AAIB Bulletin 5-2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comment Response Document
EASA SC-VTOL-01 Comment Response Document Note: The comments have been grouped by theme or objective and renumbered sequentially. Bookmarks are available to navigate the document. General type of vehicle Explanatory Note 1: type of vehicle The Special Condition (SC) has been developed to cover a new category of person-carrying vertical take-off and landing (VTOL) heavier-than-air aircraft with lift/thrust units used to generate powered lift and control. The vertical take-off and landing capability distinguishes this type of aircraft from aeroplanes. The Special Condition does not intend to cover traditional rotorcraft either but rather aircraft with distributed lift/thrust and it will be clarified that, for the SC to be applicable, more than 2 lift/thrust units should be used to provide lift during vertical take-off or landing. The Special Condition background mentioned “the aircraft may not be able to perform an autorotation or a controlled glide in the event of a loss of lift/thrust” as it is the case for some VTOL aircraft being proposed, however this is not a requirement. Comment Comment summary Suggested resolution Comment is an Comment is EASA EASA response observation or substantive or comment is a is an NR Author Paragraph Page disposition suggestion* objection** 1 1David Loebl, Background/Sc 1 “Although hover flight may be possible, the aircraft Clarify the condition where no glide is possible: Yes No Noted See Explanatory Note 1 AutoFlightX ope may not be able to perform an autorotation or a “…not be able to perform an autorotation or a controlled glide in the event of a loss of lift/thrust.” controlled glide in the event of a loss of lift/thrust implies that the given SC are not applicable for during hover.” transition vehicles that can fly also with aerodynamic lift. -
FTW-8G Emergency Approach and Landing
FTW-8G Emergency Approach and Landing READING ASSIGNMENT Pilot’s Operating Handbook, Emergency Procedures, Engine Failures AFH Pages 8-26 to 8-27 – “Emergency Approaches and Landings (Simulated)” Study Questions Pilot’s Operating Handbook, Emergency Procedures, Engine Failures 1. In the Emergency Procedures section of a POH, what is typically indicated by emergency procedure steps FTW-8G ? that are shown in boldface type? a) The steps should be memorized. b) The steps are optional. c) Additional information regarding those steps is contained in the amplified procedures section of the POH. 2. Why are the emergency procedures for dealing with an engine failure just after takeoff different from the procedures for dealing with an engine failure in flight? a) The best glide airspeeds are significantly different and result in very different glide angles. b) Engine failures at altitude may allow time for restart procedures to be attempted. c) If the wheels have not stopped spinning from the takeoff roll, the aerodynamics of the forced landing will be substantially different. 3. When responding to an engine failure immediately after takeoff, or for any forced landing, why is it a good idea to shutdown and secure the engine prior to landing? a) Having the engine on limits the effectiveness of flaps and ailerons. b) To reduce the possibility of a post-crash fire. c) To reserve some fuel for future takeoffs, if needed. 4. When should the airplane’s avionics and electrical system be shut down during a forced landing? a) Once landing is assured. b) Prior to squawking 7700 on the transponder. -
Turbine Bonanza
While others fiddle, Allison blazes ahead with a private turboprop. BY MARK M. LACAGNINA Timing is a critical element in the suc• for these applications have been either prop that were replaced. This is not cess or failure of any new concept or abandoned or put on the back burner directly translatable to increased pay• design. Powered flight, a concept pro• due to lack of adequate financing or load, however, because each gallon of posed centuries ago by visionaries such because those involved in the projects jet fuel in the Turbine Bonanza's fuel as Roger Bacon and Leonardo da Vinci, do not believe the time (that is, the tanks weighs about 0.7 pounds more remained little more than whimsy until market) is right. than the avgas previously required for society and technology were ready for There is at least one exception. The the piston engine. The lighter engine it. The first mechanism generally cred• Allison Gas Turbine Division of Gen• was installed in such a way as to re• ited with achieving powered flight eral Motors, which is working with quire no changes to the Bonanza's used wing-warping for flight control. It Soloy on the Allison-powered Turbine certificated center-of-gravity limits. As worked well enough 80 years ago but 206 and other applications, believes a result, the propeller arc is 22 inches would be only of passing interest to the time is, indeed, right for a farther forward. modern aerodynamic engineers. Con• nonutility turbine single. The company When I visited Allison's Indianapolis versely, such things as stall fences and currently is test-flying a Turbine Bo• headquarters in July, the Turbine Bo• boosted controls, designs that have nanza with the intent of obtaining a nanza had been flown only about 100 applications today, would have been of supplemental type certificate (STC) for hours. -
