Evidence for a Catabolic Role of Glucagon During an Amino Acid Load

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for a Catabolic Role of Glucagon During an Amino Acid Load Evidence for a catabolic role of glucagon during an amino acid load. M R Charlton, … , D B Adey, K S Nair J Clin Invest. 1996;98(1):90-99. https://doi.org/10.1172/JCI118782. Research Article Despite the strong association between protein catabolic conditions and hyperglucagonemia, and enhanced glucagon secretion by amino acids (AA), glucagon's effects on protein metabolism remain less clear than on glucose metabolism. To clearly define glucagon's catabolic effect on protein metabolism during AA load, we studied the effects of glucagon on circulating AA and protein dynamics in six healthy subjects. Five protocols were performed in each subject using somatostatin to inhibit the secretion of insulin, glucagon, and growth hormone (GH) and selectively replacing these hormones in different protocols. Total AA concentration was the highest when glucagon, insulin, and GH were low. Selective increase of glucagon levels prevented this increment in AA. Addition of high levels of insulin and GH to high glucagon had no effect on total AA levels, although branched chain AA levels declined. Glucagon mostly decreased glucogenic AA and enhanced glucose production. Endogenous leucine flux, reflecting proteolysis, decreased while leucine oxidation increased in protocols where AA were infused and these changes were unaffected by the hormones. Nonoxidative leucine flux reflecting protein synthesis was stimulated by AA, but high glucagon attenuated this effect. Addition of GH and insulin partially reversed the inhibitory effect of glucagon on protein synthesis. We conclude that glucagon is the pivotal hormone in amino acid disposal during an AA load and, by reducing the availability of AA, […] Find the latest version: https://jci.me/118782/pdf Evidence for a Catabolic Role of Glucagon during an Amino Acid Load Michael R. Charlton, Deborah B. Adey, and K. Sreekumaran Nair Endocrine Research Unit, Mayo Clinic and Foundation, Introduction Rochester, Minnesota 55905; and University of Vermont, Burlington, Glucagon has a well-defined role in glucose homeostasis. In Vermont 05405 contrast, glucagon’s effects on amino acid (AA)1 and protein metabolism are poorly defined. However, there is consider- Abstract able indirect evidence to suggest a catabolic role for glucagon in protein metabolism in humans. Hyperglucagonemia occurs Despite the strong association between protein catabolic in a variety of catabolic conditions. These include trauma, conditions and hyperglucagonemia, and enhanced glucagon burns, sepsis, cirrhosis, glucagonoma, the postoperative state, secretion by amino acids (AA), glucagon’s effects on protein and poorly controlled type I diabetes (1–5). In patients with metabolism remain less clear than on glucose metabolism. glucagonoma, in which glucose metabolism is only minimally To clearly define glucagon’s catabolic effect on protein me- disturbed, there is marked muscle wasting, skin atrophy, and tabolism during AA load, we studied the effects of glucagon hypoaminocidemia (6). In these patients there is a reduction of on circulating AA and protein dynamics in six healthy sub- free intracellular branched-chain amino acids (BCAA) in liver jects. Five protocols were performed in each subject using and muscle (7). It has been postulated that accelerated oxida- somatostatin to inhibit the secretion of insulin, glucagon, tion of BCAA is a cause of their decreased intracellular con- and growth hormone (GH) and selectively replacing these centrations. We have demonstrated previously that high gluca- hormones in different protocols. Total AA concentration gon levels, during insulin deficiency, are associated with an was the highest when glucagon, insulin, and GH were low. increase in leucine oxidation in healthy human volunteers (8). Selective increase of glucagon levels prevented this incre- Given that leucine is not directly involved in gluconeogenesis, ment in AA. Addition of high levels of insulin and GH to this accelerated oxidation of leucine in the setting of hyperglu- high glucagon had no effect on total AA levels, although cagonemia is an especially important finding. In addition, a de- branched chain AA levels declined. Glucagon mostly de- cline in the elevation of glucogenic amino acids that is seen in creased glucogenic AA and enhanced glucose production. pancreatectomized patients occurs with glucagon replacement Endogenous leucine flux, reflecting proteolysis, decreased (9). A catabolic role for glucagon, mainly to incoming protein, while leucine oxidation increased in protocols where AA has been proposed (10). were infused and these changes were unaffected by the hor- In normal physiology, protein meals, with their attendant mones. Nonoxidative leucine flux reflecting protein synthe- amino acid loads, stimulate glucagon, growth hormone, and in- sis was