Bibliography of Spatial Interferometry in Optical Astronomy

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography of Spatial Interferometry in Optical Astronomy j- NASA Technical Memorandum 100754 Bibliography of Spatial Interferometry in Optical Astronomy Daniel Y. Gezari Francois Roddier Claude Roddier February 1990 _,_-, , _ ,m N/ A NASA Technical Memorandum 100754 Bibliography of Spatial Interferometry in Optical Astronomy Daniel Y. Gezari Goddard Space Flight Center Greenbelt, Maryland Francois Roddier Institute for Astronomy University of Hawaii Honolulu, Hawaii Claude Roddier National Optical Astronomy Observatories Tuscon, Arizona and Institute for Astronomy University of Hawaii Honolulu, Hawaii NI A National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, MD 1990 TABLE OF CONTENTS Introduction iv Conference List v A. MAIN BIBLIOGRAPHY (alphabetical order by author) A-1 B. THEORY (chronological order) 1. Imaging Theory B-l 2. Speckle Interferometry/Imaging B-17 3. Other Interferometry B-28 C. EXPERIMENTAL TECHNIQUES (chronological order) 1. Michelson Interferometry C-I 2. Long Baseline lnterferometry C-2 3. Speckle lnterferometry C-10 4. Coherent Arrays C-19 5. Infrared C-24 6. Pupil Plane Interferometry C-29 7. Image Reconstruction Algorithms C-32 8. Atmosphere-Related Experiments C-34 9. Adaptive Optics C-36 10. Instrumentation, Techniques and Facilities C-38 ! 1. Review Papers C-43 12. Space-Related Experiments C-44 D. OBSERVATIONAL RESULTS (chronological order) 1. Stars D-I 2. Infrared D-16 3. Sun D-20 4. Solar System D-22 iii INIENIIONAI_Ly BLANK PRECEDING PAGE BLANK NOT FILMED INTRODUCTION The Bibliography of Spatial lnterferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words "spatial" and 'optical" define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. Spatial interferometry in astronomy at optical wavelengths, with its roots in the 19th Century, is nonetheless a comparatively immature field. The active period of experimentation and observations is scarcely two decades old. The international research community has grown rapidly. Since relatively little of the work has been published in the traditional astronomical journals, the scope of spatial interferometry research has not been fully recognized by the greater astronomical community. The purpose of this document is to identify the large body of literature on optical spatial interferometry applied to astronomy (much of which has appeared in the proceedings of international meetings) and to organize it into specific sub-fields, so that the extent of the discipline and specialties within it can be appreciated and put in perspective. Section A. Main Bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. The Main Bibliography is organized in alphabetical order by first author. Thus familiar publications can be easily located, and a feeling for the representative work of individuals quickly obtained. While the chronological development of the general field is lost in the Main Bibliography, it can easily be traced through the three subsequent sections in this document, each of which has been organized in chronoligical order (and divided into specific technical categories). Section B. Theory summarizes publications dealing with basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. It, as well as sections C and D, are organized chronologically by year of publication (and alphabetically by first author within each year); it was unfeasible to include the exact date of publication in the database from which this document was compiled. The Theory section is divided into basic sub-areas of that field: 1) general astronomical Imaging Theory, 2) the theoretical development of Speckle lnterferometry and Speckle Imaging, and 3) the theoretical analysis of other forms of spatial interferometry. Section C. Experimental Techniques is divided into twelve catagories, representing the most clearly identified major areas of experimental research work. This category is restricted to instrumental and technology development experiments, for eventual application to astronomy observations or data reduction. Section D. Observations identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied. For clarity in this document, conference proceedings are identified only with the name of the conference. The Conference List in the following section gives complete reference information for the proceedings of each conference name cited in the Bibliography. The Editors solicit additions, corrections and comments on this edition from the scientific community. Please address your remarks to Dr. Daniel Y. Gezari, NASA/Goddard Space Flight Center, Code 685, Greenbelt, MD 20771. The Editors are grateful