Allelic Deletions on Chromosome 11Q13 in Multiple Endocrine Neoplasia Type 1- Associated and Sporadic Gastrinomas and Pancreatic Endocrine Tumors

Total Page:16

File Type:pdf, Size:1020Kb

Allelic Deletions on Chromosome 11Q13 in Multiple Endocrine Neoplasia Type 1- Associated and Sporadic Gastrinomas and Pancreatic Endocrine Tumors ICANCERRESEARCH57.2238—2243.June1. 19971 Allelic Deletions on Chromosome 11q13 in Multiple Endocrine Neoplasia Type 1- associated and Sporadic Gastrinomas and Pancreatic Endocrine Tumors Larisa V. Debelenko, Zhengping Zhuang, Michael R. Emmert-Buck, Settara C. Chandrasekharappa, Pachiappan Manickam, Siradanahalli C. Guru, Stephen J. Marx, Monica C. Skarulis, Allen M. Spiegel, Francis S. Collins, Robert T. Jensen, Lance A. Liotta, and Irma A. Lubensky' Laboratory of Pathology, National Cancer institute IL V. D., 1 1, M. R. E-B., L A. L, i. A. LI, National Centerfor Human Genome Research [S. C. C., P. M., S. C. G., F. S. C.], and Branches of Metabolic Diseases (S. J. M., A. M. S.], Diabetes [M. C. S.), and Digestive Diseases [R. T. ii, National Institute of Diabetes and Digestive and Kidney Diseases, N/H. Bethesda, Maryland 20892 ABSTRACT MEN] is a tumor suppressor gene (9—11).MEN1 patients are hypoth esized to inherit a mutation in one copy of the gene, and susceptible Endocrine tumors (ETs) of pancreas and duodenum occur sporadically cells in the target organs are transformed through the inactivation of and as a part of multiple endocrine neoplasia type 1 (MEN1). The MENJ the wild-type copy of the gene, potentially occurring via point muta tumor suppressor gene has been localized to chromosome 11q13 by link age analysis but has not yet isolated. Previous alleic deletion studies in tions, deletions, or gene methylation (6, 7, 10, 11). Sporadic parathy enteropancreatic ETs suggested MENJ gene involvement in tumorigenesis roid and enteropancreatic ETs have also been described to exhibit of familial pancreatic ETs (nongastrinomas) and sporadic gastrinomas. somatic LOH of chromosome 11 loci, including the MEN] region, However, only a few MEN1-associated duodenal gastrinomas and spo suggesting the role of the MEN] gene in the pathogenesis of such radic pancreatic nongastrinomas have been investigated. We used tissue tumors(12—19). microdissection to analyze 95 archival pancreatic and duodenal ETs and Allelic deletions on chromosome 11q13 have been reported in metastases from 50 patients for loss of heterozygosity (LOH) on 11q13 63—100%of MEN1-associated parathyroid tumors and in 25—35%of with 10 polymorphic markers spanning the area of the putative MENI sporadic parathyroid tumors (1 1—13,20). However, previous studies gene. Chromosome 11q13 LOH was detected In 23 of 27 (85%) MEN!- on 11q13 LOH in enteropancreatic ETs have been limited to a small associated pancreatic ETs (nongastrinomas), 14 of 34 (41%) MEN!-asso number of cases in each series (6, 13—19,21—24).Four MEN I- ciated gastrinomas, 3 of 16 (19%) sporadic insulinomas, and 8 of 18(44%) sporadic gastrinomas. Analysis of LOH on !!q!3 showed different dele associated gastrinomas have been reported in the literature to date, and don patterns in ETs from different MEN! patients and in multiple tumors three tumors demonstrated retention of heterozygosity on 11q13 (17, from Individual MEN! patients. The present results suggest that the 19, 24), whereas one gastrmnoma showed a small deletion at marker MENJ gene plays a role in all four tumor types The lower rate of 1!q!3 PYGM (13). Thus, the role of the MEN] gene in enteropancreatic LOH in MEN!