Dalton2015 – Dalton Program Manual

Total Page:16

File Type:pdf, Size:1020Kb

Dalton2015 – Dalton Program Manual Dalton2015 { Dalton Program Manual K. Aidas C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, J. Cukras, P. Dahle, E. K. Dalskov, T. Enevoldsen, J. J. Eriksen, B. Fern´andez,L. Ferrighi, H. Fliegl, L. Frediani, B. Gao, K. Hald, A. Halkier, E. D. Hedeg˚ard, C. H¨attig,H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, M. Kami´nski, J. Kauczor, S. Kirpekar, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Ligabue, N. H. List, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, M. N. Pedersen, T. B. Pedersen, P. F. Provasi, Z. Rinkevicius, E. Rudberg, T. A. Ruden, K. Ruud, P. Sa lek,C. C. M. Samson, A. S´anchez de Mer´as,T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, C. Steinmann, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, D. P. Tew, O. Vahtras, D. J. D. Wilson and H. Agren.˚ Contents Preface ix 1 Introduction1 1.1 General description of the manual.......................2 1.2 Acknowledgments.................................3 I Dalton Installation Guide4 2 Installation5 2.1 Installation instructions.............................5 2.2 Hardware/software supported..........................5 2.3 Source files....................................5 3 Maintenance7 3.1 Memory requirements..............................7 3.1.1 Redimensioning Dalton ........................7 3.2 New versions, patches..............................8 3.3 Reporting bugs and user support........................9 II Dalton User's Guide 10 4 Getting started with Dalton 11 4.1 The MOLECULE.INP input file.......................... 11 4.2 The DALTON.INP input file............................ 13 4.2.1 A CASSCF geometry optimization................... 13 4.2.2 A RASSCF calculation of NMR parameters.............. 14 4.2.3 A (parallel) cubic response calculation................. 15 4.2.4 General structure of the DALTON.INP file................ 16 i CONTENTS ii 4.3 The POTENTIAL.INP input file.......................... 18 4.4 The first calculation with Dalton ....................... 21 5 Getting the wave function you want 27 5.1 Necessary input to Sirius ............................ 28 5.2 An input example for Sirius .......................... 28 5.3 Hints on the structure of the **WAVE FUNCTIONS input........... 30 5.4 How to restart a wave function calculation.................. 32 5.5 Transfer of molecular orbitals between different computers......... 33 5.6 Wave function input examples......................... 33 6 Potential energy surfaces 42 6.1 Locating stationary points............................ 43 6.1.1 Equilibrium geometries......................... 43 6.1.2 Transition states using the image method............... 48 6.1.3 Transition states using first-order methods............... 50 6.1.4 Transition states following a gradient extremal............ 51 6.1.5 Level-shifted mode-following...................... 53 6.2 Trajectories and Dynamics............................ 54 6.2.1 Intrinsic reaction coordinates...................... 54 6.2.2 Doing a dynamical walk......................... 55 6.2.3 Calculating relative translational energy release............ 58 6.3 Geometry optimization using non-variational wave functions......... 58 7 Molecular vibrations 60 7.1 Vibrational frequencies.............................. 60 7.2 Infrared (IR) intensities............................. 61 7.3 Dipole-gradient based population analysis................... 62 7.4 Raman intensities................................. 63 7.5 Vibrational g factor............................... 65 8 Electric properties 68 8.1 Dipole moment.................................. 68 8.2 Quadrupole moment............................... 68 8.3 Nuclear quadrupole coupling constants..................... 69 8.4 Static and frequency dependent polarizabilities................ 70 9 Calculation of magnetic properties 72 9.1 Magnetizabilities................................. 73 9.2 Nuclear shielding constants........................... 75 CONTENTS iii 9.3 Relativistic corrections to Nuclear shielding constants............ 76 9.4 Rotational g tensor................................ 78 9.5 Nuclear spin{rotation constants......................... 79 9.6 Indirect nuclear spin{spin coupling constants................. 80 9.7 Hyperfine Coupling Tensors........................... 83 9.8 Electronic g-tensors................................ 84 9.9 Zero field splitting................................ 85 9.10 CTOCD-DZ calculations............................. 85 9.10.1 General considerations.......................... 86 9.10.2 Input description............................. 87 10 Calculation of optical and Raman properties 90 10.1 Electronic excitation energies and oscillator strengths............. 90 10.2 Vibrational Circular Dichroism calculations.................. 92 10.3 Electronic circular dichroism (ECD)...................... 94 10.4 Optical Rotation................................. 96 10.5 Vibrational Raman Optical Activity (VROA)................. 98 11 Getting the property you want 103 11.1 General considerations.............................. 103 11.2 Input description................................. 