para los deportistas y para personas que sufren de estrés. Influye en la totalidad del organismo, estabilizando su metabolismo y desintoxicándolo. En consecuencia, aumentan las defensas del cuerpo y reaparece el bienestar general. El Kombucha se considera como único ya que reequilibra de forma activa el pH de la sangre y de esta forma ayuda a combatir cualquier proceso de enfermedad que esté en marcha. El Kombucha es un remedio homeopático por eso puede ser que a veces las quejas inicialmente se agravan. Eso es el comienzo de la curación que mas tarde se manifiesta con la eliminación de las quejas. El Kombucha es también un alimento de alto valor nutritivo por eso se puede tomar con otras medicinas .
Recommended publications
  • Pembrokeshire Fungus Recorder Issue 2/2019
    Pembrokeshire Fungus Recorder Issue 2/2019 Published biannually by the Pembrokeshire Fungus Recording Network www.pembsfungi.org.uk Contents 1. Contents & Editorial 2. Fungus records 4. Events - Training day - Joint events 6. Pembrokeshire Nature Partnership 6. Illustrating waxcaps 7. Entoloma vezzenaense - new to Britain Editorial With the season well underway, time for a mid-term report. Rainfall (mm) Rainfall figures (courtesy of Orielton Field Study Centre) show that after a fairly average April-July rainfall, August and September were wetter than average: something that may explain a reasonably promising start to the waxcap-grassland season. This year has been a busy one for events - and in this issue we report on our training day in May which covered rusts and DNA-barcoding and two autumn field recording events which were run in conjunction with other groups. Our next issue will include reports on our UK Fungus Day event hosted at Orielton Field Centre together with other recent recording/traing events in which we have been involved. As we develop our expertise in DNA-barcoding techiques we are happy to consider in-house projects where we use barcoding to support the identification of cryptic species from particular fungus assemblages. Currently we are looking at chanterelles, at the suggestion of Adam Pollard-Powell, and will report on this, and our work on sand dune morels, in the next issue. David Harries October 2019 Records Fungal galls on plants June produced some interesting fungal plant pathogens with the County's second record for camellia galls (Exobasidium camelliae) (pictured right) reported by Robin Taylor from his garden in Hayscastle.
    [Show full text]
  • Noble Hardwoods Network
    EUROPEAN FOREST GENETIC RESOURCES PROGRAMME (EUFORGEN) Noble Hardwoods Network Report of the second meeting 22-25 March 1997 Lourizan, Spain J. Turok, E. Collin, B. Demesure, G. Eriksson, J. Kleinschmit, M. Rusanen and R. Stephan, compilers ii NOBLE HARDWOODS NETWORK: SECOND MEETING The International Plant Genetic Resources Institute (IPGRl) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRl's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRl's headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRl is conferred under an Establishment Agreement which, by January 1998, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Cote d'Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. Financial support for the Research Agenda of
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al
    UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1).
    [Show full text]
  • Field Guide for the Identification of Damage on Woody Sentinel Plants (Eds A
    7 Damage to reproductive structures of broadleaf woody plants A. Roques, V. Talgø, J.-T. Fan and M.-A. Auger-Rozenberg 7.1. Flower (blossom, catkin, flower-head) galling Description: Flower (catkin) distorted, swollen, or with tissue outgrowth(s) of any shape. Possible damaging agents: Insects: Diptera (Cecidomyiidae midges: Figs. 7.1.5, 7.1.6), Hymenoptera (Cynipidae: Figs. 7.1.3., 7.1.4.), Mites (Acari, Eriophyiidae: Figs. 7.1.1., 7.1.2., 7.1.6.), Fungi (Ascomycetes, Taphrinales: Figs. 7.1.7., 7.1.8.), Bacteria, Phytoplasma. Fig. 7.1.1. Newly-developed inflorescence Fig. 7.1.2. Cauliflower-like gall finally of ash (Fraxinus excelsior), galled by a mite resulting from mite damage shown in Fig. (Acari, Eriophyiidae: Aceria fraxinivora). 7.1.1. Hungary, GC. Marcillac, France, AR. ©CAB International 2017. Field Guide for the Identification of Damage on Woody Sentinel Plants (eds A. Roques, M. Cleary, I. Matsiakh and R. Eschen) Damage to reproductive structures of broadleaf woody plants 71 Fig. 7.1.3. Berry-like gall on a male catkin Fig. 7.1.4. Male catkin of Quercus of oak (Quercus sp.) caused by a gall wasp myrtifoliae, deformed by a gall wasp (Hymenoptera, Cynipidae: Neuroterus (Hymenoptera, Cynipidae: Callirhytis quercusbaccarum). Hungary, GC. myrtifoliae). Florida, USA, GC. Fig. 7.1.5. Inflorescence of birch (Betula sp.) Fig. 7.1.6. Symmetrically swollen catkin of deformed by a gall midge (Diptera, hazelnut (Corylus sp.) caused by a gall Cecidomyiidae: Semudobia betulae). midge (Diptera, Cecidomyiidae: Contarinia Hungary, GC. coryli) or a gall mite (Acari Eriophyiidae: Phyllocoptes coryli).