-associated and sporadic gastrinomas and sporadic instill endocrine tumorigenesis remains controversial. nomas as compared to MEN! nongastrinomas may reflect alternative We used tissue microdissection to analyze 95 archival duodenal and genetic pathways for the development of these tumors or mechanisms of pancreatic ETs and metastases for LOH on 11q13. The goal was to the MENJ gene inactivation that do not involve large deletions. The investigate the frequency of allelic loss at the MEN] gene locus in isolation of the MENJ gene is necessary to further define its role in tumongenesis of MEN1-associated and sporadic enteropancreatic pathogenesis of pancreatic and duodenal ETs. ETs. In addition, X-chromosome inactivation analysis of six synchro nous primary duodenal microgastrinomas in one FMEN1 female INTRODUCTION patient was performed to investigate clonality of MEN 1-associated gastrinomas, and the results were correlated with the LOH data. ETs2 of pancreas and duodenum may occur sporadically (I) or in association with inherited syndromes such as MEN1 (2). Sporadic duodenal and pancreatic ETs are usually solitary, whereas MEN 1- PATIENTSAND METHODS associated neoplasms are characteristically multiple in the involved organ (3, 4). Insulinomas and nonfunctional ETs (nongastrmnomas) Patient Population. Fifty patientswho underwentexploratorylaparotomy occur exclusively in the pancreas, whereas the most common site for for pancreatic and duodenal ETs at the NIH were included in the study. both sporadic and familial gastrinomas is the duodenum (1—5).Insu Ninety-five formalin-fixed, paraffin-embedded primary pancreatic and duode nal ETs and metastases were obtained from the file of the Laboratory of linomas usually follow a benign clinical course, whereas gastrinomas Pathology, National Cancer Institute, NIH. Clinical and family histories were have high malignant potential, with regional lymph node or liver reviewed in each case. Sixteen patients (9 males and 7 females; mean age, 45; metastases developing in up to 90% of the cases. age range, 23—74years)were diagnosed with MENI, and 34 patients (18 males The putative MENJ tumor suppressor gene has been linked to and 16 females; mean age, 42; age range, 15—67years)had sporadic ET. chromosome 1 1q13 (6, 7). FMENI is an autosomal dominant syn Fourteen of 16 MEN! patients were categorized as having FMEN1 because in drome in which the affected individuals develop multiple tumors in addition to two typical endocrine neoplasms, they had at least two first-degree the parathyroid glands (90—97%), pancreas (30—82%), duodenum relatives with MEN1-related endocrinopathies. The diagnosis of gastrinoma (25—60%),and anterior pituitary (35—60%;Refs. 2, 3, and 8). Loss of (Zollinger-Ellison syndrome), insulinoma (hyperinsulinemic hypoglycemia), the wild-type allele at the MEN] locus in tumors arising in affected or nonfunctional tumor was made on clinical grounds and confirmed by individuals is commonly observed, supporting the conclusion that pathological examination of the tumor. Seven MEN1 patients had pancreatic nongastrinomas, I 1 MEN1 patients had gastrinomas, and 16 and 18 patients had sporadic insulinomas and gastrinomas, respectively (Tables 1—4).Among Received 1I/l 1/96; accepted 4/4/97. The costs of publication of this article were defrayed in part by the payment of page the 16 MEN! patients, 10 had gastrinomas only, 4 had pancreatic nongastri charges. This article must therefore be hereby marked advertisement in accordance with nomas only, and 2 (patients 3 and 4) had both gastrinomas and nongastrinomas 18 U.S.C. Section 1734 solely to indicate this fact. available for the study. Nine MEN1 patients had multiple tumors evaluated I To whom requests for reprints should be addressed, at Laboratory of Pathology, (Tables 1 and 2). National Cancer Institute, NIH, Building 10, Room 2N212. 9000 Rockville Pike, Bethesda, MD 20892. Phone: (301) 496-0549; Fax: (301)480-9488. Microdissection. Tumor and normal cells were selected from routine 2 The abbreviations used are: ET, endocrine tumor; MENI, multiple endocrine nan 5-@tm-thickH&E-stained histological slides and microdissected under direct plasia type I ; FMENI. familial MENI ; LOH, loss of heterozygosity. light microscope visualization as described previously (Fig. 1; Refs. 20 and 2238 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 1997 American Association for Cancer Research. GENETIC ALTERATIONS IN ENDOCRINE TUMORS MEN!pancreaticendocrinetumors(nongastrinomas)3a4Table 1LOHon!1q13in27 InNFb@4f@NFNFNFNFNFNFNFNFNFNFNFNFNFNFNFNF123456123478591011121314151617181920216In12 InInIn13 NFNFInc14 @4}@1516 D11S1256― .. I I DllS956 I I • 0 I 0 I I II DllS48O I I I 0 I I I 0 D11S599 I I I 0 I 0 I I PYGM I I 0 I I I I I I I I I I I I I I I I — D11S4908 0 PPP1CA I I I 0 I 0 I I I I I I I I I • I I — D11S534 INT-2 I I • 0 I I • I — a Patientno. b Tumor type and tumor no. NF, nonfunctional; In, insulinoma; I, LOH; 0, retention of heterozygosity; —,not informative; blank, not done. C Liver metastasis. d Chromosome I 1q13 markers are listed in order from centromeric (top) to telomeric (bottom). 