104 11.2.1 Linear response.............................. 104 11.2.2 Quadratic response............................ 107 11.2.3 Cubic response.............................. 109 12 Direct and parallel calculations 111 12.1 Direct methods.................................. 111 12.2 Parallel methods................................. 112 13 Finite field calculations 113 13.1 General considerations.............................. 113 13.2 Input description................................. 114 14 Continuum solvation calculations 116 14.1 Polarizable Continuum Model.......................... 116 14.1.1 Input description............................. 116 14.2 Multiconfigurational Self-Consistent Reaction Field.............. 119 14.2.1 General considerations.......................... 119 14.2.2 Input description............................. 121 CONTENTS iv 15 Polarizable embedding calculations 125 15.1 General considerations.............................. 126 15.2 Input description................................. 127 16 Vibrational corrections 134 16.1 Effective geometries............................... 134 16.2 Vibrational averaged properties......................... 136 16.3 Vibrationally averaged spin{spin coupling constants............. 138 17 Relativistic Effects 140 18 SOPPA, SOPPA(CC2), SOPPA(CCSD) and RPA(D) 142 18.1 General considerations.............................. 142 18.2 Input description molecular orbital based SOPPA............... 144 18.3 Input description atomic orbital based SOPPA module............ 147 19 NEVPT2 calculations 151 19.1 General considerations.............................. 151 19.2 Input description................................. 152 20 Examples of generalized active space CI calculations 153 20.1 Energy calculation with a GAS-type active space decomposition I...... 153 20.2 Energy calculation with a GAS-type active space decomposition II..... 155 20.3 Energy calculation with a RAS-type active space decomposition....... 156 21 Examples of coupled cluster calculations 158 21.1 Multiple model energy calculations....................... 158 21.2 First-order property calculation......................... 159 21.3 Static and frequency-dependent dipole polarizabilities and corresponding dis- persion coefficients................................ 159 21.4 Static and frequency-dependent dipole hyperpolarizabilities and correspond- ing dispersion coefficients............................ 160 21.5 Excitation energies and oscillator strengths.................. 161 21.6 Gradient calculation, geometry optimization.................. 162 21.7 R12 methods................................... 163 22 Examples of Cholesky decomposition-based calculations 164 22.1 Hartree-Fock energy and polarizability..................... 164 22.2 KT3 magnetic properties using London orbitals................ 165 22.3 MP2 energy.................................... 165 CONTENTS v 22.4 Restart of MP2 energy.............................. 166 22.5 CC2 magnetic properties using the CTOCD/DZ method........... 168 22.6 Cholesky/CC2 excitation energies........................ 169 22.7 CCSD(T) energy calculation using decomposed energy denominators.... 170 22.8 CCSD excitation energies using a reduced active subsystem......... 171 23 Aspects of symmetry in Dalton 173 23.1 Specifying symmetry by generators....................... 173 23.2 Labelling of irreducible representations..................... 177 23.3 Nuclear coordinates; symmetry-lowering.................... 177 23.4 Treatment of higher symmetries......................... 178 III Dalton Reference Manual 182 24 General input module 183 24.1 General input to DALTON : **DALTON ..................... 183 24.1.1 Geometry optimization module 1: *OPTIMIZE ............. 187 24.1.2 Parallel calculations : *PARALLEL .................... 196 24.1.3 Polarizable embedding model: *PEQM .................. 197 24.1.4 QM/MM model: *QM3 .......................... 200 24.1.5 Polarizable continuum model: *PCM .................. 200 24.1.6 The PCM cavity: *PCMCAV ....................... 202 24.1.7 Potential derived charges: *QFIT .................... 203 24.1.8 Geometry optimization module 2: *WALK ................ 204 24.1.9 Molecule geometry and basis sets, *MOLBAS
Recommended publications
  • Density Functional Theory
    Density Functional Approach Francesco Sottile Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) 22 October 2010 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Kohn, W. and L. Sham, 1965, Phys. Rev. 140, A1133 Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Nitrogen (7 electron) 1. Any observable of a quantum Ψ(r1; ::; r7) 21 coordinates system can be obtained from 10 entries/coordinate ) 1021 entries the density of the system alone. 8 bytes/entry ) 8 · 1021 bytes 4:7 × 109 bytes/DVD ) 2 × 1012 DVDs 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Density Functional ... Why ? Density Functional ... Why ? Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Oxygen (8 electron) 1. Any (ground-state) observable Ψ(r1; ::; r8) 24 coordinates of a quantum system can be 24 obtained from the density of the 10 entries/coordinate ) 10 entries 8 bytes/entry ) 8 · 1024 bytes system alone. 5 · 109 bytes/DVD ) 1015 DVDs 2.