    [Show full text]
  • Species of Taphrina on Alnus in Slovakia
    C zech m y co l. 47 (3), 1994 Species of Taphrina on Alnus in Slovakia Kamila Bacigálová Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, 842 23 Bratislava, Slovak Republic Bacigálová K. (1994): Species of Taphrina on Alnus in Slovakia. - Czech Mycol. 47: 223-236 New data are presented on the occurrence of Taphrina Fr. [T. alni (Berk, et Br.) Gjaerum, Tepiphylla (Sadeb.) Sacc., T. tosquinetii (Westend.) Magn. and T. sadebeckii Johans.) on Alnus Mill. (A. incana (L.) Moench, A. glutinosa (L.) Gaertn.], till now unknown in Slovakia. Brief characteristics as to biology, ecology and distribution of the mentioned fungi as well as their host plants are given together with the ecological characteristics of the new localities. Key words: Taphrina Fr., Alnus Mill., Slovakia, biology, ecology, distribution Bacigálová K. (1994): Druhy rodu Taphrina na hostitelských rastlinách rodu Alnus na Slovensku. - Czech Mycol. 47: 223-236 Sú opísané v rastlinných spoločenstvách na Slovensku doteraz všeobecne málo známe druhy fytopatogénnych húb rodu Taphrina Fr.: Taphrina alni (Berk, et Br.) Gjaerum - grmaník šištičiek jelše, Taphrina epiphylla (Sadeb.) Sacc. - grmaník vetvičiek jelše šedej, Taphrina tosquinetii (Westend.) Magn. - grmaník listov jelše lepkavej, Taphrina sadebeckii Johans. — grmaník listov jelše na druhoch rodu Alnus Mill.: Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench). Autorka opisuje symptomy ochorenia na hostitelských rastlinách, anatomicko- morfologické charakteristiky húb, lokality ich výskytu a ich ekologické
    [Show full text]
  • MMA MASTERLIST - Sorted by Taxonomy
    MMA MASTERLIST - Sorted by Taxonomy Sunday, December 10, 2017 Page 1 of 86 Amoebozoa Mycetomycota Protosteliomycetes Protosteliales Ceratiomyxaceae Ceratiomyxa fruticulosa Ceratiomyxa fruticulosa var. fruticulosa Ceratiomyxa fruticulosa var. poroides Ceratiomyxa sp. Mycetozoa Myxogastrea Incertae Sedis in Myxogastrea Liceaceae Licea minima Stemonitidaceae Brefeldia maxima Comatricha pulchella Comatricha sp. Comatricha typhoides Stemonitis axifera Stemonitis fusca Stemonitis sp. Stemonitis splendens Chromista Oomycota Incertae Sedis in Oomycota Peronosporales Peronosporaceae Plasmopara viticola Pythiaceae Pythium deBaryanum Oomycetes Saprolegniales Saprolegniaceae Saprolegnia sp. Peronosporea Albuginales Albuginaceae Albugo candida Fungus Ascomycota Ascomycetes Boliniales Boliniaceae Camarops petersii Capnodiales Capnodiaceae Scorias spongiosa Diaporthales Gnomoniaceae Cryptodiaporthe corni Sydowiellaceae Stegophora ulmea Valsaceae Cryphonectria parasitica Valsella nigroannulata Elaphomycetales Elaphomycetaceae Elaphomyces granulatus Elaphomyces sp. Erysiphales Erysiphaceae Erysiphe aggregata Erysiphe cichoracearum Erysiphe polygoni Microsphaera extensa Phyllactinia guttata Podosphaera clandestina Uncinula adunca Uncinula necator Hysteriales Hysteriaceae Glonium stellatum Leotiales Bulgariaceae Crinula caliciiformis Crinula sp. Mycocaliciales Mycocaliciaceae Phaeocalicium polyporaeum Peltigerales Collemataceae Leptogium cyanescens Lobariaceae Sticta fimbriata Nephromataceae Nephroma helveticum Peltigeraceae Peltigera evansiana Peltigera
    [Show full text]
  • Orbilia Ultrastructure, Character Evolution and Phylogeny of Pezizomycotina
    Mycologia, 104(2), 2012, pp. 462–476. DOI: 10.3852/11-213 # 2012 by The Mycological Society of America, Lawrence, KS 66044-8897 Orbilia ultrastructure, character evolution and phylogeny of Pezizomycotina T.K. Arun Kumar1 INTRODUCTION Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108 Ascomycota is a monophyletic phylum (Lutzoni et al. 2004, James et al. 2006, Spatafora et al. 2006, Hibbett Rosanne Healy et al. 2007) comprising three subphyla, Taphrinomy- Department of Plant Biology, University of Minnesota, cotina, Saccharomycotina and Pezizomycotina (Su- St Paul, Minnesota 55108 giyama et al. 2006, Hibbett et al. 2007). Taphrinomy- Joseph W. Spatafora cotina, according to the current classification (Hibbett Department of Botany and Plant Pathology, Oregon et al. 2007), consists of four classes, Neolectomycetes, State University, Corvallis, Oregon 97331 Pneumocystidiomycetes, Schizosaccharomycetes, Ta- phrinomycetes, and an unplaced