stimulated by AA, but high glucagon attenuated this sulin secretion. It is believed that the purpose of the amino- effect. Addition of GH and insulin partially reversed the in- genic glucagon release is, by stimulating hepatic glucose pro- hibitory effect of glucagon on protein synthesis. We con- duction, to avert hypoglycemia resulting from the concomitant clude that glucagon is the pivotal hormone in amino acid insulin secretion (11, 12). It has been proposed that glucagon is disposal during an AA load and, by reducing the availability involved in the disposal of amino acids after a protein meal. of AA, glucagon inhibits protein synthesis stimulated by Furthermore, glucagon has been reported to increase the dis- AA. These data provide further support for a catabolic role posal of amino acids during mixed amino acids infusions (13). of glucagon at physiological concentrations. (J. Clin. Invest. Direct evidence for and the mechanism of this reported effect 1996. 98:90–99.) Key words: glucagon • protein synthesis • have not yet been elucidated. amino acids • leucine kinetics • glucose The current studies were designed to test the hypotheses that glucagon plays a critical role in the disposal of amino acids during an amino acid load and to determine the mechanism of this AA disposal by performing simultaneous measurement of amino acid concentrations, whole body protein turnover, and glucose kinetics. Address correspondence to K. Sreekumaran Nair, M.D., Ph.D., Mayo Clinic, 200 First Street SW, Endocrine Research Unit, Roches- Methods ter, MN 55905. Phone: 507-255-6515; FAX: 507-255-4828; E-mail: [email protected] Subjects Received for publication 13 February 1996 and accepted in revised We studied six healthy adult volunteers (three male and three fe- form 12 April 1996. male). Age was 22.4 yr (19–25 range), weight 67.8 kg (SEMϮ5.92 kg), and height 165.1 (SEMϮ4.52 cm). All volunteers were within 10% of 1. Abbreviations used in this paper: AA, amino acids; BCAA, ideal body weight for height and were screened by detailed history, branched-chain amino acids; I, insulin; KIC, ketoisocaproic acid; physical examination, and biochemical profile (urine and blood) for SRIH, somatostatin. any overt illness. Subjects on any regular medications were excluded. Studies involving women volunteers were always carried out during The Journal of Clinical Investigation the luteal phase of the menstrual cycle. Volume 98, Number 1, July 1996, 90–99 90 Charlton et al. ketoisocaproic acid (KIC) values obtained from arterial blood (15). A second 18-gauge catheter was placed in the contralateral forearm for infusions. Once baseline blood and expired air samples were obtained, bolus doses of 13C-sodium bicarbonate (1.5 ␮mol/kg) and l-[1-13C]leu- cine (7.5 ␮mol/kg) were given to prime the respective pools to achieve early isotopic plateaus (16, 17). After isotope boluses had been administered and continuous infusion of l-[1-13C]leucine at a rate of 7.5 ␮mol/kg/h had begun, an infusion of normal saline at a rate of 1.5 ml/kg/h was initiated for the first 2 h of each study. After 2 h of each study, one of the following five infusion protocols was begun and continued for 4 h until completion of the study. A schema for the five protocols is shown in Fig. 1. Protocol I: Mixed amino acids infusion (AA). Infusion of mixed amino acids (Aminosyn 15%; Abbott Laboratories, Chicago, IL) was started at a rate of 1.5 ml/kg/h. This proprietary mixture of amino ac- ids contained the following amino acids in the concentrations shown (mg/100 ml): isoleucine 990, leucine 1,500, lysine 1,575, methionine 258, phenylalanine 447, threonine 600, tryptophan 300, valine 750, alanine 1,490, arginine 1,527, histidine 450, proline 1,083, serine 795, tyrosine 405, glycine 750, glutamic acid 1,107, aspartic acid 1,050. No cysteine, glutamine, asparagine, or taurine was present in the prepa- ration. In addition, sodium 62.7 meq/liter and acetate 107.6 meq/liter were present. Protocol II: AA ϩ somatostatin (SRIH) ϩ basal replacement levels Figure 1. AA’s, mixed amino acid infusion at a rate of 1.5 ml/kg/h of growth hormone, insulin (I), and glucagon. This comprised mixed (Aminosyn 15%); SRIH, 500 ␮g/h; GH, human growth hormone (re- amino acids at a rate of 1.5 ml/kg/h, as above. In addition, concomi- placement dose ϭ 0.5 ␮g/kg/h, high dose ϭ 1.0 ␮g/kg/h); I, regular in- tant infusions of SRIH (Stilamin; Serono Laboratories, Randolph, sulin (replacement dose ϭ 0.10 mU/kg/min, high dose ϭ 0.4 mU/kg/ MA) at a rate of 500 ␮g/h, recombinant human growth hormone (Gen- min); GGON, glucagon (replacement dose ϭ 1.0 ng/kg/min, high entech, South San Francisco, CA) at a rate of 0.5 ␮g/kg/h, insulin at a dose ϭ 6.0 ng/kg/min). Indirect calorimetry was obtained between rate of 0.10 mU/kg/min, and glucagon at a rate of 1.0 ng/kg/min. 300 and 330 min. Normal saline was infused at a rate of 1.5 ml/kg/h Protocol III: AA ϩ SRIH ϩ basal replacement levels of growth for the first 2 h of all five protocols.