to Enid Chandler for her dedicated editorial assistance, and to Len Moriarity for his database programming work, in the preparation of this document. iv CONFERENCE LIST - Full Citations (alphabetical order) "Active Phenomena in the Outer Atmosphere of the Sun and Stars", Proc. Japan-France Seminar No. 22, (College de France, Paris), Y. Uchida and J. C. Pecker, CNRS, 1983. "Advanced Space Instrumentation in Astronomy", COSPAR Syrup. No. 4, ed. R. M. Bonnet, Adv. Space Res., 2, No. 4, ed. Pergamon, 1983. "Aspects of Speckle Interferometric Imaging", Proc. IEE Conf. (Univ. of York, U. K.), 1982. "Astrometric Techniques", Proc. IAU Symposium No. 109 (Gainesville, Florida), ed. H. K. Eichorn and R. J. Leacock, Reidel (Dordrecht), 1984. "Astronomical Speckle Interferometry and Speckle Holography", Proc. ICO-I1 Conf. (Madrid, Spain), 1978. "Astrophysics of Brown Dwarfs", Proc. Conf. (George Mason Univ.), ed. C. Kafatos, R. Harrington and S. Maran, Cambridge Univ. Press (Cambridge, England), 1986. "Auxilliary Instrumentation for Large Telescopes", Proc. ESO/CERN Conf. (Geneva, Switzerland), ed. S. Laustsen and A. Reiz, ESO, 1972. "Calibration of Fundamental Stellar Quantities", Proc. IAU Symposium No. 111 (Como, Italy), ed. D. S. Hayes, L. E. Pasinetti and A. G. Davis Philip, Reidel (Dordrecht), 1984. "Clrcumstellar Matter", Proc. IAU Symposium No. 122 (Heidelberg, Germany), ed. J. Appenzeller, Reidel (Dordrecht), 1986. "Concepts for a Large Telescope in Space with Interferometric Imaging", Proc. AIAA 24th Aerospace Sciences Meeting (Reno, Nevada), 1986. "Cool Stars, Stellar Systems and the Sun", Fourth Cambridge Workshop (Sante Fe, New Mexico), ed. M. Zeilik and D. M. Gibson, Springer-Verlag, 1985. "Current Techniques in Double and Multiple Star Research", Proc. IAU Coll. No. 62 (Flagstaff, Ariz.), Lowell Obs. Bull. No. 167, ed. R. S. Harrington and O. G. Franz, 1981. "Current Trends in Optics", Proc. IC0-12 Conf. (Graz, Austria), ed. Taylor and Francis, 1981. "ESO 2nd Infrared Workshop", Proc. 2nd ESO Infrared Workshop (Garching. West Germany), ed. A. F. M. Moorwood and K. K jar, ESO, 1982. "ESO's Very Large Telescope", Proc. ESO Workshop No. 17 (Cargese. France), ed. J. P. Swings and K. K jar, ESO, 1983, "Future Solar Optical Observations Needs and Constraints", Proc. JOSO Conf. (Florence, Italy), Obs. Arcetri, No. 106, ed. G. Godoli, G. Noci and A. Righini, 1978. "Ground-based Astronomical Observations with Infrared Array Detectors", Proc. Hawaii Workshop (Hilo, Hawaii), ed. C. G. Wynn-Williams, E. E. Becklin (Univ. of Hawaii), 1987. "High Angular Resolution Imaging from the Ground Using Interferometric Techniques", Proc. 1st ESO/NOAO Workshop (Oracle, Ari=ona), ed. J. Goad, NOAO, 1987. CONFERENCE LIST - Full Citations (alphabetical order) "High Angular Resolution Stellar lnterferometry", Proc. IAU Coll. No. 50 (Univ. of Maryland), ed. J. Davis and W. J. Tango (Univ. of Sydney), 1978. "High-resolution Imaging by lnterferometry", Proc. ESO Conf. and Workshop No. 29 (Garching bei Munchen, West Germany), ed. F. Merkle, ESO, 1988. "Image Formation from Coherence Functions in Astronomy', Proc. IAU Coll. No. 49 (Gronigen, The Netherlands), ed. C. van Schooneveld, Reidel (Dordrecht), 1978. "Imaging in Astronomy', Proc. OSA Topical Meeting, (Harvard Univ., Cambridge, Mass.), 1975. "Imaging Processes and Coherence in Physics," Winter-School, (Les Houches, France), 1979. "Indirect Imaging', Proc. URSI/IAU Syrup. (Sydney, Australia). ed. J. A. Roberts, Cambridge Univ. Press, 1983. "Infinite Vistas: New Tools for Astronomy', ed. E. J. Cornell and J. Carr, Scribners Sons (New York), 1985. "Information Processing in Astronomy and Optics", Proc. AAS/OSA Joint Topical Meeting (St. Paul, Minnesota), 1983. "Instrumentation for Astronomy with Large Optical Telescopes", Proc. IAU Coll. No. 67 (Zelenchukskaya, U. S. S. R.), ed. C. M. Humphries, Reidel (Dordrecht), 1982. "International School of Cosmology & Gravitation : Topological Properties and Global Structure of Space-Time", Proc. Course (Plenum, New York). ed. Bergmann and de Sabbata, 1986. "Kilometric Optical Arrays in Space", Proc. ESA Coll. (Cargese, France), ESA SP-226, 1984. "Mass Loss from Red Giants", Proc. UCLA Workshop, ed. M. Morris and B. Zuckerman, Reidel (Dordrecht), 1984. "Modern Astrometry',
Recommended publications
  • Filter Performance Comparisons for Some Common Nebulae
    Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • Fundamental Properties of Core-Collapse Supernova and GRB Progenitors: Predicting the Look of Massive Stars Before Death
