Biochemistry - Problem Drill 20: Amino Acid Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry - Problem Drill 20: Amino Acid Metabolism Biochemistry - Problem Drill 20: Amino Acid Metabolism Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 1. ________ is the reaction between an amino acid and an alpha keto acid. (A) Ketogenic (B) Aminogenic (C) Transamination Question (D) Carboxylation (E) Glucogenic A. Incorrect! No, consider the amino acid and keto acid structure when answering this question. B. Incorrect! No, consider the amino acid and keto acid structure when answering this question. C. Correct! Yes, Transamination is the reaction between an amino acid and an alpha keto acid. Feedback D. Incorrect! No, consider the amino acid and keto acid structure when answering this question. E. Incorrect! No, consider the amino acid and keto acid structure when answering this question. Transamination is the reaction between an amino acid and an alpha keto acid. The correct answer is (C). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 2 of 10 Instructions: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 2. Lysine and leucine are examples of what? (A) Ketogenic amino acids. (B) Nonessential amino acids. (C) Non-ketogenic amino acids. (D) Glucogenic amino acids. Question (E) None of the above A. Correct! Yes, lysine and leucine are examples of ketogenic amino acids. B. Incorrect No, this is not a correct response. C. Incorrect! No, this is not a correct response. Feedback D. Incorrect! No, this is not a correct response. E. Incorrect! No, this is not a correct response. Amino acids can be either glucogenic or ketogenic. Lysine and leucine are ketogenic. The correct answer is (A). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 3 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 3. Glutamate is ________ in the mitochondrion by glutamate dehydrogenase. (A) broken apart (B) oxidatively deaminated (C) carboxylated (D) reduced Question (E) None of the above A. Incorrect! No, this is not the correct answer. Consider what the enzyme glutamate dehydrogenase does. B. Correct! Yes, glutamate is oxidatively deaminated in the mitochondrion by glutamate dehydrogenase. C. Incorrect! No, this is not the correct answer. Consider what the enzyme glutamate dehydrogenase does. Feedback D. Incorrect! No, this is not the correct answer. Consider what the enzyme glutamate dehydrogenase does. E. Incorrect! No, there is a correct answer. Consider what the enzyme glutamate dehydrogenase does. Yes, glutamate is oxidatively deaminated in the mitochondrion by glutamate dehydrogenase. The correct answer is (B). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 4 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 4. Which statement below best describes how proteins are modified during digestion? (A) Chemical changes in during digestion results in breaking of the protein due to proteases. (B) The proteins are hydrolyzed. Question (C) Protein digestion begins in the stomach. (D) HCl denatures the protein. (E) All of the above A. Incorrect! No, this is a correct statement but not the best response to the question. B. Incorrect! No, this is a correct statement but not the best response to the question. C. Incorrect! No, this is a correct statement but not the best response to the question. Feedback D. Incorrect! No, this is a correct statement but not the best response to the question. E. Correct! Yes, this is the best response to the question. Digestion of proteins: The chemical changes of digestion are accomplished by proteases of the digestive tract that catalyze the hydrolysis of native proteins to amino acids. Protein digestion begins in the stomach. Hydrochloric acid secreted by parietal cells, denatures proteins, kills bacteria and activates the inactive pepsinogen to active pepsin. The alkaline content of pancreatic secretions in the small intestine activates the zymogens for further hydrolysis of proteins into amino acids. The correct answer is (E). