Protein Metabolism & Protein Denaturation

Total Page:16

File Type:pdf, Size:1020Kb

Protein Metabolism & Protein Denaturation Protein metabolism & Protein denaturation PROTEINS • Proteins are polymers of amino acids which play a crucial role in biological processes. • Proteins have many important biological functions- Enzymes biological catalysts Antibodies defence proteins Transport proteins Regulatory proteins Structural proteins DIGESTION OF PROTEINS • The dietary proteins are denatured on cooking and therefore more easily to digested by a digestive enzymes. • All these enzymes are hydrolases in nature. • Proteolytic enzymes are secreted as inactive zymogens which are converted to their active form in the intestinal lumen. The proteolytic enzymes include: • Endopeptidases: They act on peptide bond inside the protein molecule, so that the protein becomes successively smaller and smaller units. This group includes pepsin, trypsin, chymotrypsin, and elastase. Exopeptidases: • This group acts at the peptide bond only at the end region of the chain. This includes carboxy peptidase acting on the peptide only at the carboxyl terminal end on the chain and amino peptidase, which acts on the peptide bond only at the amino terminal end of the chain. Absorption of amino acids The absorption of amino acids occurs mainly in the • small intestine. • It is an energy requiring process. • These transport systems are carrier mediated systems Over view of protein metabolism • The amino acids undergo certain common reactions like transamination followed by deamination for the liberation of ammonia. the amino group of the amino acids is’ utilized for the formation of urea which is an excretory end product of protein metabolism • The carbon skeleton of the amino acids is first converted to keto acids (by transamination) which meet one or more of the following fates. Utilized to generate energy Used for the synthesis of glucose Diverted for the formation of fat or ketone bodies. involved in the production of non-essential amino acids. General metabolism of amino acids: • Anabolic pathway • Catabolic pathway • Dietary proteins and body proteins are broken down to amino acids. This is called catabolic reactions • In transamination reaction, amino group of amino acid is removed to produce the carbon skeleton (keto acid). The amino group is excreted as urea . The carbon skeleton is used for synthesis of nonessential amino acids. It is also used for gluconeogenesis or for complete oxidation. Amino acids are used for synthesis of body proteins; this is anabolic reaction. Amino acid metabolism The break down of amino acid can incorporate three stage • Deamination – removal amino group which is either converted ammonia or transferred to become amino group of a glutamic acid molecule • Conversion of amino acid carbon skeleton (the alfa keto acid produced by the deamination) to citric acid cycle intermediate • Incorporation of ammonia to urea Transamination • transfer of an amino (- NH2) group from an amino acid to a keto acid is known as transamination. • This process involves the interconversion of a pair of amino acids and a pair of keto acids, catalyzed by a group of enzymes called transaminases (recently, aminotransferase. The predominant amino acid acceptor is the alfa ketoglutarate produced glutamic acid as the new amino acid Specific transaminases exist for each pair of amino and keto acids. However, only two namely, aspartate transaminase and alanine transaminase-make a significant contribution for transamination • Transamination is very important for the redistribution of amino groups and production of non’ essential amino acids, as per the requirement of the cell. lt involves both catabolism (degradation) and anabolism (synthesis) of amino acid • Transamination diverts the excess amino acids towards energy generation. • Each transaminase has specific amino acid substrate and most accept only alfa ketoglutarate or oxaloacetate as the keto acid substrate • Only glutamic acid and or aspartic acid is the major amino acid product of transamination • Glutamic acid and aspartic acid are converted by the reaction Transamination reaction does not result in any net deamination reaction Deamination • The removal of amino group from the amino acids as NH3 is deamination. • On the other hand, deamination