Building Three-Dimensional Human Brain Organoids Sergiu P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BR27069-Stemdiff™ Cerebral Organoid
CEREBRAL ORGANOIDS STEMdiff™ Cerebral Organoid Kit Scientists Helping Scientists™ | WWW.STEMCELL.COM TABLE OF CONTENTS 3 Introduction 4 Cerebral Organoid Formation 5 Cerebral Organoid Characterization 7 Performance of STEMdiffTM Cerebral Organoid Kit vs. Unqualified Reagents 7 Product Information 7 References Introduction For the Culture and Maturation of Why Use the STEMdiff™ Cerebral Organoid Kit? Human Cerebral Organoids PHYSIOLOGICAL. Three-dimensional in vitro system The metazoan brain is a highly complex and organized structure. recapitulates the developmental processes and Two-dimensional (2D) neural cultures derived from human organization of the developing brain. pluripotent stem cells (hPSCs) are useful models to study the nervous INNOVATIVE. Serum-free human pluripotent stem system, but they are limited in their capacity to recapitulate the cell-based model enables the study of development and complex organization of brain tissues. disease processes. hPSC-derived cerebral organoids are three-dimensional (3D) in vitro OPTIMIZED. Formulation is optimized for increased culture systems that recapitulate the developmental processes and efficiency of organoid formation. organization of the developing human brain. They provide a physiologically relevant in vitro model for the RELIABLE. Rigorous raw material screening and study of neurological development and disease processes that extensive quality control testing ensure reproducibility are unique to the human nervous system. Cerebral organoids and minimal lot-to-lot variability. have important applications in studying human brain development SIMPLE. Convenient format and easy-to-use protocol. and neurological disorders such as autism, schizophrenia or brain defects caused by Zika virus infection. The STEMdiff™ Cerebral Organoid Kit is a serum-free culture system that is designed to generate cerebral organoids from human embryonic stem (ES) cells observed during in vivo human brain development. -
The Organoid Handbook Building Better Organoids Introduction Organoid Culture
THE ORGANOID HANDBOOK BUILDING BETTER ORGANOIDS INTRODUCTION ORGANOID CULTURE An organoid is a miniaturized version of an organ produced in vitro that shows realistic micro-anatomy, is capable of self-renewal While different methods, such as the use of low adhesion round bottom dishes and bioreactors, have been employed for organoid and self-organization, and exhibits similar functionality as the tissue of origin. Organoids are model systems that, in conjunction with generation, generally organoids are cultured in tissue culture plates while embedded in “domes” of purified extracellular matrix advances in cell reprogramming technology and gene editing methods, allow unprecedented insight into human development, hydrogels and submerged in organoid-specific culture medium. Multiple organoids are often cultured in one “dome” and, with media disease modeling, drug screening, and transplantation. changes, submerged organoids can remain in long-term culture to accommodate developmental and maturation timelines. Organoids can be classified into those that are tissue-derived and those that are pluripotent stem cell-derived. Tissue-derived Passage organoids typically originate from adult tissues while stem cell-derived organoids are established from embryonic (ESC) or induced pluripotent stem cells (iPSC). Researchers have devised methods to generate physiologically relevant organoid models for many organs, including the intestines, lung, brain, liver, lung, pancreas, and heart. While methods for generating organoids are still evolving, presently -
Optimization of Cerebral Organoid Culture from Embr