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 5 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 5. Which of the following is not a use of amino acids? (A) Protein synthesis. (B) Building blocks of proteins. (C) Oxidized for energy production. (D) Stored as a form of fat. Question (E) Precursor of heme. A. Incorrect! No, this is a common use of amino acids. B. Incorrect! No, this is a common use of amino acids. C. Incorrect! No, this is a common use of amino acids. Feedback D. Correct! Yes, amino acids are not fat molecules. E. Incorrect! No, this is a common use of amino acids. Amino acids are not used as a form of fat storage. The correct answer is (D). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 6 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 6. Transport of ammonia is mostly in the form of _______ or ________. (A) Glutamine, lysine (B) Glutamine, alanine (C) Glycine, alanine Question (D) Arginine, valine (E) Threonine, alanine A. Incorrect! No, this is an incorrect response. B. Correct! Yes, the transport of ammonia is mostly in the form of glutamine or alanine. C. Incorrect! No, this is an incorrect response. Feedback D. Incorrect! No, this is an incorrect response. E. Incorrect! No, this is an incorrect response. The transport of ammonia is mostly in the form of glutamine or alanine. The correct answer is (B). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 7 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 7. Glucogenic amino acids that give rise to either pyruvate or TCA intermediates can be turned into _______. (A) Actyl CoA (B) Fructose (C) Glycerol Question (D) Acetoacetate (E) Glucose A. Incorrect! No, glucogenic amino acids that give rise to either pyruvate or TCA do not produce this. B. Incorrect! No, glucogenic amino acids that give rise to either pyruvate or TCA do not produce this. C. Incorrect! No, glucogenic amino acids that give rise to either pyruvate or TCA do not produce this. Feedback D. Incorrect! No, glucogenic amino acids that give rise to either pyruvate or TCA do not produce this. E. Correct! Yes, glucogenic amino acids that give rise to either pyruvate or TCA can be turned into glucose. Glucogenic amino acids that give rise to either pyruvate or TCA intermediates that can be turned into glucose. Glucogenic amino acids are those that be converted into glucose through Gluconeogenesis. The correct answer is (E). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 8 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 8. Ketogenic amino acids go to acetoacetate and ____ and do not yield ________. (A) Acetyl-coA and fructose (B) Acetyl-CoA and glucose (C) Glucogenic amino acid and glucose (D) Pyruvate and glucose Question (E) None of the above A. Incorrect! No, this is statement is inaccurate. B. Correct! Yes, ketogenic amino acids go to acetyl-CoA and glucose which do not yield glucose. C. Incorrect! No, this is not a correct option. Feedback D. Incorrect! No, this is statement is inaccurate. E. Incorrect! No, one of the statements provided is correct. Review fatty acid metabolism. Ketogenic amino acids go to acetyl-CoA and glucose which do not yield glucose. The correct answer is (B). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 9 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 9. Digestion of protein begins in the stomach HCL activates ______ to pepsin. (A) Lipase (B) Pepsinogen (C) Peptidase (D) Amylase Question (E) None of the above A. Incorrect! No, this is not correct statement. B. Correct! Yes, HCL activates inactive pepsinogen to the active enzyme pepsin. C. Incorrect! No, this is not correct statement. Feedback D. Incorrect! No, this is not correct statement. E. Incorrect! No, this is not correct statement. Chemical changes of proteins are accomplished by proteases of the digestive tract. These catalyze the hydrolysis of native proteins to amino acids. Protein digestion begins in the stomach. HCl secreted by parietal cells, denatures proteins, kills bacteria and activates the inactive pepsinogen to active pepsin. The correct answer is (B). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 10 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 10. Which of the following statements about the urea cycle is best? (A) The urea cycle in many animals produces urea.