results in the liberation of ammonia for urea synthesis. Simultaneously, the carbon skeleton of amino acids is converted to keto acids. Deamination may be either oxidative or non- oxidative. Oxidative deamination • Oxidative deamination is the liberation of free ammonia from the amino group of amino acids coupled with oxidation. This takes place mostly in liver and kidney. The purpose of oxidative deamination is to provide NH3 for urea synthesis and c-keto acids for a variety of reactions, including energy generation • Role of glutamate dehydrogenase : In the process of transamination, the amino groups of most amino acids are transferred to a- ketoglutarate to produce glutamate. • Thus, glutamate serves as a’ collection centre' for amino groups in the biological system. Glutamate rapidly undergoes oxidative deamination, catalysed by glutamate dehydrogenase (GDH) to liberate ammonia Non oxidative deamination • Some of the amino acids can be deaminated to liberate NH3 without undergoing oxidation • Amino acid dehydrases : Serine, threonine and homoserine are the hydroxy amino acids. They undergo non-oxidative deamination catalysed by pyridoxal phosphate -dependent dehydrases (dehydratase Protein turn over – simultaneously protein synthesis and protein degradation is is known as protein turn over DECARBOXYLATION REACTION Removal of carboxylic group of amino acid with the formation of amines is called decarboxylation reaction Enzyme used for the reaction- decarboxylase pyridoxal phosphate example - Synthesis of dopamine and alfa gama amino butyric acid METABOLIC FATE OF AMINO ACID • Glucogenic – mostly glucogenic amino acid • Ketogenic- lysine and leucine • Glucogenic and ketogenic amino acid- phenyl alanine, tryptophan, isoleucine, tyrosine Functional properties of amino acid Optical isomerism – all amino acid except glycine (D and L isomerism) Acid and base or charge properties – amino acid act as acid and base (Cation at low Ph and anion at high Ph) Buffer action of amino acid- ampholyte act as buffer UV light absorption of amino acid - aromatic amino acid absorbed UV light Protein Denaturation MECHANISM OF PROTEIN DENATURATION CAUSES OF PROTEIN DENATURATION CHEMICAL AGENT detergents Acids and alkali Organic solvents Salts and heavy metals Alter Ph DENATURATION OF EGG PROTEINS .
Recommended publications
  • Amino Acid & Protein
    Amino Acid & Protein DR. MD. MAHBUBUR RAHMAN MBBS, M. Phil . MSc.(Biotechnology) DEPT. OF BIOCHEMISTRY RAJSHAHI MEDICAL COLLEGE At the end of the session Student will be able to • Definition of amino acid, formation of peptide bond & its property • Biomedical importance of AA • Protein cycle At the end of the session Student will be able to • Classification of AA, • Isoelectric pH and 2D electrophoresis • Protein – definition, classification & structure, • purification of protein Biomedical Importance • Monomeric unit of Protein/ Polypeptide • Amino acid and their derivatives participate in diverse cellular function • Further discussed in functional classification Biomedical Importance Peptide performs prominent role in neuroendocrine system eg. Hormone , Neurotransmitter, Transporter Human lack of capability to synthesize 10 of the 20 common A-Acid (most of them α amino acid) Diversity of Protein function Enzyme and hormone regulate metabolism muscle movement by protein (contractile protein) Collagen fiber forms bone Ig fights against infectious Bacteria & viruses Bacitracin and gramicidin act a antibiotic Bleomycin act anticancer agent Amino Acid Are organic acid having both carboxyl group and amino group attach to same carbon atom. Peptide Bond In protein, amino acids are joined covalently By peptide Bond which are amide linkage Between the α-carboxyl group of one amino acid and the α- amino group of another Characteristic of peptide bond Net charge of amino acid at neutral pH • At physiologic pH all amino acid have a negatively charged group (- COO-) and positively charged group ( - NH3).----- is called amphoteric( ampholyte) Isoelectric pH The pH at which amino bears no net charge. The pH at which amino acid are electrically neutral that is the sum of positive charge equals the sum of negative charge Optical properties of amino acid α carbon of each amino acid are attached to four different group there fore amino acid have optical isomerism.