25). Normal duodenal epithelium, exocrine pancreas, or lymph node tissue was (D11S457,PYGM, and PPPJCA).Labeled amplifiedDNA was mixed with an used as a control. equal volumeof fonnamide loadingdye (95% formamide,20 mxiEDTA, 0.05% DNA Extraction. Procuredcells were resuspendedin 30 @lofsolution bromphenol blue, and 0.05% xylene cyanol). The samples were denatured for 5 containing Tris-HCI (pH 8.0), 0.1 MEDTA (pH 8.0), 1% Tween 20, and 0.1 mm at 95°Candresolved on a 6% polyacrylamidegel. Autoradiographywas mg/mI proteinase K and incubated overnight at 37°C.Following thermal performed with Kodak X-Omat film (Eastman Kodak, Rochester, NY). inactivation ofproteinase K (95°Cfor5 mm), 1—1.5piofthe DNA extract was The case was considered to be informative for a polymorphic marker on used for PCR analysis. Ilql3 if normal tissue DNA showed two alleles (heterozygosity). Complete or PCR Markers. Ten polymorphicDNA markerswere used in this study: near complete (90% decreased intensity) absence of an allele in tumor samples D11S1256 (26), D11S956, D11S480 (27), D11S599 (28), D11S457 (29), was interpreted as LOH (Fig. 2). Each experiment was repeated two or three PYGM (CA)(GA) (27), D1]S4908 (20), PPP]CA (30), D]1S534 (31), and times, and the data were reproducible. INT2 (27). Labeling of PCR product was achieved by incorporating Combined tumor and family study in a FMEN1 patient 8 with multiple [a-32P]dCTP. PCR was conducted in a total volume of 10 .d that contained gastrmnomaswas performed with the informative marker D11S956 using nor 1—1.5,.tlof DNA extract, 200 @MeachdNTP, 0.1—0.5 @Meachprimer, 0.1 mal and tumor DNA from the patient and her brother (Fig.
Recommended publications
  • Repositório Da Universidade De Lisboa
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL TOWARDS THE IDENTIFICATION OF BIOMARKERS FOR CYSTIC FIBROSIS BY PROTEOMICS NUNO MIGUEL ANTUNES GARCIA CHARRO DOUTORAMENTO EM BIOLOGIA ESPECIALIDADE BIOLOGIA MOLECULAR 2011 ii iii iv UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL TOWARDS THE IDENTIFICATION OF BIOMARKERS FOR CYSTIC FIBROSIS BY PROTEOMICS Tese orientada pela Doutora Deborah Penque e Professora Doutora Ana Maria Viegas Gonçalves Crespo NUNO MIGUEL ANTUNES GARCIA CHARRO DOUTORAMENTO EM BIOLOGIA (BIOLOGIA MOLECULAR) 2011 v The research described in this thesis was conducted at Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA, I.P.), Lisbon, Portugal; Clinical Proteomics Facility, University of Pittsburgh Medical Centre, Pennsylvania, USA; and Laboratory of Proteomics and Analytical Technologies, National Cancer Institute at Frederick, Maryland, USA. Work partially supported by Fundação para a Ciência e a Tecnologia (FCT), Fundo Europeu para o Desenvolvimento (FEDER) (POCI/SAU-MMO/56163/2004), FCT/Poly-Annual Funding Program and FEDER/Saúde XXI Program (Portugal). Nuno Charro is a recipient of FCT doctoral fellowship (SFRH/BD/27906/2006). vi Agradecimentos/Acknowledgements “Nothing is hidden that will not be made known; Nothing is secret that will not come to light” Desde muito pequeno, a minha vontade em querer saber mais e porquê foi sempre presença constante. Ao iniciar e no decorrer da minha (ainda) curta na investigação científica, as perguntas foram mudando, o método também e várias pessoas contribuíram para o crescimento e desenvolvimento da minha personalidade científica e pessoal. Espero não me esquecer de ninguém e, se o fizer, não é intencional; apenas falibilidade.