Recommended publications
  • Amino Acid & Protein
    Amino Acid & Protein DR. MD. MAHBUBUR RAHMAN MBBS, M. Phil . MSc.(Biotechnology) DEPT. OF BIOCHEMISTRY RAJSHAHI MEDICAL COLLEGE At the end of the session Student will be able to • Definition of amino acid, formation of peptide bond & its property • Biomedical importance of AA • Protein cycle At the end of the session Student will be able to • Classification of AA, • Isoelectric pH and 2D electrophoresis • Protein – definition, classification & structure, • purification of protein Biomedical Importance • Monomeric unit of Protein/ Polypeptide • Amino acid and their derivatives participate in diverse cellular function • Further discussed in functional classification Biomedical Importance Peptide performs prominent role in neuroendocrine system eg. Hormone , Neurotransmitter, Transporter Human lack of capability to synthesize 10 of the 20 common A-Acid (most of them α amino acid) Diversity of Protein function Enzyme and hormone regulate metabolism muscle movement by protein (contractile protein) Collagen fiber forms bone Ig fights against infectious Bacteria & viruses Bacitracin and gramicidin act a antibiotic Bleomycin act anticancer agent Amino Acid Are organic acid having both carboxyl group and amino group attach to same carbon atom. Peptide Bond In protein, amino acids are joined covalently By peptide Bond which are amide linkage Between the α-carboxyl group of one amino acid and the α- amino group of another Characteristic of peptide bond Net charge of amino acid at neutral pH • At physiologic pH all amino acid have a negatively charged group (- COO-) and positively charged group ( - NH3).----- is called amphoteric( ampholyte) Isoelectric pH The pH at which amino bears no net charge. The pH at which amino acid are electrically neutral that is the sum of positive charge equals the sum of negative charge Optical properties of amino acid α carbon of each amino acid are attached to four different group there fore amino acid have optical isomerism.
    [Show full text]
  • Evidence for a Catabolic Role of Glucagon During an Amino Acid Load
    Evidence for a catabolic role of glucagon during an amino acid load. M R Charlton, … , D B Adey, K S Nair J Clin Invest. 1996;98(1):90-99. https://doi.org/10.1172/JCI118782. Research Article Despite the strong association between protein catabolic conditions and hyperglucagonemia, and enhanced glucagon secretion by amino acids (AA), glucagon's effects on protein metabolism remain less clear than on glucose metabolism. To clearly define glucagon's catabolic effect on protein metabolism during AA load, we studied the effects of glucagon on circulating AA and protein dynamics in six healthy subjects. Five protocols were performed in each subject using somatostatin to inhibit the secretion of insulin, glucagon, and growth hormone (GH) and selectively replacing these hormones in different protocols. Total AA concentration was the highest when glucagon, insulin, and GH were low. Selective increase of glucagon levels prevented this increment in AA. Addition of high levels of insulin and GH to high glucagon had no effect on total AA levels, although branched chain AA levels declined. Glucagon mostly decreased glucogenic AA and enhanced glucose production. Endogenous leucine flux, reflecting proteolysis, decreased while leucine oxidation increased in protocols where AA were infused and these changes were unaffected by the hormones. Nonoxidative leucine flux reflecting protein synthesis was stimulated by AA, but high glucagon attenuated this effect. Addition of GH and insulin partially reversed the inhibitory effect of glucagon on protein synthesis. We conclude that glucagon is the pivotal hormone in amino acid disposal during an AA load and, by reducing the availability of AA, […] Find the latest version: https://jci.me/118782/pdf Evidence for a Catabolic Role of Glucagon during an Amino Acid Load Michael R.
    [Show full text]
  • Blood Metabolite Signature of Metabolic Syndrome Implicates
    International Journal of Molecular Sciences Article Blood Metabolite Signature of Metabolic Syndrome Implicates Alterations in Amino Acid Metabolism: Findings from the Baltimore Longitudinal Study of Aging (BLSA) and the Tsuruoka Metabolomics Cohort Study (TMCS) Jackson A. Roberts 1 , Vijay R. Varma 1, Chiung-Wei Huang 2, Yang An 2, Anup Oommen 3 , Toshiko Tanaka 4 , Luigi Ferrucci 4, Palchamy Elango 4, Toru Takebayashi 5, Sei Harada 5 , Miho Iida 5 and Madhav Thambisetty 1,* 1 Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; [email protected] (J.A.R.); [email protected] (V.R.V.) 2 Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; [email protected] (C.-W.H.); [email protected] (Y.A.) 3 Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway H91-TK33, Ireland; [email protected] 4 Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; [email protected] (T.T.); [email protected] (L.F.); [email protected] (P.E.) 5 Department of Preventive Medicine and Public Health, Keio University, Tokyo 160-8282, Japan; [email protected] (T.T.); [email protected] (S.H.); [email protected] (M.I.) * Correspondence: [email protected]; Tel.: +1-(410)-558-8572; Fax: +1-(410)-558-8302 Received: 19 December 2019; Accepted: 10 February 2020; Published: 13 February 2020 Abstract: Rapid lifestyle and dietary changes have contributed to a rise in the global prevalence of metabolic syndrome (MetS), which presents a potential healthcare crisis, owing to its association with an increased burden of multiple cardiovascular and neurological diseases.