genus, Saitoella, Meredith Blackwell whose members are ecologically and morphologically Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 highly diverse (Sugiyama et al. 2006). Soil Clone Group 1, poorly known from geographically wide- David J. McLaughlin spread environmental samples and a single culture, Department of Plant Biology, University of Minnesota, was suggested as a fourth subphylum (Porter et al. St Paul, Minnesota 55108 2008). More recently however the group has been described as a new class of Taphrinomycotina, Archae- orhizomycetes (Rosling et al. 2011), based primarily on Abstract: Molecular phylogenetic analyses indicate information from rRNA sequences. The mode of that the monophyletic classes Orbiliomycetes and sexual reproduction in Taphrinomycotina is ascogen- Pezizomycetes are among the earliest diverging ous without the formation of ascogenous hyphae, and branches of Pezizomycotina, the largest subphylum except for the enigmatic, apothecium-producing of the Ascomycota.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Fungal Phyla
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1984 Band/Volume: 37 Autor(en)/Author(s): Arx Josef Adolf, von Artikel/Article: Fungal phyla. 1-5 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Fungal phyla J. A. von ARX Centraalbureau voor Schimmelcultures, P. O. B. 273, NL-3740 AG Baarn, The Netherlands 40 years ago I learned from my teacher E. GÄUMANN at Zürich, that the fungi represent a monophyletic group of plants which have algal ancestors. The Myxomycetes were excluded from the fungi and grouped with the amoebae. GÄUMANN (1964) and KREISEL (1969) excluded the Oomycetes from the Mycota and connected them with the golden and brown algae. One of the first taxonomist to consider the fungi to represent several phyla (divisions with unknown ancestors) was WHITTAKER (1969). He distinguished phyla such as Myxomycota, Chytridiomycota, Zygomy- cota, Ascomycota and Basidiomycota. He also connected the Oomycota with the Pyrrophyta — Chrysophyta —• Phaeophyta. The classification proposed by WHITTAKER in the meanwhile is accepted, e. g. by MÜLLER & LOEFFLER (1982) in the newest edition of their text-book "Mykologie". The oldest fungal preparation I have seen came from fossil plant material from the Carboniferous Period and was about 300 million years old. The structures could not be identified, and may have been an ascomycete or a basidiomycete. It must have been a parasite, because some deformations had been caused, and it may have been an ancestor of Taphrina (Ascomycota) or of Milesina (Uredinales, Basidiomycota).
    [Show full text]
  • Peach Leaf Curl and Plum Pockets
    report on RPD No. 821 PLANT December 2017 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PEACH LEAF CURL AND PLUM POCKETS Peach leaf curl, caused by the fungus Taphrina deformans, has been reported from most of production areas of peaches and nectarines in the world. It is an important disease of peaches and nectarines in Illinois. In home plantings, this is one of the most common diseases. Commercial peach orchards are sometimes seriously damaged when a dormant fungicide application has not been made. Plum pockets also occurs worldwide. This disease is caused by the fungi Taphrina communis and in some areas by T. Pruni. Plum pockets attacks a number of cultivated and wild species of plums. Neither peach leaf curl nor plum pockets normally kills trees, but both may leave them in a weakened condition and, thus, more susceptible to winter injury and infection by other disease-causing organisms. The fruit crop is reduced for the following year, or even longer. Both diseases are discussed here because their management and conditions for their development are the same. Disease development is favored by cool, moist weather (frequent light showers) during the buds break dormancy in early spring. Symptoms Leaves. Infected leaves are severely puckered, distorted, thickened, crisp in texture, and curled downward and inward within a month after full bloom (Figure 1). Usually the whole leaf is affected. Such leaves lose their normal green color, which is replaced by red and purple tints. Later, a grayish white “velvet” spore-producing layer of the Taphrina fungi covers the upper surface of diseased areas.
    [Show full text]