    [Show full text]
  • Associated 16P11.2 Deletion in Drosophila Melanogaster
    ARTICLE DOI: 10.1038/s41467-018-04882-6 OPEN Pervasive genetic interactions modulate neurodevelopmental defects of the autism- associated 16p11.2 deletion in Drosophila melanogaster Janani Iyer1, Mayanglambam Dhruba Singh1, Matthew Jensen1,2, Payal Patel 1, Lucilla Pizzo1, Emily Huber1, Haley Koerselman3, Alexis T. Weiner 1, Paola Lepanto4, Komal Vadodaria1, Alexis Kubina1, Qingyu Wang 1,2, Abigail Talbert1, Sneha Yennawar1, Jose Badano 4, J. Robert Manak3,5, Melissa M. Rolls1, Arjun Krishnan6,7 & 1234567890():,; Santhosh Girirajan 1,2,8 As opposed to syndromic CNVs caused by single genes, extensive phenotypic heterogeneity in variably-expressive CNVs complicates disease gene discovery and functional evaluation. Here, we propose a complex interaction model for pathogenicity of the autism-associated 16p11.2 deletion, where CNV genes interact with each other in conserved pathways to modulate expression of the phenotype. Using multiple quantitative methods in Drosophila RNAi lines, we identify a range of neurodevelopmental phenotypes for knockdown of indi- vidual 16p11.2 homologs in different tissues. We test 565 pairwise knockdowns in the developing eye, and identify 24 interactions between pairs of 16p11.2 homologs and 46 interactions between 16p11.2 homologs and neurodevelopmental genes that suppress or enhance cell proliferation phenotypes compared to one-hit knockdowns. These interac- tions within cell proliferation pathways are also enriched in a human brain-specific network, providing translational relevance in humans. Our study indicates a role for pervasive genetic interactions within CNVs towards cellular and developmental phenotypes. 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. 2 Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
    [Show full text]
  • Cyclin-Dependent Kinase 2 (Cdk2) Controls Phosphatase-Regulated Signaling and Function in Platelets
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.31.126953; this version posted June 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyclin-dependent kinase 2 (Cdk2) controls phosphatase-regulated signaling and function in platelets Paul R. Woods, Jr.,1,2 Brian L. Hood5, Sruti Shiva,$4 Thomas P. Conrads5, Sarah Suchko,2 Richard Steinman, 1,2,4# Departments oF Medicine1, Hillman Cancer Center2, Vascular Medicine Institute3, Department oF Molecular Pharmacology and Chemical Biology4, University of Pittsburgh School of Medicine; The Henry M. Jackson Foundation For the Advancement of Military Medicine, Inc., Inova Women’s Service Line, Inova Health System5 #Corresponding author: Richard Steinman, MD, PhD Associate Professor of Medicine and Pharmacology Associate Dean, Director Medical Scientist Training Program Director, Physician Scientist Training Program University of Pittsburgh School of Medicine 2.26f Hillman Cancer Center 5117 Centre Avenue Pittsburgh, PA 15213 USA phone: 412 6233237 fax: 412 6234840 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.05.31.126953; this version posted June 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Cell cycle regulatory molecules including cyclin-dependent kinases can be recruited into non-nuclear pathways to coordinate cell cycling with the energetic state oF the cell or with Functions such as motility.