    [Show full text]
  • Amino Acids Amino Acids
    Amino Acids Amino Acids What Are Amino Acids? Essential Amino Acids Non Essential Amino Acids Amino acids are the building blocks of proteins; proteins are made of amino acids. Isoleucine Arginine (conditional) When you ingest a protein your body breaks it down into the individual aminos, Leucine Glutamine (conditional) reorders them, re-folds them, and turns them into whatever is needed by the body at Lysine Tyrosine (conditional) that time. From only 20 amino acids, the body is able to make thousands of unique proteins with different functions. Methionine Cysteine (conditional) Phenylalanine Glycine (conditional) Threonine Proline (conditional) Did You Know? Tryptophan Serine (conditional) Valine Ornithine (conditional) There are 20 different types of amino acids that can be combined to make a protein. Each protein consists of 50 to 2,000 amino acids that are connected together in a specific Histidine* Alanine sequence. The sequence of the amino acids determines each protein’s unique structure Asparagine and its specific function in the body. Asparate Popular Amino Acid Supplements How Do They Benefit Our Health? Acetyl L- Carnitine: As part of its role in supporting L-Lysine: L-Lysine, an essential amino acid, is mental function, Acetyl L-Carnitine may help needed to support proper growth and bone Proteins (amino acids) are needed by your body to maintain muscles, bones, blood, as support memory, attention span and mental development. It can also support immune function. well as create enzymes, neurotransmitters and antibodies, as well as transport and performance. store molecules. N-Acetyl Cysteine: N-Acetyl Cysteine (NAC) is a L-Arginine: L-Arginine is a nonessential amino acid form of the amino acid cysteine.
    [Show full text]
  • Solutions to 7.012 Problem Set 1
    MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups.
    [Show full text]
  • Nucleotide Base Coding and Am1ino Acid Replacemients in Proteins* by Emil L
    VOL. 48, 1962 BIOCHEMISTRY: E. L. SAIITH 677 18 Britten, R. J., and R. B. Roberts, Science, 131, 32 (1960). '9 Crestfield, A. M., K. C. Smith, and F. WV. Allen, J. Biol. Chem., 216, 185 (1955). 20 Gamow, G., Nature, 173, 318 (1954). 21 Brenner, S., these PROCEEDINGS, 43, 687 (1957). 22 Nirenberg, M. WV., J. H. Matthaei, and 0. WV. Jones, unpublished data. 23 Crick, F. H. C., L. Barnett, S. Brenner, and R. J. Watts-Tobin, Nature, 192, 1227 (1961). 24 Levene, P. A., and R. S. Tipson, J. Biol. Ch-nn., 111, 313 (1935). 25 Gierer, A., and K. W. Mundry, Nature, 182, 1437 (1958). 2' Tsugita, A., and H. Fraenkel-Conrat, J. Mllot. Biol., in press. 27 Tsugita, A., and H. Fraenkel-Conrat, personal communication. 28 Wittmann, H. G., Naturwissenschaften, 48, 729 (1961). 29 Freese, E., in Structure and Function of Genetic Elements, Brookhaven Symposia in Biology, no. 12 (1959), p. 63. NUCLEOTIDE BASE CODING AND AM1INO ACID REPLACEMIENTS IN PROTEINS* BY EMIL L. SMITHt LABORATORY FOR STUDY OF HEREDITARY AND METABOLIC DISORDERS AND THE DEPARTMENTS OF BIOLOGICAL CHEMISTRY AND MEDICINE, UNIVERSITY OF UTAH COLLEGE OF MEDICINE Communicated by Severo Ochoa, February 14, 1962 The problem of which bases of messenger or template RNA' specify the coding of amino acids in proteins has been largely elucidated by the use of synthetic polyri- bonucleotides.2-7 For these triplet nucleotide compositions (Table 1), it is of in- terest to examine some of the presently known cases of amino acid substitutions in polypeptides or proteins of known structure.