Recommended publications
  • Amino Acid & Protein
    Amino Acid & Protein DR. MD. MAHBUBUR RAHMAN MBBS, M. Phil . MSc.(Biotechnology) DEPT. OF BIOCHEMISTRY RAJSHAHI MEDICAL COLLEGE At the end of the session Student will be able to • Definition of amino acid, formation of peptide bond & its property • Biomedical importance of AA • Protein cycle At the end of the session Student will be able to • Classification of AA, • Isoelectric pH and 2D electrophoresis • Protein – definition, classification & structure, • purification of protein Biomedical Importance • Monomeric unit of Protein/ Polypeptide • Amino acid and their derivatives participate in diverse cellular function • Further discussed in functional classification Biomedical Importance Peptide performs prominent role in neuroendocrine system eg. Hormone , Neurotransmitter, Transporter Human lack of capability to synthesize 10 of the 20 common A-Acid (most of them α amino acid) Diversity of Protein function Enzyme and hormone regulate metabolism muscle movement by protein (contractile protein) Collagen fiber forms bone Ig fights against infectious Bacteria & viruses Bacitracin and gramicidin act a antibiotic Bleomycin act anticancer agent Amino Acid Are organic acid having both carboxyl group and amino group attach to same carbon atom. Peptide Bond In protein, amino acids are joined covalently By peptide Bond which are amide linkage Between the α-carboxyl group of one amino acid and the α- amino group of another Characteristic of peptide bond Net charge of amino acid at neutral pH • At physiologic pH all amino acid have a negatively charged group (- COO-) and positively charged group ( - NH3).----- is called amphoteric( ampholyte) Isoelectric pH The pH at which amino bears no net charge. The pH at which amino acid are electrically neutral that is the sum of positive charge equals the sum of negative charge Optical properties of amino acid α carbon of each amino acid are attached to four different group there fore amino acid have optical isomerism.
    [Show full text]
  • Blood Metabolite Signature of Metabolic Syndrome Implicates
    International Journal of Molecular Sciences Article Blood Metabolite Signature of Metabolic Syndrome Implicates Alterations in Amino Acid Metabolism: Findings from the Baltimore Longitudinal Study of Aging (BLSA) and the Tsuruoka Metabolomics Cohort Study (TMCS) Jackson A. Roberts 1 , Vijay R. Varma 1, Chiung-Wei Huang 2, Yang An 2, Anup Oommen 3 , Toshiko Tanaka 4 , Luigi Ferrucci 4, Palchamy Elango 4, Toru Takebayashi 5, Sei Harada 5 , Miho Iida 5 and Madhav Thambisetty 1,* 1 Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; [email protected] (J.A.R.); [email protected] (V.R.V.) 2 Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; [email protected] (C.-W.H.); [email protected] (Y.A.) 3 Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway H91-TK33, Ireland; [email protected] 4 Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; [email protected] (T.T.); [email protected] (L.F.); [email protected] (P.E.) 5 Department of Preventive Medicine and Public Health, Keio University, Tokyo 160-8282, Japan; [email protected] (T.T.); [email protected] (S.H.); [email protected] (M.I.) * Correspondence: [email protected]; Tel.: +1-(410)-558-8572; Fax: +1-(410)-558-8302 Received: 19 December 2019; Accepted: 10 February 2020; Published: 13 February 2020 Abstract: Rapid lifestyle and dietary changes have contributed to a rise in the global prevalence of metabolic syndrome (MetS), which presents a potential healthcare crisis, owing to its association with an increased burden of multiple cardiovascular and neurological diseases.