    [Show full text]
  • Evidence for a Catabolic Role of Glucagon During an Amino Acid Load
    Evidence for a catabolic role of glucagon during an amino acid load. M R Charlton, … , D B Adey, K S Nair J Clin Invest. 1996;98(1):90-99. https://doi.org/10.1172/JCI118782. Research Article Despite the strong association between protein catabolic conditions and hyperglucagonemia, and enhanced glucagon secretion by amino acids (AA), glucagon's effects on protein metabolism remain less clear than on glucose metabolism. To clearly define glucagon's catabolic effect on protein metabolism during AA load, we studied the effects of glucagon on circulating AA and protein dynamics in six healthy subjects. Five protocols were performed in each subject using somatostatin to inhibit the secretion of insulin, glucagon, and growth hormone (GH) and selectively replacing these hormones in different protocols. Total AA concentration was the highest when glucagon, insulin, and GH were low. Selective increase of glucagon levels prevented this increment in AA. Addition of high levels of insulin and GH to high glucagon had no effect on total AA levels, although branched chain AA levels declined. Glucagon mostly decreased glucogenic AA and enhanced glucose production. Endogenous leucine flux, reflecting proteolysis, decreased while leucine oxidation increased in protocols where AA were infused and these changes were unaffected by the hormones. Nonoxidative leucine flux reflecting protein synthesis was stimulated by AA, but high glucagon attenuated this effect. Addition of GH and insulin partially reversed the inhibitory effect of glucagon on protein synthesis. We conclude that glucagon is the pivotal hormone in amino acid disposal during an AA load and, by reducing the availability of AA, […] Find the latest version: https://jci.me/118782/pdf Evidence for a Catabolic Role of Glucagon during an Amino Acid Load Michael R.
    [Show full text]
  • Blood Metabolite Signature of Metabolic Syndrome Implicates
    International Journal of Molecular Sciences Article Blood Metabolite Signature of Metabolic Syndrome Implicates Alterations in Amino Acid Metabolism: Findings from the Baltimore Longitudinal Study of Aging (BLSA) and the Tsuruoka Metabolomics Cohort Study (TMCS) Jackson A. Roberts 1 , Vijay R. Varma 1, Chiung-Wei Huang 2, Yang An 2, Anup Oommen 3 , Toshiko Tanaka 4 , Luigi Ferrucci 4, Palchamy Elango 4, Toru Takebayashi 5, Sei Harada 5 , Miho Iida 5 and Madhav Thambisetty 1,* 1 Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; [email protected] (J.A.R.); [email protected] (V.R.V.) 2 Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; [email protected] (C.-W.H.); [email protected] (Y.A.) 3 Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway H91-TK33, Ireland; [email protected] 4 Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; [email protected] (T.T.); [email protected] (L.F.); [email protected] (P.E.) 5 Department of Preventive Medicine and Public Health, Keio University, Tokyo 160-8282, Japan; [email protected] (T.T.); [email protected] (S.H.); [email protected] (M.I.) * Correspondence: [email protected]; Tel.: +1-(410)-558-8572; Fax: +1-(410)-558-8302 Received: 19 December 2019; Accepted: 10 February 2020; Published: 13 February 2020 Abstract: Rapid lifestyle and dietary changes have contributed to a rise in the global prevalence of metabolic syndrome (MetS), which presents a potential healthcare crisis, owing to its association with an increased burden of multiple cardiovascular and neurological diseases.
    [Show full text]
  • Biochemistry - Problem Drill 20: Amino Acid Metabolism
    Biochemistry - Problem Drill 20: Amino Acid Metabolism Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 1. ________ is the reaction between an amino acid and an alpha keto acid. (A) Ketogenic (B) Aminogenic (C) Transamination Question (D) Carboxylation (E) Glucogenic A. Incorrect! No, consider the amino acid and keto acid structure when answering this question. B. Incorrect! No, consider the amino acid and keto acid structure when answering this question. C. Correct! Yes, Transamination is the reaction between an amino acid and an alpha keto acid. Feedback D. Incorrect! No, consider the amino acid and keto acid structure when answering this question. E. Incorrect! No, consider the amino acid and keto acid structure when answering this question. Transamination is the reaction between an amino acid and an alpha keto acid. The correct answer is (C). Solution RapidLearningCenter.com © Rapid Learning Inc. All Rights Reserved Question No. 2 of 10 Instructions: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as needed (3) Pick the answer (4) Go back to review the core concept tutorial as needed. 2. Lysine and leucine are examples of what? (A) Ketogenic amino acids. (B) Nonessential amino acids. (C) Non-ketogenic amino acids. (D) Glucogenic amino acids. Question (E) None of the above A. Correct! Yes, lysine and leucine are examples of ketogenic amino acids. B. Incorrect No, this is not a correct response.