    [Show full text]
  • SHOC2–MRAS–PP1 Complex Positively Regulates RAF Activity and Contributes to Noonan Syndrome Pathogenesis
    SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis Lucy C. Younga,1, Nicole Hartiga,2, Isabel Boned del Ríoa, Sibel Saria, Benjamin Ringham-Terrya, Joshua R. Wainwrighta, Greg G. Jonesa, Frank McCormickb,3, and Pablo Rodriguez-Vicianaa,3 aUniversity College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom; and bHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158 Contributed by Frank McCormick, September 18, 2018 (sent for review November 22, 2017; reviewed by Deborah K. Morrison and Marc Therrien) Dephosphorylation of the inhibitory “S259” site on RAF kinases CRAF/RAF1 mutations are also frequently found in NS and (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. cluster around the S259 14-3-3 binding site, enhancing CRAF ac- The MRAS GTPase, a close relative of RAS oncoproteins, interacts tivity through disruption of 14-3-3 binding (8) and highlighting the with SHOC2 and protein phosphatase 1 (PP1) to form a heterotri- key role of this regulatory step in RAF–ERK pathway activation. meric holoenzyme that dephosphorylates this S259 RAF site. MRAS is a very close relative of the classical RAS oncoproteins MRAS and SHOC2 function as PP1 regulatory subunits providing (H-, N-, and KRAS, hereafter referred to collectively as “RAS”) the complex with striking specificity against RAF. MRAS also func- and shares most regulatory and effector interactions as well as tions as a targeting subunit as membrane localization is required transforming ability (9–11). However, MRAS also has specific for efficient RAF dephosphorylation and ERK pathway regulation functions of its own, and uniquely among RAS family GTPases, it in cells.
    [Show full text]
  • Pig Antibodies
    Pig Antibodies gene_name sku Entry_Name Protein_Names Organism Length Identity CDX‐2 ARP31476_P050 D0V4H7_PIG Caudal type homeobox 2 (Fragment) Sus scrofa (Pig) 147 100.00% CDX‐2 ARP31476_P050 A7MAE3_PIG Caudal type homeobox transcription factor 2 (Fragment) Sus scrofa (Pig) 75 100.00% Tnnt3 ARP51286_P050 Q75NH3_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 271 85.00% Tnnt3 ARP51286_P050 Q75NH2_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NH1_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NH0_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 Q75NG8_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NG7_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NG6_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 TNNT3_PIG Troponin T, fast skeletal muscle (TnTf) Sus scrofa (Pig) 271 85.00% ORF Names:PANDA_000462 EMBL EFB13877.1OrganismAiluropod High mobility group protein B2 (High mobility group protein a melanoleuca (Giant panda) ARP31939_P050 HMGB2_PIG 2) (HMG‐2) Sus scrofa (Pig) 210 100.00% Agpat5 ARP47429_P050 B8XTR3_PIG 1‐acylglycerol‐3‐phosphate O‐acyltransferase 5 Sus scrofa (Pig) 365 85.00% irf9 ARP31200_P050 Q29390_PIG Transcriptional regulator ISGF3 gamma subunit (Fragment) Sus scrofa (Pig) 57 100.00% irf9 ARP31200_P050 Q0GFA1_PIG Interferon regulatory factor 9 Sus scrofa (Pig)
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • A PP1-Binding Motif Present in BRCA1 Plays a Role in Its DNA Repair Function Young-Mi Yu1, Serena M
    Int. J. Biol. Sci. 2008, 4 352 International Journal of Biological Sciences ISSN 1449-2288 www.biolsci.org 2008 4(6):352-361 © Ivyspring International Publisher. All rights reserved Research Paper A PP1-binding motif present in BRCA1 plays a role in its DNA repair function Young-Mi Yu1, Serena M. Pace1, Susan R. Allen1, Chu-Xia Deng2 and Lih-Ching Hsu1,3 1. Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Magee-Womens Research Institute, Pittsburgh, PA15213, USA 2. Genetics of Development and Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA 3. School of Pharmacy, National Taiwan University College of Medicine, Taipei 10051, Taiwan, ROC Correspondence to: Dr. Lih-Ching Hsu, School of Pharmacy, National Taiwan University College of Medicine, 12F, No 1, Section 1, Jen-Ai Road, Taipei 10051, Taiwan. Phone: +886-2-2312-3456 ext. 88400; Fax: +886-2-2391-9098; E-mail: [email protected] Received: 2008.09.30; Accepted: 2008.10.04; Published: 2008.10.04 Protein phosphatase 1α (PP1α) regulates phosphorylation of BRCA1, which contains a PP1-binding motif 898KVTF901. Mutation of this motif greatly reduces the interaction between BRCA1 and PP1α. Here we show that mutation of the PP1-binding motif abolishes the ability of BRCA1 to enhance survival of Brca1-deficient mouse mammary tumor cells after DNA damage. The Rad51 focus formation and comet assays revealed that the DNA repair function of BRCA1 was impaired when the PP1-binding motif was mutated. Analysis of subnuclear localization of GFP-tagged BRCA1 demonstrated that mutation of the PP1-binding motif affected BRCA1 redistribution in response to DNA damage.