    [Show full text]
  • Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat
    Pediat. Res. 6: 713-719 (1972) Amino acid neonate intestine transport, amino acid Amino Acid Transport Pathways in the Small Intestine of the Neonatal Rat J. F. FITZGERALD1431, S. REISER, AND P. A. CHRISTIANSEN Departments of Pediatrics, Medicine, and Biochemistry, and Gastrointestinal Research Laboratory, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana, USA Extract The activity of amino acid transport pathways in the small intestine of the 2-day-old rat was investigated. Transport was determined by measuring the uptake of 1 mM con- centrations of various amino acids by intestinal segments after a 5- or 10-min incuba- tion and it was expressed as intracellular accumulation. The neutral amino acid transport pathway was well developed with intracellular accumulation values for leucine, isoleucine, valine, methionine, tryptophan, phenyl- alanine, tyrosine, and alanine ranging from 3.9-5.6 mM/5 min. The intracellular accumulation of the hydroxy-containing neutral amino acids threonine (essential) and serine (nonessential) were 2.7 mM/5 min, a value significantly lower than those of the other neutral amino acids. The accumulation of histidine was also well below the level for the other neutral amino acids (1.9 mM/5 min). The basic amino acid transport pathway was also operational with accumulation values for lysine, arginine and ornithine ranging from 1.7-2.0 mM/5 min. Accumulation of the essential amino acid lysine was not statistically different from that of nonessential ornithine. Ac- cumulation of aspartic and glutamic acid was only 0.24-0.28 mM/5 min indicating a very low activity of the acidic amino acid transport pathway.
    [Show full text]
  • Nonproteinogenic Deep Mutational Scanning of Linear and Cyclic Peptides
    Nonproteinogenic deep mutational scanning of linear and cyclic peptides Joseph M. Rogersa, Toby Passiouraa, and Hiroaki Sugaa,b,1 aDepartment of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; and bCore Research for Evolutionary Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan Edited by David Baker, University of Washington, Seattle, WA, and approved September 18, 2018 (received for review June 10, 2018) High-resolution structure–activity analysis of polypeptides re- mutants that can be constructed (18). Moreover, it is possible to quires amino acid structures that are not present in the universal combine parallel peptide synthesis with measures of function genetic code. Examination of peptide and protein interactions (19). However, these approaches cannot construct peptide li- with this resolution has been limited by the need to individually braries with the sequence length and numbers that deep muta- synthesize and test peptides containing nonproteinogenic amino tional scanning can, which, at its core, uses high-fidelity nucleic acids. We describe a method to scan entire peptide sequences with acid-directed synthesis of polypeptides by the ribosome. multiple nonproteinogenic amino acids and, in parallel, determine Ribosomal synthesis (i.e., translation) can be manipulated to the thermodynamics of binding to a partner protein. By coupling include nonproteinogenic amino acids (20). In vitro genetic code genetic code reprogramming to deep mutational scanning, any reprogramming is particularly versatile, allowing for the in- number of amino acids can be exhaustively substituted into pep- corporation of amino acids with diverse chemical structures (21). tides, and single experiments can return all free energy changes of Flexizymes, flexible tRNA-acylation ribozymes, can load almost binding.