    [Show full text]
  • Part 3 Metabolism of Proteins and Nucleic Acids Частина 3 Обмін Білків І Нуклеїнових Кислот
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет PART 3 METABOLISM OF PROTEINS AND NUCLEIC ACIDS Self-Study Guide for Students of General Medicine Faculty in Biochemistry ЧАСТИНА 3 ОБМІН БІЛКІВ І НУКЛЕЇНОВИХ КИСЛОТ Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів) Затверджено вченою радою ХНМУ Протокол № 1 від 26.01.2017 р. Approved by the Scientific Council of KhNMU. Protocol 1 (January 26, 2017) Харків ХНМУ 2017 Metabolism of proteins and nucleic acids : self-study guide for students of general medicine faculty in biochemistry. Part 3: / Comp. : O. Nakonechna, S. Stetsenko, L. Popova, A. Tkachenko. – Kharkiv : KhNMU, 2017. – 56 p. Compilers Nakonechna O. Stetsenko S. Popova L. Tkachenko A. Обмін білків та нуклеїнових кислот : метод. вказ. для підготовки до практ. занять з біологічної хімії (для студ. мед. ф-тів). Ч 3. / упоряд. О.А. Наконечна, С.О. Стеценко, Л.Д. Попова, А.С. Ткаченко. – Харків : ХНМУ, 2017. – 56 с. Упорядники О.А. Наконечна С.О. Стеценко Л.Д. Попова А.С. Ткаченко - 2 - SOURCES For preparing to practical classes in "Biological Chemistry" Basic Sources 1. Біологічна і біоорганічна хімія: у 2 кн.: підруч. Біологічна хімія / Ю.І. Губ- ський, І.В. Ніженковська, М.М. Корда, В.І. Жуков та ін. ; за ред. Ю.І. Губського, І.В. Ніженковської. – Кн. 2. – Київ : ВСВ «Медицина», 2016. – 544 с. 2. Губський Ю.І. Біологічна хімія : підруч. / Ю.І. Губський – Київ– Вінниця: Нова книга, 2007. – 656 с. 3. Губський Ю.І. Біологічна хімія / Губський Ю.І. – Київ–Тернопіль : Укр- медкнига, 2000. – 508 с. 4. Гонський Я.І.
    [Show full text]
  • Metabolism of Branched-Chain Amino Acids Branched-Chain Amino Acids
    Metabolism of Branched-chain Amino acids Branched-chain Amino acids Leu, Ile, Val are the branched chain and essential amino acid Branched-chain Amino acids • Valine (Val) is glucogenic amino acid • Leucine (Leu) is ketogenic aminoacid • Isoleucine (Ile) is both glucogenic and ketogenic amino acid • These amino acids serve as an alternate source of fuel for the brain especially under conditions of starvation. Metabolism of branched-chain AAs The first three metabolic reactions are common to the branched chain amino acids 1. Transamination 2. Oxidative decarboxylation 3. Dehydrogenation Branched chain amino acid degradation 3. Dehydrogenation Acyl-CoA dehydrogeanse by FAD coenzyme The degradation of the branched- chain amino acids (A) isoleucine, (B) valine, and (C) leucine. For IsoLeucine After the three steps, for Ile, 4. Enoyl-CoA hydratase 5. -hydroxyacyl-CoA dehydrogenase 6. Acetyl-CoA acetyltransferase Last 3 steps similar to fatty acid oxidation For Valine: 4. Enoyl-CoA hydratase 5. -hydroxy-isobutyryl- CoA hydrolase 6. hydroxyisobutyrate dehydrogenase 7. Methylmalonate semialdehyde dehydrogenase Last 3 steps similar to fatty acid oxidation For Leucine: 4. -methylcrotonyl-CoA carboxylase 5. -methylglutaconyl-CoA hydratase 6. HMG-CoA lyase Branched Chain Amino Acids • Isoleucine • Leucine • Valine • Important sources of Krebs intermediates under certain conditions Amino Acid as Energy Source in Skeletal Muscle • Oxidation of Branched Chain Amino Acid yield between 32- 43 ATP Comparable to complete oxidation of glucose • Amino Acid
    [Show full text]
  • M O N T I F F, I