    [Show full text]
  • Coordinated Downregulation of Spinophilin and the Catalytic Subunits of PP1, PPP1CA/B/C, Contributes to a Worse Prognosis in Lung Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 62), pp: 105196-105210 Research Paper Coordinated downregulation of Spinophilin and the catalytic subunits of PP1, PPP1CA/B/C, contributes to a worse prognosis in lung cancer Eva M. Verdugo-Sivianes1,2, Lola Navas1,2, Sonia Molina-Pinelo1,2, Irene Ferrer2,3, Alvaro Quintanal-Villalonga3, Javier Peinado1,4, Jose M. Garcia-Heredia1,2,5, Blanca Felipe-Abrio1,2, Sandra Muñoz-Galvan1,2, Juan J. Marin1,2,6, Luis Montuenga2,7, Luis Paz-Ares2,3 and Amancio Carnero1,2 1Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain 2CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain 3H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre and CNIO, Madrid, Spain 4Radiation Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain 5Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain 6Department of Predictive Medicine and Public Health, Universidad de Sevilla, Sevilla, Spain 7Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain Correspondence to: Amancio Carnero, email: [email protected] Keywords: Spinophilin; PP1; biomarker; lung cancer; therapy Received: May 13, 2017 Accepted: September 03, 2017 Published: October 26, 2017 Copyright: Verdugo-Sivianes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Alterations of the Pro-Survival Bcl-2 Protein Interactome in Breast Cancer
    bioRxiv preprint doi: https://doi.org/10.1101/695379; this version posted July 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Alterations of the pro-survival Bcl-2 protein interactome in 2 breast cancer at the transcriptional, mutational and 3 structural level 4 5 Simon Mathis Kønig1, Vendela Rissler1, Thilde Terkelsen1, Matteo Lambrughi1, Elena 6 Papaleo1,2 * 7 1Computational Biology Laboratory, Danish Cancer Society Research Center, 8 Strandboulevarden 49, 2100, Copenhagen 9 10 2Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo 11 Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, 12 Denmark 13 14 Abstract 15 16 Apoptosis is an essential defensive mechanism against tumorigenesis. Proteins of the B-cell 17 lymphoma-2 (Bcl-2) family regulates programmed cell death by the mitochondrial apoptosis 18 pathway. In response to intracellular stresses, the apoptotic balance is governed by interactions 19 of three distinct subgroups of proteins; the activator/sensitizer BH3 (Bcl-2 homology 3)-only 20 proteins, the pro-survival, and the pro-apoptotic executioner proteins. Changes in expression 21 levels, stability, and functional impairment of pro-survival proteins can lead to an imbalance 22 in tissue homeostasis. Their overexpression or hyperactivation can result in oncogenic effects. 23 Pro-survival Bcl-2 family members carry out their function by binding the BH3 short linear 24 motif of pro-apoptotic proteins in a modular way, creating a complex network of protein- 25 protein interactions.
