II Publications, Presentations

Total Page:16

File Type:pdf, Size:1020Kb

II Publications, Presentations II Publications, Presentations 1. Refereed Publications Bachelet, E., et al. including Fukui, A.: 2012, A brown dwarf orbiting an M-dwarf: MOA 2009-BLG-411L, A&A, 547, A55. Abramowski, A., et al. including Kino, M., Nagai, H.: 2012, The Bachelet, E., et al. including Fukui, A.: 2012, MOA 2010-BLG- 2010 Very High Energy γ-Ray Flare and 10 Years of Multi- 477Lb: Constraining the Mass of a Microlensing Planet from wavelength Observations of M 87, ApJ, 746, 151. Microlensing Parallax, Orbital Motion, and Detection of Abu-Zayyad, T., et al. Including Oshima, A.: 2012, Search Blended Light, ApJ, 754, 73. for Anisotropy of Ultrahigh Energy Cosmic Rays with the Bae, H., Woo, J., Yagi, M., Yoon, S., Yoshida, M.: 2012, A Keck/ Telescope Array Experiment, ApJ, 757, 26. LRIS Spatially Resolved Spectroscopic Study of a LINER Abu-Zayyad, T., et al. Including Oshima, A.: 2012, The surface Galaxy SDSS J091628.05+420818.7, ApJ, 753, 10. detector array of the Telescope Array Experiment, Nucl. Bally, J., Walawender, J., Reipurth, B.: 2012, Deep Imaging Instrum. Meth. A, 689, 87-97. Surveys of Star-forming Clouds. V. New Herbig-Haro Shocks Ackermann, M., et al. including Fukui, A.: 2013, Multiwavelength and Giant Outflows in Taurus, AJ, 144, 143. Observations of GRB 110731A: GeV Emission from Onset to Bekki, K., Shigeyama, T., Tsujimoto, T.: 2013, Feedback effects of Afterglow, ApJ, 763, 71. aspherical supernova explosions on galaxies, MNRAS, 428, L31-L35. Adams, J. H., et al. including Inoue, N., Kajino, T., Mizumoto, Bekki, K., Tsujimoto, T.: 2012, Chemical Evolution of the Large Y., Takami, H., Watanabe, J.: 2013, An Evaluation of the Magellanic Cloud, ApJ, 761, 180. Exposure in Nadir Observation of the JEM-EUSO Mission, Bellot-Rubio, L. R., Orozco-Suárez, D.: 2012, Pervasive Linear Astropart. Phys., 44, 76-90. Polarization Signals in the Quiet Sun, ApJ, 757, 19. Ando, H., Imamura, T., Nabatov, A., Futaana, Y., Iwata, T., Bendek, E., Belikov, R., Pluzhnik, E., Guyon, O.: 2013, Compatibility Hanada, H., Matsumoto, K., Mochizuki, N., Kono, Y., Noda, of a Diffractive Pupil and Coronagraphic Imaging, PASP, 125, H., Liu, Q., Oyama, K.-I., Yamamoto, Z., Saito, A.: 2012, Dual- 204-212. spacecraft radio occultation measurement of the electron density Bennett, D. P., et al. including Fukui, A.: 2012, Planetary and near the lunar surface on the SELENE mission, J. Geophys. Other Short Binary Microlensing Events from the MOA Short- Res., 117, A08313. event Analysis, ApJ, 757, 119. Ando, M.: 2013, DECIGO Pathfinder, Int. J. Modern. Phys. D, 22, Bernard, E. J., Ferguson, A. M. N., Barker, M. K., Irwin, M. J., 1341002. Jablonka, P., Arimoto, N.: 2012, A deep, wide-field study of Aoki, W., Beers, T. C., Lee, Y.