    MONTIFF INC Don Tyson’s Advanced Nutraceuticals GLUCA-BALANCE An amino acid formula high in glycogenic amino acids, which the body converts into glucose to help balance blood sugar levels that are low with hypoglycemia. Also recommended for other biochemical imbalances requiring glycogenic amino acids. Each capsule contains14 amino acids with a total of 700mg.of the following: L-Alanine, L-Lysine HCL, L-Leucine, Glycine, L-Valine, L-Isoleucine, L-Threonine, L-Glutamine, L-Arginine HCL, L-Histidine, L- Phenylalanine, L-Tyrosine, L-Methionine, L-Proline, plus precursor Ornithine-α-Ketoglutarate, and Di- peptides L-Alanyl-L-Glutamine, and L-Glycyl-L-Glutamine. RECOMMENDED FOR: • Individuals with hypoglycemia. • Stabilizing low blood glucose levels and helping to eliminate mid morning and mid afternoon fatigue. • Aids in mental alertness and memory function. • May be helpful in alcoholic management in conjunction with additional L-Glutamine. • Helping to eliminate the craving for sweets. • For those whose plasma or urine profiles indicate an imbalance of these amino acids. WHAT ARE GLYCOGENIC AMINO ACIDS? These are the amino acids that can be converted by the body into glucose to produce energy. The brain requires 125-150g or 75% of the available glucose in the body, for its energy source, to maintain normal brain metabolism. While many amino acids can be converted into glucose, Alanine and Glutamine are the primary glycogenic amino acids. Because amino acids are converted into glucose at different rates, a mixture of glycogenic amino acids permits the blood glucose levels to maintain over a longer period of time. Gluconeogenesis is the process of converting amino acids, lactate and glycerol into glucose for the brain.
    [Show full text]
  • Plasma Amino Acid Abnormalities in Calves with Diarrhea
    NOTE Internal Medicine Plasma amino acid abnormalities in calves with diarrhea Kenji TSUKANO1,2) and Kazuyuki SUZUKI2)* 1)Minami-Hokkaido Agricultural Mutual Relief Association, 74-2 Higashimae, Hokuto, Hokkaido 041-1214, Japan 2)School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunnkyoudai, Ebetsu, Hokkaido 069-8501, Japan ABSTRACT. Since few studies have been published investigating plasma amino acid J. Vet. Med. Sci. abnormalities in calves with illnesses, the aim of this study was to examine plasma amino acid 81(4): 517–521, 2019 abnormalities in calves with diarrhea. Forty-three Holstein calves aged 10.9 ± 5.6 days old were used for this study. Thirty-one of the 43 calves exhibited clinical signs of diarrhea without severe doi: 10.1292/jvms.18-0645 acidemia. The other 12 healthy calves were used as the control. Concentrations of plasma essential amino acids, non-essential amino acids, branched-chain amino acids, glucogenic amino acids, and ketogenic amino acids in diarrheic calves with hypoaminoacidemia were significantly lower than Received: 1 November 2018 those in healthy calves. No significant differences were observed between diarrheic calves with Accepted: 28 January 2019 normoaminoacidemia and healthy calves when looking at these parameters. Published online in J-STAGE: 12 February 2019 KEY WORDS: amino acid, calf, diarrhea, hypoaminoacidemia Diarrhea in calves leads to an overall loss not only of electrolytes and body fluids, but it also decreases the absorption of carbohydrates, lipids, and amino acids [5]. As a result, calves exhibit dehydration, electrolyte imbalance, metabolic acidosis, and negative energy balance (NEB). Metabolic acidosis stimulates proteolysis and increases the activity of branched-chain ketoacid dehydrogenase (BCKDH), and increased BCKDH activity accelerates the oxidation of amino acids.