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Growing Brains to Study Development: Optimization of Cerebral Organoid Culture from Embryonic Stem Cells A thesis submitted in partial fulfillment of the requirements For the degree of Master of Science in Biology By Jessie Erin Buth December 2015 The thesis of Jessie Erin Buth is approved: __________________________________ ____________________________________ Dr. Aida Metzenberg Date __________________________________ ____________________________________ Dr. Randy Cohen Date __________________________________ ____________________________________ Dr. Cindy Malone, Chair Date California State University, Northridge ii Table of Contents Signature Page ii List of Figures iii Abstract vi Chapter 1: Introduction 1 Chapter 2: Methods 15 Chapter 3: Results 23 Chapter 4: Discussion 50 References 55 Appendix: Supplemental Methods 59 List of Figures Figure 1: Human organoid protocol (Cell line H9) and morphology at various time points. 23 Figure 2: Review of cortex development. 24 Figure 3: V-bottomed 96-well plates improve aggregate formation and generates a thick neuroepithelial layer on day 18 compared to U-bottomed 96-well plates. 25 Figure 4: Plating at 9,000 cells per well on day 0 generates thickest continuous neuroepithelial layer compared to other cell numbers. 26 Figure 5: Addition of the BMP inhibitor (LDN193189) does not improve the efficiency of producing FOXG1+ cortical progenitors and inhibits formation of continuous N-cadherin+ apical membrane. 27 Figure 6: Fold change in gene expression of cortical markers increases as stem cell markers decrease in human cortical organoids over time by qPCR. 28 Figure 7: Human embryonic stem cells efficiently form cortical progenitors with 81.7% of total live cells per organoid positive for cortical marker FOXG1 at day 18. -
Modelling Heme-Mediated Brain Injury Associated with Cerebral Malaria In
www.nature.com/scientificreports OPEN Modelling heme-mediated brain injury associated with cerebral malaria in human brain cortical organoids Adriana Harbuzariu1*, Sidney Pitts1, Juan Carlos Cespedes1, Keri Oxendine Harp1, Annette Nti1, Andrew P. Shaw2, Mingli Liu1 & Jonathan K. Stiles1* Human cerebral malaria (HCM), a severe encephalopathy associated with Plasmodium falciparum infection, has a 20–30% mortality rate and predominantly afects African children. The mechanisms mediating HCM-associated brain injury are difcult to study in human subjects, highlighting the urgent need for non-invasive ex vivo human models. HCM elevates the systemic levels of free heme, which damages the blood-brain barrier and neurons in distinct regions of the brain. We determined the efects of heme on induced pluripotent stem cells (iPSCs) and a three-dimensional cortical organoid system and assessed apoptosis and diferentiation. We evaluated biomarkers associated with heme-induced brain injury, including a pro-infammatory chemokine, CXCL-10, and its receptor, CXCR3, brain-derived neurotrophic factor (BDNF) and a receptor tyrosine-protein kinase, ERBB4, in the organoids. We then tested the neuroprotective efect of neuregulin-1 (NRG-1) against heme treatment in organoids. Neural stem and mature cells diferentially expressed CXCL-10, CXCR3, BDNF and ERBB4 in the developing organoids and in response to heme-induced neuronal injury. The organoids underwent apoptosis and structural changes that were attenuated by NRG-1. Thus, cortical organoids can be used to model heme-induced cortical brain injury associated with HCM pathogenesis as well as for testing agents that reduce brain injury and neurological sequelae. Brain organoids are self-assembled three-dimensional (3D) aggregates derived from pluripotent stem cells (iPSCs) with cell types and formations that mimic the embryonic human brain1–7. -
Brain Organoid
Agboola et al. Stem Cell Research & Therapy (2021) 12:430 https://doi.org/10.1186/s13287-021-02369-8 REVIEW Open Access Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro Oluwafemi Solomon Agboola1, Xinglin Hu1, Zhiyan Shan1, Yanshuang Wu1* and Lei Lei1,2* Abstract The study of human brain physiology, including cellular interactions in normal and disease conditions, has been a challenge due to its complexity and unavailability. Induced pluripotent stem cell (iPSC) study is indispensable in the study of the pathophysiology of neurological disorders. Nevertheless, monolayer systems lack the cytoarchitecture necessary for cellular interactions and neurological disease modeling. Brain organoids generated from human pluripotent stem cells supply an ideal environment to model both cellular interactions and pathophysiology of the human brain. This review article discusses the composition and interactions among neural lineage and non-central nervous system cell types in brain organoids, current studies, and future perspectives in brain organoid research. Ultimately, the promise of brain organoids is to unveil previously inaccessible features of neurobiology that emerge from complex cellular interactions and to improve our mechanistic understanding of neural development and diseases. Keywords: Brain organoid, Disease model, Cellular composition, Cellular interactions, Neurological development Introduction specific region [2, 3]. The further development of our Organoids are in vitro-derived structures that undergo understanding of the development of the human nervous some level of self-organization and resemble, at least in system and elucidation of the mechanisms that lead to part, in vivo organs [1]. Organoid generation depends on brain disorders represent some of the most challenging the outstanding ability of stem cells to self-organize to ongoing endeavors in neurobiology. -