    [Show full text]
  • Fi 108 (Gl 0) ASPARAGINE-+ LYSINE. a HEMOGLOBIN VARIANT with LOW OXYGEN AFFINITY
    Volume 92, number 1 FEBS LETTERS August 1978 HEMOGLOBIN PRESBYTERIAN: fi 108 (Gl 0) ASPARAGINE-+ LYSINE. A HEMOGLOBIN VARIANT WITH LOW OXYGEN AFFINITY Winston F. MOO-PENN, James A. WOLFF*, Gilbert SIMON*, Marie VA(SEK*, Danny L. JUE and Mary H. JOHNSON Hematology Division, Center For Disease Control, Public Health Service, U.S. Department of Health, Education and Welfare, Atlanta, GA 30333, USA Received 10 May 1978 1. Introduction 2. Materials and methods Characterization of abnormal hemoglobin variants Electrophoresis and other techniques used in continues to provide important information on the screening for hemoglobinopathies have previously relationship between structural and functional proper- been described [ 11. Hemoglobins were separated ties of hemoglobin. Correlation of the properties by ion-exchange chromatography on DEAE- of specific variants with the three-dimensional Sephadex [2], and globin chains were isolated by structure of hemoglobin has clarified which features the Clegg procedure [3]. The abnormal /3 chain was of the molecule govern particular aspects of its prop- reduced, aminoethylated [4], and digested with erties and activity at the molecular level. trypsin [S]. The digest was subjected to peptide Hemoglobin Presbyterian is a new variant which fingerprinting [6] and to column chromatography migrates electrophoretically between Hbs A and F on on Aminex A-5 (Bio-Rad Laboratories) [7]. Pep- cellulose acetate (pH 8.4), and in the Hb C position tides were further purified on Dowex 50 X 2 [8]. on citrate agar (pH 6.0). The variant was found in a Peptides were hydrolyzed in 6 N HCl at 110°C 7-yr-old girl, her father, and paternal grandmother, for 24 h in vacua and analyzed on a Beckman all of whom have mild anemia.
    [Show full text]
  • Part 3 Metabolism of Proteins and Nucleic Acids Частина 3 Обмін Білків І Нуклеїнових Кислот
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет PART 3 METABOLISM OF PROTEINS AND NUCLEIC ACIDS Self-Study Guide for Students of General Medicine Faculty in Biochemistry ЧАСТИНА 3 ОБМІН БІЛКІВ І НУКЛЕЇНОВИХ КИСЛОТ Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів) Затверджено вченою радою ХНМУ Протокол № 1 від 26.01.2017 р. Approved by the Scientific Council of KhNMU. Protocol 1 (January 26, 2017) Харків ХНМУ 2017 Metabolism of proteins and nucleic acids : self-study guide for students of general medicine faculty in biochemistry. Part 3: / Comp. : O. Nakonechna, S. Stetsenko, L. Popova, A. Tkachenko. – Kharkiv : KhNMU, 2017. – 56 p. Compilers Nakonechna O. Stetsenko S. Popova L. Tkachenko A. Обмін білків та нуклеїнових кислот : метод. вказ. для підготовки до практ. занять з біологічної хімії (для студ. мед. ф-тів). Ч 3. / упоряд. О.А. Наконечна, С.О. Стеценко, Л.Д. Попова, А.С. Ткаченко. – Харків : ХНМУ, 2017. – 56 с. Упорядники О.А. Наконечна С.О. Стеценко Л.Д. Попова А.С. Ткаченко - 2 - SOURCES For preparing to practical classes in "Biological Chemistry" Basic Sources 1. Біологічна і біоорганічна хімія: у 2 кн.: підруч. Біологічна хімія / Ю.І. Губ- ський, І.В. Ніженковська, М.М. Корда, В.І. Жуков та ін. ; за ред. Ю.І. Губського, І.В. Ніженковської. – Кн. 2. – Київ : ВСВ «Медицина», 2016. – 544 с. 2. Губський Ю.І. Біологічна хімія : підруч. / Ю.І. Губський – Київ– Вінниця: Нова книга, 2007. – 656 с. 3. Губський Ю.І. Біологічна хімія / Губський Ю.І. – Київ–Тернопіль : Укр- медкнига, 2000. – 508 с. 4. Гонський Я.І.