-S., Honda, S., Ito, H., Takada- Holmberg II with Suprime-Cam: evidence for ram pressure Hidai, M., Frebel, A., Suda, T., Fujimoto, M. Y., Carollo, D., stripping, MNRAS, 426, 3490-3500. Sivarani, T.: 2013, High-Resolution Spectroscopy of Extremely Bernat, D., Martinache, F., Ireland, M., Tuthill, P., Lloyd, J.: 2012, The Metal-Poor Stars from SDSS/SEGUE: I. Atmospheric Use of Spatial Filtering with Aperture Masking Interferometry Parameters and Chemical Compositions, AJ, 145, 13. and Adaptive Optics, ApJ, 756, 8. Aoki, W., Ito, H., Tajitsu, A.: 2012, Examination of the Mass- Boccaletti, A., et al. including Guyon, O., Tamura, M.: 2012, dependent Li Depletion Hypothesis by the Li Abundances of the SPICES: spectro-polarimetric imaging and characterization of Very Metal-poor Double-lined Spectroscopic Binary G166-45, exoplanetary systems. From planetary disks to nearby Super ApJ, 751, L6. Earths, Exp. Astron., 34, 355-384. Aoki, W., Suda, T., Boyd, R. N., Kajino, T., Famiano, M. A.: 2013, Bowler, B. P., Liu, M. C., Shkolnik, E. L., Dupuy, T. J., Cieza, L. A., New Insights into the Astrophysical r-Process, ApJ, 766, L13. Kraus, A. L., Tamura, M.: 2012, Planets around Low-mass Araki, M., Takano, S., Yamabe, H., Tsukiyama, K., Kuze, N.: 2012, Stars (PALMS). I. A Substellar Companion to the Young M Radio Search for H2CCC toward HD 183143 as a Candidate for Dwarf 1RXS J235133.3+312720, ApJ, 753, 142. a Diffuse Interstellar Band Carrier, ApJ, 753, L11. Bowler, B. P., Liu, M. C., Shkolnik, E. L., Tamura, M.: 2012, Asai, A., Kiyohara, J., Takasaki, H., Narukage, N., Yokoyama, T., Planets around Low-mass Stars (PALMS). II. A Low-mass Masuda, S., Shimojo, M., Nakajima, H.: 2013, Temporal and Companion to the Young M Dwarf GJ 3629 Separated by 0.2", Spatial Analyses of Spectral Indices of Nonthermal Emissions ApJ, 756, 69. Derived from Hard X-Rays and Microwaves, ApJ, 763, 87. Bowler, R. A. A., Dunlop, J. S., McLure, R. J., McCracken, H. J., Asayama, S., Nakajima, T.: 2013, Development of a Smooth Taper Milvang-Jensen, B., Furusawa, H., Fynbo, J. P. U., Le Fevre, Double-Ridge Waveguide Orthomode Transducer for a New O., Holt, J., Ideue, Y., Ihara, Y., Rogers, A. B., Taniguchi, Y.: 100 GHz Band Z-Machine Receiver for the NRO 45-m Radio 2012, Discovery of bright z = 7 galaxies in the UltraVISTA Telescope, PASP, 125, 213-217. survey, MNRAS, 426, 2772-2788. Aunai, N., Hesse, M., Zenitani, S., Kuznetsova, M., Black, C., Bozza, V., et al. including Fukui, A.: 2012, OGLE-2008-BLG-510: Evans, R., Smets, R.: 2013, Comparison between hybrid and fully first automated real-time detection of a weak microlensing kinetic models of asymmetric magnetic reconnection: Coplanar anomaly - brown dwarf or stellar binary?, MNRAS, 424, 902. and guide field configurations, Phys. Plasmas, 20, 022902. Brandt, T. D., et al. including Egner, S., Golota, T., Guyon, II Publications, Presentations 065 O., Hashimoto, J., Hayano, Y., Hayashi, M., Hayashi, S., Choudhuri, A. R., Karak, B. B.: 2012, Origin of Grand Minima in Ishii, M., Iye, M., Kandori, R., Kudo, T., Kusakabe, N., Sunspot Cycles, Phys. Rev. Lett., 109, 171103. Kuzuhara, M., Kwon, J., Matsuo, T., Miyama, S., Morino, Crossfield, J. M. I., Barman, T., Hansen, M. S. B., Tanaka, J.