    [Show full text]
  • Anticancer Effects of Β-Elemene in Gastric Cancer Cells and Its Potential Underlying Proteins: a Proteomic Study
    ONCOLOGY REPORTS 32: 2635-2647, 2014 Anticancer effects of β-elemene in gastric cancer cells and its potential underlying proteins: A proteomic study JUN-SONG LIU, SHI-CAI HE, ZHENG-LIANG ZHANG, RUI CHEN, LIN FAN, GUANG-LIN QIU, SHUAI CHANG, LIANG LI and XIANG-MING CHE Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China Received July 4, 2014; Accepted August 26, 2014 DOI: 10.3892/or.2014.3490 Abstract. Gastric cancer is a common malignancy with a Introduction poor prognosis. β-elemene is a broad-spectrum anticancer drug extracted from the traditional Chinese medicinal herb Gastric cancer is the fourth most common malignancy in Curcuma wenyujin. In the present study, we investigated the the world and the second leading cause of cancer-related anticancer effects of β-elemene in gastric cancer cells and the mortality (1). At present, surgical resection remains the potential proteins involved. Human SGC7901 and MKN45 main therapeutic strategy for gastric cancer, supplemented gastric cancer cells were treated with different concentrations with perioperative chemotherapy, chemoradiotherapy and/or of β-elemene. Cell viability, clonogenic survival and apoptotic immunotherapy (2-5). However, most patients are diagnosed cell death were assessed. β-elemene inhibited viability and with advanced gastric cancer which may have progressed decreased clonogenic survival of gastric cancer cells in a beyond the curative potential of surgical operation (6,7). In dose-dependent manner. Apoptosis induction contributed to addition, previous studies have demonstrated that a consid- the anticancer effects. We then employed a proteomic method, erable proportion of patients receiving potentially curative isobaric tags for relative and absolute quantitation (iTRAQ), to resection experienced recurrences which lead to unfavorable detect the proteins altered by β-elemene.
    [Show full text]
  • Role of the Holoenzyme PP1-SPN in the Dephosphorylation of the RB Family of Tumor Suppressors During Cell Cycle
    cancers Review Role of the Holoenzyme PP1-SPN in the Dephosphorylation of the RB Family of Tumor Suppressors During Cell Cycle Eva M. Verdugo-Sivianes 1,2 and Amancio Carnero 1,2,* 1 Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain; [email protected] 2 CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-955-92-31-11 Simple Summary: Cell cycle progression is highly regulated by modulating the phosphorylation status of retinoblastoma (RB) family proteins. This process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation is less known. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation of RB proteins during the G0/G1 transition and at the end of G1. Here, we describe the regulation of the phosphorylation status of RB family proteins, giving importance not only to their inactivation by phosphorylation but also to their dephosphorylation to restore the cell cycle. Abstract: Cell cycle progression is highly regulated by modulating the phosphorylation status of Citation: Verdugo-Sivianes, E.M.; the retinoblastoma protein (pRB) and the other two members of the RB family, p107 and p130. This Carnero, A. Role of the Holoenzyme process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin- PP1-SPN in the Dephosphorylation of dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1).
    [Show full text]
  • SUPPLEMENTARY APPENDIX Exome Sequencing Reveals Heterogeneous Clonal Dynamics in Donor Cell Myeloid Neoplasms After Stem Cell Transplantation
    SUPPLEMENTARY APPENDIX Exome sequencing reveals heterogeneous clonal dynamics in donor cell myeloid neoplasms after stem cell transplantation Julia Suárez-González, 1,2 Juan Carlos Triviño, 3 Guiomar Bautista, 4 José Antonio García-Marco, 4 Ángela Figuera, 5 Antonio Balas, 6 José Luis Vicario, 6 Francisco José Ortuño, 7 Raúl Teruel, 7 José María Álamo, 8 Diego Carbonell, 2,9 Cristina Andrés-Zayas, 1,2 Nieves Dorado, 2,9 Gabriela Rodríguez-Macías, 9 Mi Kwon, 2,9 José Luis Díez-Martín, 2,9,10 Carolina Martínez-Laperche 2,9* and Ismael Buño 1,2,9,11* on behalf of the Spanish Group for Hematopoietic Transplantation (GETH) 1Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid; 2Gregorio Marañón Health Research Institute (IiSGM), Madrid; 3Sistemas Genómicos, Valencia; 4Department of Hematology, Puerta de Hierro General University Hospital, Madrid; 5Department of Hematology, La Princesa University Hospital, Madrid; 6Department of Histocompatibility, Madrid Blood Centre, Madrid; 7Department of Hematology and Medical Oncology Unit, IMIB-Arrixaca, Morales Meseguer General University Hospital, Murcia; 8Centro Inmunológico de Alicante - CIALAB, Alicante; 9Department of Hematology, Gregorio Marañón General University Hospital, Madrid; 10 Department of Medicine, School of Medicine, Com - plutense University of Madrid, Madrid and 11 Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain *CM-L and IB contributed equally as co-senior authors. Correspondence:
    [Show full text]