    [Show full text]
  • Biochemistry - Problem Drill 20: Amino Acid Metabolism
    Biochemistry - Problem Drill 20: Amino Acid Metabolism Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 1. ________ is the reaction between an amino acid and an alpha keto acid. (A) Ketogenic (B) Aminogenic (C) Transamination Question (D) Carboxylation (E) Glucogenic A. Incorrect! No, consider the amino acid and keto acid structure when answering this question. B. Incorrect! No, consider the amino acid and keto acid structure when answering this question. C. Correct! Yes, Transamination is the reaction between an amino acid and an alpha keto acid. Feedback D. Incorrect! No, consider the amino acid and keto acid structure when answering this question. E. Incorrect! No, consider the amino acid and keto acid structure when answering this question. Transamination is the reaction between an amino acid and an alpha keto acid. The correct answer is (C). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 2 of 10 Instructions: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 2. Lysine and leucine are examples of what? (A) Ketogenic amino acids. (B) Nonessential amino acids. (C) Non-ketogenic amino acids. (D) Glucogenic amino acids. Question (E) None of the above A. Correct! Yes, lysine and leucine are examples of ketogenic amino acids. B. Incorrect No, this is not a correct response.
    [Show full text]
  • Part 3 Metabolism of Proteins and Nucleic Acids Частина 3 Обмін Білків І Нуклеїнових Кислот
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет PART 3 METABOLISM OF PROTEINS AND NUCLEIC ACIDS Self-Study Guide for Students of General Medicine Faculty in Biochemistry ЧАСТИНА 3 ОБМІН БІЛКІВ І НУКЛЕЇНОВИХ КИСЛОТ Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів) Затверджено вченою радою ХНМУ Протокол № 1 від 26.01.2017 р. Approved by the Scientific Council of KhNMU. Protocol 1 (January 26, 2017) Харків ХНМУ 2017 Metabolism of proteins and nucleic acids : self-study guide for students of general medicine faculty in biochemistry. Part 3: / Comp. : O. Nakonechna, S. Stetsenko, L. Popova, A. Tkachenko. – Kharkiv : KhNMU, 2017. – 56 p. Compilers Nakonechna O. Stetsenko S. Popova L. Tkachenko A. Обмін білків та нуклеїнових кислот : метод. вказ. для підготовки до практ. занять з біологічної хімії (для студ. мед. ф-тів). Ч 3. / упоряд. О.А. Наконечна, С.О. Стеценко, Л.Д. Попова, А.С. Ткаченко. – Харків : ХНМУ, 2017. – 56 с. Упорядники О.А. Наконечна С.О. Стеценко Л.Д. Попова А.С. Ткаченко - 2 - SOURCES For preparing to practical classes in "Biological Chemistry" Basic Sources 1. Біологічна і біоорганічна хімія: у 2 кн.: підруч. Біологічна хімія / Ю.І. Губ- ський, І.В. Ніженковська, М.М. Корда, В.І. Жуков та ін. ; за ред. Ю.І. Губського, І.В. Ніженковської. – Кн. 2. – Київ : ВСВ «Медицина», 2016. – 544 с. 2. Губський Ю.І. Біологічна хімія : підруч. / Ю.І. Губський – Київ– Вінниця: Нова книга, 2007. – 656 с. 3. Губський Ю.І. Біологічна хімія / Губський Ю.І. – Київ–Тернопіль : Укр- медкнига, 2000. – 508 с. 4. Гонський Я.І.