    A&A 558, A131 (2013) Astronomy DOI: 10.1051/0004-6361/201321906 & c ESO 2013 Astrophysics Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death Jose H. Groh1, Georges Meynet1, Cyril Georgy2, and Sylvia Ekström1 1 Geneva Observatory, Geneva University, Chemin des Maillettes 51, 1290 Sauverny, Switzerland e-mail: [email protected] 2 Astrophysics group, EPSAM, Keele University, Lennard-Jones Labs, ST5 5BG Keele, UK Received 16 May 2013 / Accepted 20 August 2013 ABSTRACT We investigate the fundamental properties of core-collapse supernova (SN) progenitors from single stars at solar metallicity. For this purpose, we combine Geneva stellar evolutionary models with initial masses of Mini = 20−120 M with atmospheric and wind models using the radiative transfer code CMFGEN. We provide synthetic photometry and high-resolution spectra of hot stars at the pre-SN stage. For models with Mini = 9−20 M, we supplement our analysis using publicly available MARCS model atmospheres of RSGs to estimate their synthetic photometry. We employ well-established observational criteria of spectroscopic classification and find that, depending on their initial mass and rotation, massive stars end their lives as red supergiants (RSG), yellow hypergiants (YHG), luminous blue variables (LBV), and Wolf-Rayet (WR) stars of the WN and WO spectral types. For rotating models, we obtained the + following types of SN progenitors: WO1–3 (Mini ≥ 32 M), WN10–11 (25 < Mini < 32 M), LBV (20 ≤ Mini ≤ 25 M), G1 Ia (18 < Mini < 20 M), and RSGs (9 ≤ Mini ≤ 18 M). For non-rotating models, we found spectral types WO1–3 (Mini > 40 M), WN7–8 (25 < Mini ≤ 40 M), WN11h/LBV (20 < Mini ≤ 25 M), and RSGs (9 ≤ Mini ≤ 20 M).
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • 00E the Construction of the Universe Symphony
    The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope
    [Show full text]
  • The Evening Sky
    I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O o l P l u & x r , o w t O N s e a r e C Z , c y o I C g n o s l R I i o d R e h O t r C e y H d m L p E k E a e t e H ( r r o T F G n O f s D o R NORTH a N i s M n E n A t i X O s w A H t o C M T f e . I s h P e t N L S a E , E f s Z P a e r “ e E SOUTHERN HEMISPHERE m A N r i H s O t . M T R t n T Y N e H E i c ” K E ) n W S . a . T Capella T n E U I W B R N The Evening Sky Map W D LYNX E T T FEBRUARY 2011 WH T A h E C FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY e O S L n K a Y E m R M e A A AURIGA SKY MAP SHOWS HOW A Get Sky Calendar on Twitter S P T l p .
    [Show full text]
  • The Evening Sky
    I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O e d b l A a r , a l n e O , g N i C R a , Z p s e u I l i C l r a i , R I S C f R a O o s C t p H o L u r E e E & d H P a ( o T F m l O l s u i D R NORTH x ” , N M n E a A o n O X g d A H a x C P M T e r . I o P Polaris H N c S L r y E E e o P Z t n “ n E . EQUATORIAL EDITION i A N H O W T M “ R e T Y N H h E T ” K E ) W S . T T E U W B R N The Evening Sky Map W D E T T . FEBRUARY 2011 WH r A e E C t M82 FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY O s S L u K l T Y c E CASSIOPEIA h R e r M a A S t A SKY MAP SHOWS HOW i s η M81 Get Sky Calendar on Twitter S P c T s k C A l e e E CAMELOPARDALIS R d J Sky Calendar – February 2011 a O http://twitter.com/skymaps i THE NIGHT SKY LOOKS s B y U O a H N L s D e t A h NE a I t I EARLY FEB 9 PM r T T f S p 1 Moon near Mercury (16° from Sun, morning sky) at 17h UT.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Arxiv:1804.08840V1 [Astro-Ph.SR] 24 Apr 2018
    Draft version April 25, 2018 Preprint typeset using LATEX style emulateapj v. 03/07/07 ∗ EXTENDED STRUCTURES OF PLANETARY NEBULAE DETECTED IN H2 EMISSION Xuan Fang1;2y, Yong Zhang1;3;4, Sun Kwok1;2z, Chih-Hao Hsia5, Wayne Chau4, Gerardo Ramos-Larios6, and Mart´ın A. Guerrero7 1Laboratory for Space Research, Faculty of Science, The University of Hong Kong, Hong Kong, China 2Department of Earth Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China 3School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China 4Department of Physics, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China 5Space Science Institute, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China 6Instituto de Astronom´ıay Meteorolog´ıa,Av. Vallarta No. 2602, Col. Arcos Vallarta, CP 44130, Guadalajara, Jalisco, Mexico 7Instituto de Astrof´ısicade Andaluc´ıa(IAA, CSIC), Glorieta de la Astronom´ıas/n, E-18008 Granada, Spain Draft version April 25, 2018 ABSTRACT We present narrow-band near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 µm and Brγ 2.166 µm emission lines and the Kc 2.218 µm continuum. These images were collected with the Wide-field Infrared Camera (WIRCam) on the 3.6 m Canada-France- Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication on stellar wind interactions is discussed.
    [Show full text]