Stem Cells, Genome Editing and the Path to Translational Medicine
Stem Cells, Genome Editing, and the Path to Translational Medicine The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Soldner, Frank and Rudolf Jaenisch. "Stem Cells, Genome Editing, and the Path to Translational Medicine." Cell 175, 3 (October 2018): P615-632 © 2018 Elsevier Inc As Published http://dx.doi.org/10.1016/j.cell.2018.09.010 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125973 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cell. Author Manuscript Author manuscript; Manuscript Author available in PMC 2019 October 18. Published in final edited form as: Cell. 2018 October 18; 175(3): 615–632. doi:10.1016/j.cell.2018.09.010. Stem cells, genome editing and the path to translational medicine Frank Soldner1 and Rudolf Jaenisch1,2,3 1The Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA 2Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA Summary The derivation of human embryonic stem cells (hESCs) and the stunning discovery that somatic cells can be reprogrammed into human induced pluripotent stem cells (hiPSCs) holds the promise to revolutionize biomedical research and regenerative medicine. In this review, we focus on disorders of the central nervous system and explore how advances in human pluripotent stem cells (hPSCs) coincide with evolutions in genome engineering and genomic technologies to provide realistic opportunities to tackle some of the most devastating complex disorders. -
Generation of Differentiating and Long-Living Intestinal Organoids
cells Article Generation of Differentiating and Long-Living Intestinal Organoids Reflecting the Cellular Diversity of Canine Intestine 1, 1, 1,2, , 3 Nina Kramer * , Barbara Pratscher z , Andre M. C. Meneses y z, Waltraud Tschulenk , Ingrid Walter 3, Alexander Swoboda 1, Hedwig S. Kruitwagen 2, Kerstin Schneeberger 2, Louis C. Penning 2, Bart Spee 2 , Matthias Kieslinger 1, Sabine Brandt 4 and Iwan A. Burgener 1 1 Division of Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria 2 Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands 3 Institute of Pathology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria 4 Research Group Oncology, Equine Surgery, Department of Small Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria * Correspondence: [email protected] Current address: Institute of Animal Health and Production, Veterinary Hospital, Amazon Rural Federal y University, Belém 66.077-830, Brazil. These authors contributed equally to this work. z Received: 17 February 2020; Accepted: 26 March 2020; Published: 28 March 2020 Abstract: Functional intestinal disorders constitute major, potentially lethal health problems in humans. Consequently, research focuses on elucidating the underlying pathobiological mechanisms and establishing therapeutic strategies. In this context, intestinal organoids have emerged as a potent in vitro model as they faithfully recapitulate the structure and function of the intestinal segment they represent. Interestingly, human-like intestinal diseases also affect dogs, making canine intestinal organoids a promising tool for canine and comparative research. Therefore, we generated organoids from canine duodenum, jejunum and colon, and focused on simultaneous long-term expansion and cell differentiation to maximize applicability. -
Organoid Based Personalized Medicine: from Bench to Bedside Yaqi Li1,2†, Peiyuan Tang3†, Sanjun Cai1,2, Junjie Peng1,2 and Guoqiang Hua3,4*