    [Show full text]
  • Metabolism of Branched-Chain Amino Acids Branched-Chain Amino Acids
    Metabolism of Branched-chain Amino acids Branched-chain Amino acids Leu, Ile, Val are the branched chain and essential amino acid Branched-chain Amino acids • Valine (Val) is glucogenic amino acid • Leucine (Leu) is ketogenic aminoacid • Isoleucine (Ile) is both glucogenic and ketogenic amino acid • These amino acids serve as an alternate source of fuel for the brain especially under conditions of starvation. Metabolism of branched-chain AAs The first three metabolic reactions are common to the branched chain amino acids 1. Transamination 2. Oxidative decarboxylation 3. Dehydrogenation Branched chain amino acid degradation 3. Dehydrogenation Acyl-CoA dehydrogeanse by FAD coenzyme The degradation of the branched- chain amino acids (A) isoleucine, (B) valine, and (C) leucine. For IsoLeucine After the three steps, for Ile, 4. Enoyl-CoA hydratase 5. -hydroxyacyl-CoA dehydrogenase 6. Acetyl-CoA acetyltransferase Last 3 steps similar to fatty acid oxidation For Valine: 4. Enoyl-CoA hydratase 5. -hydroxy-isobutyryl- CoA hydrolase 6. hydroxyisobutyrate dehydrogenase 7. Methylmalonate semialdehyde dehydrogenase Last 3 steps similar to fatty acid oxidation For Leucine: 4. -methylcrotonyl-CoA carboxylase 5. -methylglutaconyl-CoA hydratase 6. HMG-CoA lyase Branched Chain Amino Acids • Isoleucine • Leucine • Valine • Important sources of Krebs intermediates under certain conditions Amino Acid as Energy Source in Skeletal Muscle • Oxidation of Branched Chain Amino Acid yield between 32- 43 ATP Comparable to complete oxidation of glucose • Amino Acid
    [Show full text]
  • M O N T I F F, I
    MONTIFF INC Don Tyson’s Advanced Nutraceuticals GLUCA-BALANCE An amino acid formula high in glycogenic amino acids, which the body converts into glucose to help balance blood sugar levels that are low with hypoglycemia. Also recommended for other biochemical imbalances requiring glycogenic amino acids. Each capsule contains14 amino acids with a total of 700mg.of the following: L-Alanine, L-Lysine HCL, L-Leucine, Glycine, L-Valine, L-Isoleucine, L-Threonine, L-Glutamine, L-Arginine HCL, L-Histidine, L- Phenylalanine, L-Tyrosine, L-Methionine, L-Proline, plus precursor Ornithine-α-Ketoglutarate, and Di- peptides L-Alanyl-L-Glutamine, and L-Glycyl-L-Glutamine. RECOMMENDED FOR: • Individuals with hypoglycemia. • Stabilizing low blood glucose levels and helping to eliminate mid morning and mid afternoon fatigue. • Aids in mental alertness and memory function. • May be helpful in alcoholic management in conjunction with additional L-Glutamine. • Helping to eliminate the craving for sweets. • For those whose plasma or urine profiles indicate an imbalance of these amino acids. WHAT ARE GLYCOGENIC AMINO ACIDS? These are the amino acids that can be converted by the body into glucose to produce energy. The brain requires 125-150g or 75% of the available glucose in the body, for its energy source, to maintain normal brain metabolism. While many amino acids can be converted into glucose, Alanine and Glutamine are the primary glycogenic amino acids. Because amino acids are converted into glucose at different rates, a mixture of glycogenic amino acids permits the blood glucose levels to maintain over a longer period of time. Gluconeogenesis is the process of converting amino acids, lactate and glycerol into glucose for the brain.
    [Show full text]
  • Plasma Amino Acid Abnormalities in Calves with Diarrhea
    NOTE Internal Medicine Plasma amino acid abnormalities in calves with diarrhea Kenji TSUKANO1,2) and Kazuyuki SUZUKI2)* 1)Minami-Hokkaido Agricultural Mutual Relief Association, 74-2 Higashimae, Hokuto, Hokkaido 041-1214, Japan 2)School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan ABSTRACT. Since few studies have been published investigating plasma amino acid J. Vet. Med. Sci. abnormalities in calves with illnesses, the aim of this study was to examine plasma amino acid 81(4): 517–521, 2019 abnormalities in calves with diarrhea. Forty-three Holstein calves aged 10.9 ± 5.6 days old were used for this study. Thirty-one of the 43 calves exhibited clinical signs of diarrhea without severe doi: 10.1292/jvms.18-0645 acidemia. The other 12 healthy calves were used as the control. Concentrations of plasma essential amino acids, non-essential amino acids, branched-chain amino acids, glucogenic amino acids, and ketogenic amino acids in diarrheic calves with hypoaminoacidemia were significantly lower than Received: 1 November 2018 those in healthy calves. No significant differences were observed between diarrheic calves with Accepted: 28 January 2019 normoaminoacidemia and healthy calves when looking at these parameters. Published online in J-STAGE: 12 February 2019 KEY WORDS: amino acid, calf, diarrhea, hypoaminoacidemia Diarrhea in calves leads to an overall loss not only of electrolytes and body fluids, but it also decreases the absorption of carbohydrates, lipids, and amino acids [5]. As a result, calves exhibit dehydration, electrolyte imbalance, metabolic acidosis, and negative energy balance (NEB). Metabolic acidosis stimulates proteolysis and increases the activity of branched-chain ketoacid dehydrogenase (BCKDH), and increased BCKDH activity accelerates the oxidation of amino acids.