    [Show full text]
  • The Relationship Between Branched-Chain Amino Acids and Insulin Resistance
    Mini Review Curr Res Diabetes Obes J Volume 12 Issue 1 - September 2019 Copyright © All rights are reserved by Gülin Öztürk Özkan DOI: 10.19080/CRDOJ.2019.12.555830 The Relationship Between Branched-Chain Amino Acids and Insulin Resistance Gülin Öztürk Özkan* Nutrition and Dietetics Department, İstanbul Medeniyet University, Istanbul Submission: August 05, 2019; Published: September 18, 2019 *Corresponding author: Gülin Öztürk Özkan, Health Sciences Faculty, Nutrition and Dietetics Department, İstanbul Medeniyet University, Atalar Mah Şehit Hakan Kurban, Cad. No: 47 34862, Kartal, Istanbul Abstract Obesity is a health problem worldwide and plays a role in the development of insulin resistance. In obese people, there occurs an increase in the level of branched-chain amino acids. Leucine, isoleucine and valine, which are among branched-chain amino acids, are essential amino acids. Branched-chain amino acids may create positive effects on body weight, muscle protein synthesis, and glucose homeostasis regulation. Despite the positive effects of branched-chain amino acids on metabolic health, an increase in their level in the body is associated with the increase in insulin resistance and type 2 diabetes risk. The degradation of branched- chain amino acid catabolism in the adipose tissue in obese individuals may contribute to an increase in the level of branched-chain amino acids in the case of obesity and insulin resistance. Branched-chain amino acids activate mammalian target of rapamycin complex 1 (mTORC1) and thus contribute to the development of insulin resistance. Furthermore, the degradation of branched- chain amino acid catabolism in obese individuals leads to an increase in the amount of toxic metabolites and causes beta cell dysfunction, which results in insulin resistance and glucose intolerance.
    [Show full text]
  • Ketogenic Essential Amino Acids Modulate Lipid Synthetic Pathways and Prevent Hepatic Steatosis in Mice
    Ketogenic Essential Amino Acids Modulate Lipid Synthetic Pathways and Prevent Hepatic Steatosis in Mice Yasushi Noguchi1,2., Natsumi Nishikata2., Nahoko Shikata2., Yoshiko Kimura2, Jose O. Aleman1, Jamey D. Young1, Naoto Koyama2, Joanne K. Kelleher1,3, Michio Takahashi2, Gregory Stephanopoulos1* 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 2 Research Institute for Health Fundamentals, Ajinomoto Co. Inc., Kawasaki, Kanagawa, Japan, 3 Shriners Burn Hospital, Massachusetts General Hospital, Boston, Massachusetts, United States of America Abstract Background: Although dietary ketogenic essential amino acid (KAA) content modifies accumulation of hepatic lipids, the molecular interactions between KAAs and lipid metabolism are yet to be fully elucidated. Methodology/Principal Findings: We designed a diet with a high ratio (E/N) of essential amino acids (EAAs) to non- EAAs by partially replacing dietary protein with 5 major free KAAs (Leu, Ile, Val, Lys and Thr) without altering carbohydrate and fat content. This high-KAA diet was assessed for its preventive effects on diet-induced hepatic steatosis and whole-animal insulin resistance. C57B6 mice were fed with a high-fat diet, and hyperinsulinemic ob/ob mice were fed with a high-fat or high-sucrose diet. The high-KAA diet improved hepatic steatosis with decreased de novo lipogensis (DNL) fluxes as well as reduced expressions of lipogenic genes. In C57B6 mice, the high-KAA diet lowered postprandial insulin secretion and improved glucosetolerance,inassociationwithrestoredexpressionof muscle insulin signaling proteins repressed by the high-fat diet. Lipotoxic metabolites and their synthetic fluxes were also evaluated with reference to insulin resistance. The high-KAA diet lowered muscle and liver ceramides, both by reducing dietary lipid incorporation into muscular ceramides and preventing incorporation of DNL-derived fatty acids into hepatic ceramides.