Li et al. Cell Regeneration (2020) 9:21 https://doi.org/10.1186/s13619-020-00059-z REVIEW Open Access Organoid based personalized medicine: from bench to bedside Yaqi Li1,2†, Peiyuan Tang3†, Sanjun Cai1,2, Junjie Peng1,2 and Guoqiang Hua3,4* Abstract Three-dimensional cultured organoids have become a powerful in vitro research tool that preserves genetic, phenotypic and behavioral trait of in vivo organs, which can be established from both pluripotent stem cells and adult stem cells. Organoids derived from adult stem cells can be established directly from diseased epithelium and matched normal tissues, and organoids can also be genetically manipulated by CRISPR-Cas9 technology. Applications of organoids in basic research involve the modeling of human development and diseases, including genetic, infectious and malignant diseases. Importantly, accumulating evidence suggests that biobanks of patient- derived organoids for many cancers and cystic fibrosis have great value for drug development and personalized medicine. In addition, organoids hold promise for regenerative medicine. In the present review, we discuss the applications of organoids in the basic and translational research. Keywords: Organoids, Stem cells, Disease modeling, Biobanks, Personalized medicine Background phenocopy tumor heterogeneity is highly needed for re- Two-dimensional (2D) cultured cell lines have been the search on the mechanisms of cancer progression and ac- main in vitro research tool for the past decades. Cell quired drug resistance. In 1953, the first patient-derived lines are relatively cheap, easy to handle and can be ap- xenograft (PDX) models were successfully established plied to multiple experimental techniques. However, the (Toolan 1953). In this model, primary tumor tissue is establishment of a cell line is time-consuming and transplanted into immune-deficient mice, while tumor involves extensive genetic and phenotypic adaption to structure and the relative proportion of tumor cells and culture conditions. -
WNT Signaling in Lung Repair and Regeneration Ahmed A
Molecules and Cells Minireview WNT Signaling in Lung Repair and Regeneration Ahmed A. Raslan1,2 and Jeong Kyo Yoon1,2,* 1Soonchunhyang Institute of Medi-bio Science and 2Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea *Correspondence: [email protected] https://doi.org/10.14348/molcells.2020.0059 www.molcells.org The lung has a vital function in gas exchange between the functions, the cellular composition and three-dimensional blood and the external atmosphere. It also has a critical structure of the lung must be maintained throughout an or- role in the immune defense against external pathogens ganism’s lifetime. Under normal conditions, the lung shows a and environmental factors. While the lung is classified as a low rate of cellular turnover relative to other organs, such as relatively quiescent organ with little homeostatic turnover, the skin and intestine, which exhibit rapid kinetics of cellular it shows robust regenerative capacity in response to injury, replacement characteristics (Bowden et al., 1968; Kauffman, mediated by the resident stem/progenitor cells. During 1980; Wansleeben et al., 2013). However, after injury or regeneration, regionally distinct epithelial cell populations with damage caused by different agents, including infection, toxic specific functions are generated from several different types compounds, and irradiation, the lung demonstrates a re- of stem/progenitor cells localized within four histologically markable ability to regenerate the damaged tissue (Hogan et distinguished regions: trachea, bronchi, bronchioles, and al., 2014; Lee and Rawlins, 2018; Wansleeben et al., 2013). alveoli. WNT signaling is one of the key signaling pathways If this regeneration process is not completed successfully, it involved in regulating many types of stem/progenitor cells leads to a disruption in proper lung function accompanied by in various organs. -
Organoid Culture Handbook
Organoid Culture Handbook Reagents | Cells | Matrices Accelerate Discovery Through Innovative Life Science Table of Contents Introduction to Organoid Culture............................................................................................................. 5 Organoid Models......................................................................................................................................... 7 Organoid Culture Protocols ...................................................................................................................... 8 General Submerged Method for Organoid Culture....................................................................... 8 Crypt Organoid Culture Techniques................................................................................................ 