National Transportation Safety Board
,oc ITSB'. ~MM :o 18 NATIONAL TRANSPORTATION SAFETY BOARD U.S. GENERAL AVIATION 1978 NTSB-AMM-80-8 >C rss llM , UNITED STATES GOVERNMENT TECHNICAL REPORT DOCUMENTATIO~ PAGE 1. Report No. I 2.Government Accession No. 3.Recipient's Catalog No. NTSB-AMM-80;...8 4. Title and Subtitle 5.Report Date Briefs of Accidents, Involving Corporate/Executive August 5, 1980 Aircraft, U.S. General Aviation, 1978 6.Performing Organization Code 7. Author(s) E.Performing Organization Report No. 9. Performing Organization Name and Address 10.Work Unit No. Bureau of Technology 3021 National Transportation Safety Board 11 .Contract or Grant No. Washington, D.C. 20594 13.Type of Report and Period Cove red 12.Sponsoring Agency Name and Address Accident Reports in Brief Format - U.S. General Aviation Corporate/Executive NATIONAL TRANSPORTATION SAFETY BOARD Aircraft, 1978 Washington, D. C. 20594 14.Sponsoring Agency Code 15.Supplementary Notes 16.Abstract This publication contains reports of U.S. general aviation corporate/ executive aircraft accidents occurring in 1978. Included are 87 accident Briefs, 23 of which involve fatal accidents. The brief format presents the facts, conditions, circumstances and probable cause(s) for each accident. Additional statistical information is tabulated by type of accident, phase of operation, injuries and causal/factor(s). This publication will be published annually. 17 ·Key Words Aviation accidents, corporate/executive 18.Distribution Statement aircraft, U.S. general aviation, probable cause, This document is available type of accident, phase of operation, kind of to the public through the flying, aircraft damage, injuries, p~lot data. National Technical Infor mation Service, Spring field, Virginia 22151 19.Security Classification 20.Security Classification 21 .No. -
Dead-Stick Landing Ice Crystals Cause Dual Flameout
ONRecord Dead-Stick Landing Ice crystals cause dual flameout. BY MARK LACAGNINA The following information provides an aware- unsuccessfully to restart the engines using bat- ness of problems in the hope that they can be tery power. Descending through FL 260, the avoided in the future. The information is based crew increased airspeed to 230 kt to attempt a on final reports by official investigative authori- windmill restart, but there was no indication of ties on aircraft accidents and incidents. engine rotation. “During the descent, ATC provided vectors JETS to the ILS [instrument landing system] approach to Runway 7 at Jacksonville,” the report said. No Training or Guidance on Hazard “The flight was in clouds during the descent, Raytheon Beechjet 400A. Minor damage. No injuries. with moderate to heavy rain beginning at about he Beechjet was on a fractional ownership 10,000 ft. As the airplane neared the airport, operation positioning flight from Indianapolis ATC provided continuous callouts of the dis- Tto Marco Island, Florida, U.S., the afternoon tance remaining to the runway that the pilots of Nov. 28, 2005. The airplane had been flown at later stated was very helpful in managing their Flight Level 400 (approximately 40,000 ft) for 30 descent and approach to the airport.” minutes and at FL 380 for about 15 minutes when The captain assumed control at about 9,000 the flight crew received clearance from air traffic ft. The landing gear was extended manually, and control (ATC) for further descent to FL 330. the Beechjet broke out of the clouds at about “The flight was operating in visual meteoro- 1,200 ft. -
WEC Aircraft Use and Safety Handbook
AIRCRAFT USE AND SAFETY HANDBOOK FOR SCIENTISTS AND RESOURCE MANAGERS John C. Simon Peter C. Frederick Kenneth D. Meyer H. Percival Franklin DEVELOPED BY THE © University of Florida 2010 ABOUT THE AUTHORS John Charles Simon is a Research Coordinator for the University of Florida’s South Florida Wading Bird Project. He earned his private pilot’s certificate in 1986 and has flown over 750 hours as a passenger/observer in both fixed- winged and rotary aircraft conducting population and nesting surveys, habitat evaluations, following flights, and radio telemetry. Dr. Peter Frederick is a Research Professor in the University of Florida’s Department of Wildlife Ecology and Conservation. His research on wading birds in the Florida Everglades has used aerial survey techniques extensively and intensively, with over 1,500 hours flown in fixed-winged and rotary aircraft over 25 years. He survived one air crash in a Cessna 172 during the course of that work. Dr. Kenneth D. Meyer is Director of the Avian Research and Conservation Institute and an Associate Professor (Courtesy) in the University of Florida's Department of Wildlife Ecology and Conservation. Since 1981, Dr. Meyer's research on birds has involved fixed-wing and rotary aircraft for radio telemetry, population surveys, roost counts, nest finding, and following flights. Dr. H. Percival Franklin is Courtesy Associate Professor and Unit Leader of the Florida Cooperative Fish and Wildlife Research Unit. Its employees and cooperators, regardless of employment, are bound by strict aircraft training and use regulations of the Department of Interior. Dr Franklin has been a strong proponent of aircraft and other safety issues in the workplace. -