    [Show full text]
  • Chapter 34: Carbohydrate Metabolism Multiple Choice 1. the Synthesis Of
    Chapter 34: Carbohydrate Metabolism Multiple Choice 1. The synthesis of glycogen from glucose is known as: a) glycogenolysis b) gluconeogenesis c) glycogenesis d) the Embden-Myerhof pathway 2. When a muscle depletes its supply of ATP, the next molecule used as an energy source is: a) pyruvate b) muscle glycogen c) blood glucose d) GTP 3. Which of the following does not occur when blood reaches the lungs? a) CO2 is removed from the blood b) Blood acidity decreases c) Lactate is oxidized d) More O2 binds to hemoglobin 4. McArdle disease is a condition in which: a) the body loses the ability to produce insulin. b) the liver loses the ability to export glucose. c) tissues lose the ability to respond to insulin. d) muscles lose the ability to break down glycogen. 5. The Embden-Myerhof pathway produces ATP by: a) anabolism b) substrate-level phosphorylation c) reducing carbon dioxide d) oxidative phosphorylation 6. In yeast, pyruvate is converted to ethanol in order to: a) recycle NADH to NAD+ b) directly produce ATP c) produce oxygen gas d) none of these 7. The single oxidation-reduction reaction in the Embden-Myerhof pathway yields the following product: a) glyceraldehyde-3-phosphate b) phosphoenolpyruvate c) 1,3-bisphosphoglycerate d) pyruvate 8. Glycolysis can be termed as: a) anaerobic and catabolic b) aerobic and anabolic c) aerobic and catabolic d) anaerobic and anabolic 9. For each glucose molecule metabolized in the Embden-Myerhof pathway there is a net production of: a) 4 ATP b) 8 ATP c) 6 ATP d) 2 ATP 10.
    [Show full text]
  • Part 3 Metabolism of Proteins and Nucleic Acids Частина 3 Обмін Білків І Нуклеїнових Кислот
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет PART 3 METABOLISM OF PROTEINS AND NUCLEIC ACIDS Self-Study Guide for Students of General Medicine Faculty in Biochemistry ЧАСТИНА 3 ОБМІН БІЛКІВ І НУКЛЕЇНОВИХ КИСЛОТ Методичні вказівки для підготовки до практичних занять з біологічної хімії (для студентів медичних факультетів) Затверджено вченою радою ХНМУ Протокол № 1 від 26.01.2017 р. Approved by the Scientific Council of KhNMU. Protocol 1 (January 26, 2017) Харків ХНМУ 2017 Metabolism of proteins and nucleic acids : self-study guide for students of general medicine faculty in biochemistry. Part 3: / Comp. : O. Nakonechna, S. Stetsenko, L. Popova, A. Tkachenko. – Kharkiv : KhNMU, 2017. – 56 p. Compilers Nakonechna O. Stetsenko S. Popova L. Tkachenko A. Обмін білків та нуклеїнових кислот : метод. вказ. для підготовки до практ. занять з біологічної хімії (для студ. мед. ф-тів). Ч 3. / упоряд. О.А. Наконечна, С.О. Стеценко, Л.Д. Попова, А.С. Ткаченко. – Харків : ХНМУ, 2017. – 56 с. Упорядники О.А. Наконечна С.О. Стеценко Л.Д. Попова А.С. Ткаченко - 2 - SOURCES For preparing to practical classes in "Biological Chemistry" Basic Sources 1. Біологічна і біоорганічна хімія: у 2 кн.: підруч. Біологічна хімія / Ю.І. Губ- ський, І.В. Ніженковська, М.М. Корда, В.І. Жуков та ін. ; за ред. Ю.І. Губського, І.В. Ніженковської. – Кн. 2. – Київ : ВСВ «Медицина», 2016. – 544 с. 2. Губський Ю.І. Біологічна хімія : підруч. / Ю.І. Губський – Київ– Вінниця: Нова книга, 2007. – 656 с. 3. Губський Ю.І. Біологічна хімія / Губський Ю.І. – Київ–Тернопіль : Укр- медкнига, 2000. – 508 с. 4. Гонський Я.І.
    [Show full text]