    [Show full text]
  • Metabolism of Branched-Chain Amino Acids Branched-Chain Amino Acids
    Metabolism of Branched-chain Amino acids Branched-chain Amino acids Leu, Ile, Val are the branched chain and essential amino acid Branched-chain Amino acids • Valine (Val) is glucogenic amino acid • Leucine (Leu) is ketogenic aminoacid • Isoleucine (Ile) is both glucogenic and ketogenic amino acid • These amino acids serve as an alternate source of fuel for the brain especially under conditions of starvation. Metabolism of branched-chain AAs The first three metabolic reactions are common to the branched chain amino acids 1. Transamination 2. Oxidative decarboxylation 3. Dehydrogenation Branched chain amino acid degradation 3. Dehydrogenation Acyl-CoA dehydrogeanse by FAD coenzyme The degradation of the branched- chain amino acids (A) isoleucine, (B) valine, and (C) leucine. For IsoLeucine After the three steps, for Ile, 4. Enoyl-CoA hydratase 5. -hydroxyacyl-CoA dehydrogenase 6. Acetyl-CoA acetyltransferase Last 3 steps similar to fatty acid oxidation For Valine: 4. Enoyl-CoA hydratase 5. -hydroxy-isobutyryl- CoA hydrolase 6. hydroxyisobutyrate dehydrogenase 7. Methylmalonate semialdehyde dehydrogenase Last 3 steps similar to fatty acid oxidation For Leucine: 4. -methylcrotonyl-CoA carboxylase 5. -methylglutaconyl-CoA hydratase 6. HMG-CoA lyase Branched Chain Amino Acids • Isoleucine • Leucine • Valine • Important sources of Krebs intermediates under certain conditions Amino Acid as Energy Source in Skeletal Muscle • Oxidation of Branched Chain Amino Acid yield between 32- 43 ATP Comparable to complete oxidation of glucose • Amino Acid
    [Show full text]
  • Amino Acid Degradation
    BI/CH 422/622 OUTLINE: OUTLINE: Protein Degradation (Catabolism) Digestion Amino-Acid Degradation Inside of cells Protein turnover Dealing with the carbon Ubiquitin Fates of the 29 Activation-E1 Seven Families Conjugation-E2 nitrogen atoms in 20 1. ADENQ Ligation-E3 AA: Proteosome 2. RPH 9 ammonia oxidase Amino-Acid Degradation 18 transamination Ammonia 2 urea one-carbon metabolism free transamination-mechanism to know THF Urea Cycle – dealing with the nitrogen SAM 5 Steps Carbamoyl-phosphate synthetase 3. GSC Ornithine transcarbamylase PLP uses Arginino-succinate synthetase Arginino-succinase 4. MT – one carbon metabolism Arginase 5. FY – oxidase vs oxygenase Energetics Urea Bi-cycle 6. KW – Urea Cycle – dealing with the nitrogen 7. BCAA – VIL Feeding the Urea Cycle Glucose-Alanine Cycle Convergence with Fatty acid-odd chain Free Ammonia Overview Glutamine Glutamate dehydrogenase Overall energetics Amino Acid A. Concepts 1. ConvergentDegradation 2. ketogenic/glucogenic 3. Reactions seen before The SEVEN (7) Families B. Transaminase (A,D,E) / Deaminase (Q,N) Family C. Related to biosynthesis (R,P,H; C,G,S; M,T) 1.Glu Family a. Introduce oxidases/oxygenases b. Introduce one-carbon metabolism (1C) 2.Pyruvate Family a. PLP reactions 3. a-Ketobutyric Family (M,T) a. 1-C metabolism D. Dedicated 1. Aromatic Family (F,Y) a. oxidases/oxygenases 2. a-Ketoadipic Family (K,W) 3. Branched-chain Family (V,I,L) E. Convergence with Fatty Acids: propionyl-CoA 29 N 1 Amino Acid Degradation • Intermediates of the central metabolic pathway • Some amino acids result in more than one intermediate. • Ketogenic amino acids can be converted to ketone bodies.
    [Show full text]