    [Show full text]
  • The Relationship Between Branched-Chain Amino Acids and Insulin Resistance
    Mini Review Curr Res Diabetes Obes J Volume 12 Issue 1 - September 2019 Copyright © All rights are reserved by Gülin Öztürk Özkan DOI: 10.19080/CRDOJ.2019.12.555830 The Relationship Between Branched-Chain Amino Acids and Insulin Resistance Gülin Öztürk Özkan* Nutrition and Dietetics Department, İstanbul Medeniyet University, Istanbul Submission: August 05, 2019; Published: September 18, 2019 *Corresponding author: Gülin Öztürk Özkan, Health Sciences Faculty, Nutrition and Dietetics Department, İstanbul Medeniyet University, Atalar Mah Şehit Hakan Kurban, Cad. No: 47 34862, Kartal, Istanbul Abstract Obesity is a health problem worldwide and plays a role in the development of insulin resistance. In obese people, there occurs an increase in the level of branched-chain amino acids. Leucine, isoleucine and valine, which are among branched-chain amino acids, are essential amino acids. Branched-chain amino acids may create positive effects on body weight, muscle protein synthesis, and glucose homeostasis regulation. Despite the positive effects of branched-chain amino acids on metabolic health, an increase in their level in the body is associated with the increase in insulin resistance and type 2 diabetes risk. The degradation of branched- chain amino acid catabolism in the adipose tissue in obese individuals may contribute to an increase in the level of branched-chain amino acids in the case of obesity and insulin resistance. Branched-chain amino acids activate mammalian target of rapamycin complex 1 (mTORC1) and thus contribute to the development of insulin resistance. Furthermore, the degradation of branched- chain amino acid catabolism in obese individuals leads to an increase in the amount of toxic metabolites and causes beta cell dysfunction, which results in insulin resistance and glucose intolerance.
    [Show full text]
  • Ketogenic Essential Amino Acids Modulate Lipid Synthetic Pathways and Prevent Hepatic Steatosis in Mice
    Ketogenic Essential Amino Acids Modulate Lipid Synthetic Pathways and Prevent Hepatic Steatosis in Mice Yasushi Noguchi1,2., Natsumi Nishikata2., Nahoko Shikata2., Yoshiko Kimura2, Jose O. Aleman1, Jamey D. Young1, Naoto Koyama2, Joanne K. Kelleher1,3, Michio Takahashi2, Gregory Stephanopoulos1* 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 Research Institute for Health Fundamentals, Ajinomoto Co. Inc., Kawasaki, Kanagawa, Japan, 3 Shriners Burn Hospital, Massachusetts General Hospital, Boston, Massachusetts, United States of America Abstract Background: Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated. Methodology/Principal Findings: We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non- EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet lowered postprandial insulin secretion and improved glucosetolerance,inassociationwithrestoredexpressionof muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids into hepatic ceramides.
    [Show full text]
  • Protein Metabolism & Protein Denaturation
    Protein metabolism & Protein denaturation PROTEINS • Proteins are polymers of amino acids which play a crucial role in biological processes. • Proteins have many important biological functions- Enzymes biological catalysts Antibodies defence proteins Transport proteins Regulatory proteins Structural proteins DIGESTION OF PROTEINS • The dietary proteins are denatured on cooking and therefore more easily to digested by a digestive enzymes. • All these enzymes are hydrolases in nature. • Proteolytic enzymes are secreted as inactive zymogens which are converted to their active form in the intestinal lumen. The proteolytic enzymes include: • Endopeptidases: They act on peptide bond inside the protein molecule, so that the protein becomes successively smaller and smaller units. This group includes pepsin, trypsin, chymotrypsin, and elastase. Exopeptidases: • This group acts at the peptide bond only at the end region of the chain. This includes carboxy peptidase acting on the peptide only at the carboxyl terminal end on the chain and amino peptidase, which acts on the peptide bond only at the amino terminal end of the chain. Absorption of amino acids The absorption of amino acids occurs mainly in the • small intestine. • It is an energy requiring process. • These transport systems are carrier mediated systems Over view of protein metabolism • The amino acids undergo certain common reactions like transamination followed by deamination for the liberation of ammonia. the amino group of the amino acids is’ utilized for the formation of urea which is an excretory end product of protein metabolism • The carbon skeleton of the amino acids is first converted to keto acids (by transamination) which meet one or more of the following fates.