-I., Nishimura, T., Pyo, T.-S., Suto, H., Suzuki, R., Takami, I., Kodama, T.: 2012, Re-evaluating WASP-12b: Strong M., Takato, N., Terada, H., Tomono, D., Takami, H., Usuda, Emission at 2.315 μm, Deeper Occultations, and an Isothermal T., Tamura, M.: 2013, New Techniques for High-contrast Atmosphere, ApJ, 760, 140. Imaging with ADI: The ACORNS-ADI SEEDS Data Reduction Dawson, J. R., McClure-Griffiths, N. M., Wong, T., Dickey, J. M., Pipeline, ApJ, 764, 183. Hughes, A., Fukui, Y., Kawamura, A.: 2013, Supergiant Shells Brasser, R., Ida, S., Kokubo, E.: 2013, A Dynamical Study on the and Molecular Cloud Formation in the Large Magellanic Cloud, Habitability of Terrestrial Exoplanets -I. Tidally Evolved Planet- ApJ, 763, 56. Satellite Pairs, MNRAS, 428, 1673-1685. Deguchi, S., Tafoya, D., Shino, N.: 2012, Maser Emission toward Briquet, M., et al. including Kambe, E.: 2012, Multisite spectroscopic the Infrared Dark Cloud G359.94+0.17 Seen in Silhouette seismic study of the beta Cep star V2052 Ophiuchi: inhibition against the Galactic Center, PASJ, 64, 28. of mixing by its magnetic field, MNRAS, 427, 483-493. Doeleman, S. S., et al. including Honma, M., Oyama, T.: 2012, Jet- Bufano, F., et al. including Tanaka, M.: 2012, The Fast and Faint Launching Structure Resolved Near the Supermassive Black Hole SN 2010bh Associated with GRB 100316D, ApJ, 753, 67. in M87, Science, 338, 355-358. Carson, J., et al. including Kandori, R., Kuzuhara, M., Kwon, J., Doi, A, Nagira, H., Kawakatu, N., Kino, M., Nagai, H., Asada, K.: Egner, S., Guyon, O., Hashimoto, J., Hayano, Y., Hayashi, 2012, Kiloparsec-scale Radio Structures in Narrow-line Seyfert M., Hayashi, S., Ishii, M., Iye, M., Kudo, T., Kusakabe, N., 1 Galaxies, ApJ, 760, 41. Morino, J., Nishimura, T., Pyo, T., Suto, H., Suzuki, R., Doi, A., Asada, K., Fujisawa, K., Nagai, H., Hagiwara, Y., Wajima, Takato, N., Terada, H., Tomono, D., Takami, H., Usuda, T., K., Inoue, M.: 2013, Very Long Baseline Array Imaging of Tamura, M.: 2013, Direct Imaging Discovery of a "Super- Parsec-scale Radio Emissions in Nearby Radio-quiet Narrow- Jupiter" around the Late B-type Star κ And, ApJ, 763, L32. line Seyfert 1 Galaxies, ApJ, 765, 69. Chau, W., Zhang, Y., Nakashima, J., Deguchi, S., Kwok, S.: 2012, Doi, A., Kohno, K., Nakanishi, K., Kameno, S., Inoue, M., Hada, Molecular Line Observations of the Carbon-Rich Circumstellar K., Sorai, K.: 2013, Nuclear Radio Jet from a Low-luminosity Envelope CIT 6 at 7 mm Wavelengths, ApJ, 760, 66. Active Galactic Nucleus in NGC 4258, ApJ, 765, 63. Chen, Z., Jiang, Z., Wang, Y., Chini, R., Tamura, M., Nagayama, Dong, R., et al. including Hashimoto, J., Kudo, T., Egner, S., T., Nagata, T., Nakajima, Y.: 2012, Near-Infrared Imaging Guyon, O., Hayano, Y., Hayashi, S., Ishii, M., Iye, M., Polarization Study of M 17, PASJ, 64, 110. Kandori, R., Kusakabe, N., Kuzuhara, M., Kwon, J., Morino, Cheoun, M. K., Ha, E., Hayakawa, T., Chiba, S., Nakamura, K., J.