Gene Edited Fluorescent Cerebral Organoids to Study Human Brain Function and Disease Thorsten Mueller (
[email protected] ) Ruhr-University Bochum, LMU Munich https://orcid.org/0000-0002-0173-3412 Lisa Bachmann Ruhr University Bochum: Ruhr-Universitat Bochum Lucia Gallego Villarejo Ruhr University Bochum: Ruhr-Universitat Bochum Natalie Heinen Ruhr University Bochum: Ruhr-Universitat Bochum David Marks Ruhr University Bochum: Ruhr-Universitat Bochum Research Article Keywords: Cerebral Organoids, CRISPR/Cas9 gene-editing, 3D cell culture, hiPSCs, brain function, brain disease Posted Date: March 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-248029/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Cerebral organoids are a promising model to study human brain function and disease, though the high inter-organoid variability of the mini-brains is still challenging. To overcome this limitation, we introduce the method of labeled mixed organoids generated from two different human induced pluripotent stem cell (hiPSC) lines, which enables the identication of cells from different origin within a single organoid. The method combines a gene editing workow and subsequent organoid differentiation and offers a unique tool to study gene function in a complex human 3D tissue-like model. Using a CRISPR/Cas9 gene editing approach, different uorescent proteins were fused to β-actin or lamin B1 in hiPSCs and subsequently used as a marker to identify each cell line. Mixtures of differently edited cells were seeded to induce embryoid body formation and cerebral organoid differentiation. As a consequence, the development of the 3D tissue was detectable by live confocal uorescence microscopy and immunouorescence staining in xed samples.