    [Show full text]
  • Chapter 34: Carbohydrate Metabolism Multiple Choice 1. the Synthesis Of
    Chapter 34: Carbohydrate Metabolism Multiple Choice 1. The synthesis of glycogen from glucose is known as: a) glycogenolysis b) gluconeogenesis c) glycogenesis d) the Embden-Myerhof pathway 2. When a muscle depletes its supply of ATP, the next molecule used as an energy source is: a) pyruvate b) muscle glycogen c) blood glucose d) GTP 3. Which of the following does not occur when blood reaches the lungs? a) CO2 is removed from the blood b) Blood acidity decreases c) Lactate is oxidized d) More O2 binds to hemoglobin 4. McArdle disease is a condition in which: a) the body loses the ability to produce insulin. b) the liver loses the ability to export glucose. c) tissues lose the ability to respond to insulin. d) muscles lose the ability to break down glycogen. 5. The Embden-Myerhof pathway produces ATP by: a) anabolism b) substrate-level phosphorylation c) reducing carbon dioxide d) oxidative phosphorylation 6. In yeast, pyruvate is converted to ethanol in order to: a) recycle NADH to NAD+ b) directly produce ATP c) produce oxygen gas d) none of these 7. The single oxidation-reduction reaction in the Embden-Myerhof pathway yields the following product: a) glyceraldehyde-3-phosphate b) phosphoenolpyruvate c) 1,3-bisphosphoglycerate d) pyruvate 8. Glycolysis can be termed as: a) anaerobic and catabolic b) aerobic and anabolic c) aerobic and catabolic d) anaerobic and anabolic 9. For each glucose molecule metabolized in the Embden-Myerhof pathway there is a net production of: a) 4 ATP b) 8 ATP c) 6 ATP d) 2 ATP 10.
    [Show full text]
  • Part 3 Metabolism of Proteins and Nucleic Acids Частина 3 Обмін Білків І Нуклеїнових Кислот
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет PART 3 METABOLISM OF PROTEINS AND NUCLEIC ACIDS Self-Study Guide for Students of General Medicine Faculty in Biochemistry ЧАСТИНА 3 ОБМІН БІЛКІВ І НУКЛЕЇНОВИХ КИСЛОТ Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів) Затверджено вченою радою ХНМУ Протокол № 1 від 26.01.2017 р. Approved by the Scientific Council of KhNMU. Protocol 1 (January 26, 2017) Харків ХНМУ 2017 Metabolism of proteins and nucleic acids : self-study guide for students of general medicine faculty in biochemistry. Part 3: / Comp. : O. Nakonechna, S. Stetsenko, L. Popova, A. Tkachenko. – Kharkiv : KhNMU, 2017. – 56 p. Compilers Nakonechna O. Stetsenko S. Popova L. Tkachenko A. Обмін білків та нуклеїнових кислот : метод. вказ. для підготовки до практ. занять з біологічної хімії (для студ. мед. ф-тів). Ч 3. / упоряд. О.А. Наконечна, С.О. Стеценко, Л.Д. Попова, А.С. Ткаченко. – Харків : ХНМУ, 2017. – 56 с. Упорядники О.А. Наконечна С.О. Стеценко Л.Д. Попова А.С. Ткаченко - 2 - SOURCES For preparing to practical classes in "Biological Chemistry" Basic Sources 1. Біологічна і біоорганічна хімія: у 2 кн.: підруч. Біологічна хімія / Ю.І. Губ- ський, І.В. Ніженковська, М.М. Корда, В.І. Жуков та ін. ; за ред. Ю.І. Губського, І.В. Ніженковської. – Кн. 2. – Київ : ВСВ «Медицина», 2016. – 544 с. 2. Губський Ю.І. Біологічна хімія : підруч. / Ю.І. Губський – Київ– Вінниця: Нова книга, 2007. – 656 с. 3. Губський Ю.І. Біологічна хімія / Губський Ю.І. – Київ–Тернопіль : Укр- медкнига, 2000. – 508 с. 4. Гонський Я.І.
    [Show full text]