-I., Nishimura, T., Pyo, T.-S., Suto, H., Suzuki, R., Takami, Kajino, T., Mathews, G. J.: 2012, Neutrino induced reactions M., Takato, N., Terada, H., Tomono, D., Takami, H., Usuda, related to the neutrino-process nucleosynthesis of 92Nb and 98Tc, T., Tamura, M.: 2012, The Structure of Pre-transitional Phys. Rev. C, 85, 65807. Protoplanetary Disks. I. Radiative Transfer Modeling of the Cheoun, M. K., Ha, E., Kajino, T.: 2012, High-lying Excited Disk+Cavity in the PDS 70 System, ApJ, 760, 111. States in Gamow Teller Strength and Their Roles on Neutrino Dong, R., et al. including Hashimoto, J., Kuzuhara, M., Egner, S., Reactions, Europ. Phys. J. A, 48, 137. Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S., Ishii, M., Cheoun, M.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • A Spectroscopic Study of the Scorpio-Centaurus Association
    PranllQa. Vol. 7, No.3, 1976, pp 160-\ 80. © Prmted in India. A spectroscopic study of the Scorpio-Centaurus association R RAJAMOHAN Indian Institute of Astrophysics, Bangaiore 560034 MS recehcl 5 April 1976 • I' Abstract. Rotational .... elocities as well as hydrogen and he Jlum Ine I'ntensities of .' have been one hundred. and twelve members of the Scorplo-Centaurus aSSOclatlO~ . b h derived. For stars with M~ < 0'0, the distribution of rotational velocitieS of °lt are SJlnlar the upper Scorplus subgroup and the upper Centaurus-Lupus Su b grou P 1 . I and closely resemble those of the field stars. Stars with M, > O' 0, all of w lie 1 are found in th.e dense upper Scorpius region, rotate much faster than their counter­ parts amongst field stars, the Pleiades and Alpha-Persei cluster members. The measured equivalent width of H'Y for 77 stars provide a distance nlOd~\U~ of 6·0±0·09 magnitudes for the association. Evolutionary effects in the del1;~e hydrogen line intensities are found between the two subgroups. The hydrogen- me intensities at all spectral types in the upper Centaurus-Lupus subgroup are systematically smaller than thOse of members in the upper Scorpius subgrouP. Analysis of high dispersion spectra of five members of the association y.ield a helium abundance of Nae(N. = 0·096 ± 0 004. Along with data available In the literature, the mean helium abundance of thirteen stars of this association is found to be 0·098 :±: O· 004 by number. For the two main subgroups of this association, we deflve a value of 0 105 ± 0 001 for the upper Centaurus-Lupus group from three stars and 0·096 ± 0·005 for the upper Scorpius group from ten stars.