October 2003 Alerts
October 2003 FAA AC 43-16A CONTENTS AIRPLANES BEECH ........................................................................................................................................ 1 CESSNA ..................................................................................................................................... 2 PIPER .......................................................................................................................................... 3 POWERPLANTS AND PROPELLERS TELEDYNE CONTINENTAL MOTOR .................................................................................... 4 AIR NOTES ELECTRONIC VERSION OF MALFUNCTION OR DEFECT REPORT ................................ 4 SERVICE DIFFICULTY REPORTING PROGRAM.................................................................. 5 IF YOU WANT TO CONTACT US .......................................................................................... 6 AVIATION SERVICE DIFFICULTY REPORTS....................................................................... 6 1 October 2003U.S. DEPARTMENT OF TRANSPORTATION FAA AC 43-16A FEDERAL AVIATION ADMINISTRATION WASHINGTON, DC 20590 AVIATION MAINTENANCE ALERTS The Aviation Maintenance Alerts provide a common communication channel through which the aviation community can economically interchange service experience and thereby cooperate in the improvement of aeronautical product durability, reliability, and safety. This publication is prepared from information submitted by those who operate and maintain civil aeronautical -
Helicopters Chapter 1
Annex to ED Decision 2012/018/R Section 2 - Helicopters Chapter 1 - General requirements GM1 CAT.POL.H.105(c)(3)(ii)(A) General REPORTED HEADWIND COMPONENT The reported headwind component should be interpreted as being that reported at the time of flight planning and may be used, provided there is no significant change of unfactored wind prior to take-off. GM1 CAT.POL.H.110(a)(2)(i) Obstacle accountability COURSE GUIDANCE Standard course guidance includes automatic direction finder (ADF) and VHF omnidirectional radio range (VOR) guidance. Accurate course guidance includes ILS, MLS or other course guidance providing an equivalent navigational accuracy. Chapter 2 – Performance class 1 GM1 CAT.POL.H.200&CAT.POL.H.300&CAT.POL.H.400 General CATEGORY A AND CATEGORY B (a) Helicopters that have been certified according to any of the following standards are considered to satisfy the Category A criteria. Provided that they have the necessary performance information scheduled in the AFM, such helicopters are therefore eligible for performance class 1 or 2 operations: (1) certification as Category A under CS-27 or CS-29; (2) certification as Category A under JAR-27 or JAR-29; (3) certification as Category A under FAR Part 29; (4) certification as group A under BCAR Section G; and (5) certification as group A under BCAR-29. (b) In addition to the above, certain helicopters have been certified under FAR Part 27 and with compliance with FAR Part 29 engine isolation requirements as specified in FAA Advisory Circular AC 27-1. Provided that compliance -
LANDING Av1at1on Safety Digest Is Prepared by the Department of Transport and Communications and Is Published by the Australtan Government Publishing Service
0 ' 0 ASD 134 SPRING 1987 0 LANDING Av1at1on Safety Digest is prepared by the Department of Transport and Communications and is published by the Australtan Government Publishing Service. It is distributed to Aus tralian licence holders (except student pilots). Contents registered aircraft owners and certain other Editorial persons and organisations having an operational interest in safety within the Aus· tra/1an civil aviation envlfonment. 4 Spring is in the air Flying has its ups and downs D1stnbutees who expenence delivery - especially in the Spring. problems or who wish to notify a change of address should contact: The Publications Distribution Officer (EPSD) Department of Transport and Communicat10ns 6 Afterthoughts? P 0. Box 1986, Carlton South. Vic. 3053, A safe flight is nicely finished off by a post-flight AUSTRALIA T'S SPRING at last. The birds are singing and it's time for us inspection. Telephone (03) 667 2733 to get back into the air after the winter lay-off. Most of us have just been through our leanest period of aviating for the year and we may be more than a little rusty. Our Covers familiarity with the aircraft and its systems, with procedures and Front. When the going gets tough ... the 7 The power of nature checks is at its lowest ebb. Our handling techniques - the vis Av1at1on Safety Digest is also available on tough get going. A major element in Thunderstorms deserve respect ual judgments and control inputs - are less automatic and may subscription from the Australian Government landing accidents is a late decision to go Publishing Service. -
Word to PDF Converter - Unregistered