9 Air Liquid Interface (ALI) Method for Organoid Culture............................................................. 10 Clonal Organoids from Lgr5+ Cells................................................................................................... 11 Brain and Retina Organoids............................................................................................................... 11 Featured Products for Organoid Culture.................................................................................................. 12 Regulating Cell Transcription............................................................................................................ 12 Wnt........................................................................................................................................... -
Amsterdamprogram2019 022019.Pdf
3D Cell Culture and Analysis Explore new dimensions in 3D cell modeling As we look to the future of innovation, creating more physiologically relevant models through the study of organoids and spheroids is becoming increasingly important. These three-dimensional (3D) models not only mimic cell functions, they also allow for more robust testing of compounds and a more representative analysis. That’s why we’ve compiled a collection of tested products, protocols, and seminal publications to help you accelerate the development of more realistic cellular models. Find out more about culturing and analyzing organoids and spheroids at thermofi sher.com/organoid For Research Use Only. Not for use in diagnostic procedures. © 2018 Thermo Fisher Scientifi c Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientifi c and its subsidiaries unless otherwise specifi ed. COL23163 1218 PG1965-PJT4432-COL23163-3D-CellModeling-SSCR-PrintAd-Global.indd 1 12/20/18 2:25 PM Stem Cells & Organoids in Development & Disease AMSTERDAM NETHERLANDS Welcome Dear Colleagues, On behalf of the International Society for Stem Cell Research (ISSCR), we warmly welcome you to beautiful Amsterdam for the International Symposia, “Stem Cells & Organoids in Development & Disease.” A leader in life science and health technologies, Amsterdam was recently ranked as one of the top academic and biomedical communities in Europe. Amsterdam’s culture of education and innovation makes it the perfect setting for this timely and important meeting. Research using organoids is rapidly advancing the field of stem cell science. Recent work has demonstrated that stem cells retain self-organizing properties in culture, recapitulating in vivo processes and forming organ- like tissues. -
Organoid Cultures As Preclinical Models of Non–Small Cell Lung
Published OnlineFirst November 6, 2019; DOI: 10.1158/1078-0432.CCR-19-1376 CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY Organoid Cultures as Preclinical Models of Non–Small Cell Lung Cancer Ruoshi Shi1,2, Nikolina Radulovich1, Christine Ng1, Ni Liu1, Hirotsugu Notsuda1, Michael Cabanero1, Sebastiao N. Martins-Filho1, Vibha Raghavan1, Quan Li1, Arvind Singh Mer1, Joshua C. Rosen1,3, Ming Li1, Yu-Hui Wang1, Laura Tamblyn1, Nhu-An Pham1, Benjamin Haibe-Kains1,2,4,5,6, Geoffrey Liu1,2,7, Nadeem Moghal1,2, and Ming-Sound Tsao1,2,3 ABSTRACT ◥ Purpose: Non–small cell lung cancer (NSCLC) is the most Results: We have identified cell culture conditions favoring the common cause of cancer-related deaths worldwide. There is an establishment of short-term and long-term expansion of NSCLC unmet need to develop novel clinically relevant models of NSCLC to organoids derived from primary lung patient and PDX tumor tissue. accelerate identification of drug targets and our understanding of The NSCLC organoids recapitulated the histology of the patient and the disease. PDX tumor. They also retained tumorigenicity, as evidenced by Experimental Design: Thirty surgically resected NSCLC cytologic features of malignancy, xenograft formation, preservation primary patient tissue and 35 previously established of mutations, copy number aberrations, and gene expression pro- patient-derived xenograft (PDX) models were processed files between the organoid and matched parental tumor tissue by for organoid culture establishment. Organoids were histo- whole-exome and RNA sequencing. NSCLC organoid models also logically and molecularly characterized by cytology and preserved the sensitivity of the matched parental tumor to targeted histology, exome sequencing, and RNA-sequencing analysis.