    [Show full text]
  • Apparent and Absolute Magnitudes of Stars: a Simple Formula
    Available online at www.worldscientificnews.com WSN 96 (2018) 120-133 EISSN 2392-2192 Apparent and Absolute Magnitudes of Stars: A Simple Formula Dulli Chandra Agrawal Department of Farm Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221005, India E-mail address: [email protected] ABSTRACT An empirical formula for estimating the apparent and absolute magnitudes of stars in terms of the parameters radius, distance and temperature is proposed for the first time for the benefit of the students. This reproduces successfully not only the magnitudes of solo stars having spherical shape and uniform photosphere temperature but the corresponding Hertzsprung-Russell plot demonstrates the main sequence, giants, super-giants and white dwarf classification also. Keywords: Stars, apparent magnitude, absolute magnitude, empirical formula, Hertzsprung-Russell diagram 1. INTRODUCTION The visible brightness of a star is expressed in terms of its apparent magnitude [1] as well as absolute magnitude [2]; the absolute magnitude is in fact the apparent magnitude while it is observed from a distance of . The apparent magnitude of a celestial object having flux in the visible band is expressed as [1, 3, 4] ( ) (1) ( Received 14 March 2018; Accepted 31 March 2018; Date of Publication 01 April 2018 ) World Scientific News 96 (2018) 120-133 Here is the reference luminous flux per unit area in the same band such as that of star Vega having apparent magnitude almost zero. Here the flux is the magnitude of starlight the Earth intercepts in a direction normal to the incidence over an area of one square meter. The condition that the Earth intercepts in the direction normal to the incidence is normally fulfilled for stars which are far away from the Earth.
    [Show full text]
  • Fy10 Budget by Program
    AURA/NOAO FISCAL YEAR ANNUAL REPORT FY 2010 Revised Submitted to the National Science Foundation March 16, 2011 This image, aimed toward the southern celestial pole atop the CTIO Blanco 4-m telescope, shows the Large and Small Magellanic Clouds, the Milky Way (Carinae Region) and the Coal Sack (dark area, close to the Southern Crux). The 33 “written” on the Schmidt Telescope dome using a green laser pointer during the two-minute exposure commemorates the rescue effort of 33 miners trapped for 69 days almost 700 m underground in the San Jose mine in northern Chile. The image was taken while the rescue was in progress on 13 October 2010, at 3:30 am Chilean Daylight Saving time. Image Credit: Arturo Gomez/CTIO/NOAO/AURA/NSF National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2010 Revised (October 1, 2009 – September 30, 2010) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 March 16, 2011 Table of Contents MISSION SYNOPSIS ............................................................................................................ IV 1 EXECUTIVE SUMMARY ................................................................................................ 1 2 NOAO ACCOMPLISHMENTS ....................................................................................... 2 2.1 Achievements ..................................................................................................... 2 2.2 Status of Vision and Goals ................................................................................
    [Show full text]
  • Transactions 1905
    THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. The Royal Astronomical Society of Canada. THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. TABLE OF CONTENTS. The Dominion Observatory, Ottawa (Frontispiece) List of Officers, Fellows and A ssociates..................... - - 3 Treasurer’s R eport.....................--------- 12 President’s Address and Summary of Work ------ 13 List of Papers and Lectures, 1905 - - - - ..................... 26 The Dominion Observatory at Ottawa - - W. F. King 27 Solar Spots and Magnetic Storms for 1904 Arthur Harvey 35 Stellar Legends of American Indians - - J. C. Hamilton 47 Personal Profit from Astronomical Study - R. Atkinson 51 The Eclipse Expedition to Labrador, August, 1905 A. T. DeLury 57 Gravity Determinations in Labrador - - Louis B. Stewart 70 Magnetic and Meteorological Observations at North-West River, Labrador - - - - R. F. Stupart 97 Plates and Filters for Monochromatic and Three-Color Photography of the Corona J. S. Plaskett 89 Photographing the Sun and Moon with a 5-inch Refracting Telescope . .......................... D. B. Marsh 108 The Astronomy of Tennyson - - - - John A. Paterson 112 Achievements of Nineteenth Century Astronomy , L. H. Graham 125 A Lunar Tide on Lake Huron - - - - W. J. Loudon 131 Contributions...............................................J. Miller Barr I. New Variable Stars - - - - - - - - - - - 141 II. The Variable Star ξ Bootis -------- 143 III. The Colors of Helium Stars - - - ..................... 144 IV. A New Problem in Solar Physics ------ 146 Stellar Classification ------ W. Balfour Musson 151 On the Possibility of Fife in Other Worlds A.