( Word to PDF Converter - Unregistered ) http://www.Word-to-PDF-Converter.net LANDING GEAR LANDING GEAR SYSTEMS Learning Objective: Identify the various types of landing gear systems used on fixed-wing and rotary-wing aircraft. Every aircraft maintained in today is equipped with a landing gear system. Most aircraft also use arresting and catapult gear. The landing gear is that portion of the aircraft that supports the weight of the aircraft while it is on the ground. The landing gear contains components that are necessary for taking off and landing the aircraft safely. Some of these com-ponents are landing gear struts that absorb landing and taxiing shocks; brakes that are used to stop and, in some cases, steer the aircraft; nosewheel steering for steering the aircraft; and in some cases, nose catapult com-ponents that provide the aircraft with carrier deck takeoff capabilities. FIXED-WING AIRCRAFT Landing gear systems in fixed-wing aircraft are similar in design. Most aircraft are equipped with the tricycle-type retractable landing gear. Some types of landing gear are actuated in different sequences and directions, but practically all are hydraulically operated and electrically controlled. With a knowledge of basic hydraulics and familiarity with the operation of actuating system components, you should be able to understand the operational and troubleshooting procedures for landing gear systems. Main Landing Gear The typical aircraft landing gear assembly consists of two main landing gears and one steerable nose landing gear. As you can see in figure Figure 12-1.–Tricycle landing gear. is installed under each wing. Because aircraft are different in size, shape, and construction, every landing gear is specially designed. -
Chapter 11 Transition to Complex Airplanes
Chapter 11 Transition to Complex Airplanes Introduction A high-performance airplane is defined as an airplane with an engine capable of developing more than 200 horsepower. A complex airplane is an airplane that has a retractable landing gear, flaps, and a controllable pitch propeller. In lieu of a controllable pitch propeller, the aircraft could also have an engine control system consisting of a digital computer and associated accessories for controlling the engine and the propeller. A seaplane would still be considered complex if it meets the description above except for having floats instead of a retractable landing gear system. 11-1 i ii Tapered Delta Sweptback Figure 11-1. Airfoil types. Transition to a complex airplane, or a high-performance axis. Wing flaps acts symmetrically about the longitudinal airplane, can be demanding for most pilots without previous axis producing no rolling moment; however, both lift and drag experience. Increased performance and complexity both increase as well as a pitching moment about the lateral axis. require additional planning, judgment, and piloting skills. Lift is a function of several variables including air density, Transition to these types of airplanes, therefore, should be velocity, surface area, and lift coefficient. Since flaps increase accomplished in a systematic manner through a structured an airfoil’s lift coefficient, lift is increased. [Figure 11-3] course of training administered by a qualified flight instructor. As flaps are deflected, the aircraft may pitch nose up, nose Airplanes can be designed to fly through a wide range of down or have minimal changes in pitch attitude. Pitching airspeeds. High speed flight requires smaller wing areas and moment is caused by the rearward movement of the moderately cambered airfoils whereas low speed flight is wing’s center of pressure; however, that pitching behavior obtained with airfoils with a greater camber and larger wing depends on several variables including flap type, wing area. -
Ao403 Module 1
JCET/AERO AO403 MODULE 1 AO403 AIRCRAFT SYSTEMS AND INSTRUMENTS MODULE 1 1. HYDRAULIC SYSTEMS Hydraulic systems in aircraft provide a means for the operation of aircraft components like landing gear, flaps, flight control surfaces, and brakes. Fig: Typical Hydraulic System Reservoir: Stores the supply of hydraulic fluid for operation of the system. It replenishes the system fluid when needed and provides room for thermal expansion. Pump : It is necessary to create a flow of fluid. Filter: removes foreign particles from the hydraulic fluid, preventing dust, or other undesirable matter from entering the system. 1 JCET/AERO AO403 MODULE 1 Pressure Regulator: Unloads or relieves the power-driven pump when the desired pressure in the system is reached. Thus, it is often referred to as an unloading valve. Accumulator: It serves a twofold purpose: . It acts as a shock absorber by maintaining an even pressure in the system. It stores enough fluid under pressure to provide for emergency operation of certain actuating units. Check valves: Allow the flow of fluid in one direction only. Pressure gage: Indicates the amount of hydraulic pressure in the system. Relief valve: Safety valve installed in the system to bypass fluid through the valve back to the reservoir in case excessive pressure is built up in the system. Selector valve: Used to direct the flow of fluid. These valves are normally actuated by solenoids or manually operated, either directly or indirectly through use of mechanical linkage. Actuating cylinder: Converts fluid pressure into useful work by linear or reciprocating mechanical motion. 1.1 Advantages of Hydraulic system • Large load capacity with almost high accuracy and precision.