    [Show full text]
  • INAUGURAL – DISSERTATION Dipl.-Phys. Alexander A. Schegerer
    INAUGURAL – DISSERTATION zur Erlangung der Doktorwurde¨ der Naturwissenschaftlich-Mathematischen Gesamtfakult¨at der Ruprecht - Karls - Universit¨at Heidelberg vorgelegt von Dipl.-Phys. Alexander A. Schegerer, geboren in Kaufbeuren Tag der mundlichen¨ Prufung:¨ 17. Oktober 2007 II Struktur- und Staubentwicklung in zirkumstellaren Scheiben um T Tauri-Sterne Analyse und Modellierung hochaufl¨osender Beobachtungen in verschiedenen Wellenl¨angenbereichen Gutachter: Prof. Dr. Thomas Henning Prof. Dr. Wolfgang Duschl IV Meinen Eltern, Maria-Christa und Wolfgang Schegerer, gewidmet. VI Thema Im Zentrum dieser Doktorarbeit steht die Untersuchung der inneren Strukturen zirkumstella- rer Scheiben um T Tauri-Sterne sowie die Analyse zirkumstellarer Staub- und Eisteilchen und ihres Einflusses auf die Scheibenstruktur. Unter Zuhilfenahme von theoretisch berechneten Vergleichsspektren gibt der Verlauf der 10 µm-Emissionsbande in den Spektren junger stellarer Objekte Hinweise auf den Entwick- lungsgrad von Silikatstaub. Die Silikatbanden von 27 T Tauri-Objekten werden analysiert, um nach potentiell vorliegenden Korrelationen zwischen der Silikatstaubzusammensetzung und den stellaren Eigenschaften zu suchen. Analog erlaubt das Absorptionsband bei 3 µm, das dem Wassereis zugeschrieben wird, eine Untersuchung der Entwicklung von Eisk¨ornern in jungen stellaren Objekten. Erstmals ist es gelungen, kristallines Wassereis im Spektrum eines T Tauri-Objektes nachzuweisen. Unser wichtigstes Hilfsmittel zur Analyse der Temperatur- und Dichtestrukturen zirkum- stellarer
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Manganese Spread in Ursa Minor As a Proof of Sub-Classes of Type Ia
    Astronomy & Astrophysics manuscript no. paperMn6 c ESO 2018 September 22, 2018 Manganese spread in Ursa Minor as a proof of sub-classes of type Ia supernovae G. Cescutti1,3 ⋆ and C. Kobayashi2,3 1 INAF, Osservatorio Astronomico di Trieste, I-34131 Trieste, Italy 2 Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 3 BRIDGCE UK Network (www.bridgce.net), UK Received xxxx / Accepted xxxx ABSTRACT Context. Recently, new sub-classes of Type Ia supernovae (SNe Ia) were discovered, including SNe Iax. The suggested progenitors of SNe Iax are relatively massive, possibly hybrid C+O+Ne white dwarfs, which can cause white dwarf winds at low metallicities. There is another class that can potentially occur at low or zero metallicities; sub-Chandrasekhar mass explosions in single and/or double degenerate systems of standard C+O white dwarfs. These explosions have different nucleosynthesis yields compared to the normal, Chandrasekhar mass explosions. Aims. We test these SN Ia channels using their characteristic chemical signatures. Methods. The two sub-classes of SNe Ia are expected to be rarer than normal SNe Ia and do not affect the chemical evolution in the solar neighbourhood; however, because of the shorter delay time and/or weaker metallicity dependence, they could influence the evolution of metal-poor systems. Therefore, we have included both in our stochastic chemical evolution model for the dwarf spheroidal galaxy Ursa Minor. Results. The model predicts a butterfly-shape spread in [Mn/Fe] in the interstellar medium at low metallicity and - at the same time - a decrease of [α/Fe] ratios at lower [Fe/H] than in the solar neighbourhood, both of which are consistent with the observed abundances in stars of Ursa Minor.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]