    [Show full text]
  • Camcasp 5.9 Alston J. Misquitta† and Anthony J
    CamCASP 5.9 Alston J. Misquittay and Anthony J. Stoneyy yDepartment of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Road, London E1 4NS yy University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW September 1, 2015 Abstract CamCASP is a suite of programs designed to calculate molecular properties (multipoles and frequency- dependent polarizabilities) in single-site and distributed form, and interaction energies between pairs of molecules, and thence to construct atom–atom potentials. The CamCASP distribution also includes the programs Pfit, Casimir,Gdma 2.2, Cluster, and Process. Copyright c 2007–2014 Alston J. Misquitta and Anthony J. Stone Contents 1 Introduction 1 1.1 Authors . .1 1.2 Citations . .1 2 What’s new? 2 3 Outline of the capabilities of CamCASP and other programs 5 3.1 CamCASP limits . .7 4 Installation 7 4.1 Building CamCASP from source . .9 5 Using CamCASP 10 5.1 Workflows . 10 5.2 High-level scripts . 10 5.3 The runcamcasp.py script . 11 5.4 Low-level scripts . 13 6 Data conventions 13 7 CLUSTER: Detailed specification 14 7.1 Prologue . 15 7.2 Molecule definitions . 15 7.3 Geometry manipulations and other transformations . 16 7.4 Job specification . 18 7.5 Energy . 23 7.6 Crystal . 25 7.7 ORIENT ............................................... 26 7.8 Finally, . 29 8 Examples 29 8.1 A SAPT(DFT) calculation . 29 8.2 An example properties calculation . 30 8.3 Dispersion coefficients . 34 8.4 Using CLUSTER to obtain the dimer geometry . 36 9 CamCASP program specification 39 9.1 Global data .
    [Show full text]
  • Jaguar 5.5 User Manual Copyright © 2003 Schrödinger, L.L.C
    Jaguar 5.5 User Manual Copyright © 2003 Schrödinger, L.L.C. All rights reserved. Schrödinger, FirstDiscovery, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Prime, QSite, and QikProp are trademarks of Schrödinger, L.L.C. MacroModel is a registered trademark of Schrödinger, L.L.C. To the maximum extent permitted by applicable law, this publication is provided “as is” without warranty of any kind. This publication may contain trademarks of other companies. October 2003 Contents Chapter 1: Introduction.......................................................................................1 1.1 Conventions Used in This Manual.......................................................................2 1.2 Citing Jaguar in Publications ...............................................................................3 Chapter 2: The Maestro Graphical User Interface...........................................5 2.1 Starting Maestro...................................................................................................5 2.2 The Maestro Main Window .................................................................................7 2.3 Maestro Projects ..................................................................................................7 2.4 Building a Structure.............................................................................................9 2.5 Atom Selection ..................................................................................................10 2.6 Toolbar Controls ................................................................................................11
    [Show full text]
  • Thomas–Fermi–Dirac–Von Weizsäcker Models in Finite Systems Garnet Kin-Lic Chan, Aron J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main Thomas–Fermi–Dirac–von Weizsäcker models in finite systems Garnet Kin-Lic Chan, Aron J. Cohen, and Nicholas C. Handy Citation: 114, (2001); doi: 10.1063/1.1321308 View online: http://dx.doi.org/10.1063/1.1321308 View Table of Contents: http://aip.scitation.org/toc/jcp/114/2 Published by the American Institute of Physics JOURNAL OF CHEMICAL PHYSICS VOLUME 114, NUMBER 2 8 JANUARY 2001 Thomas–Fermi–Dirac–von Weizsa¨cker models in finite systems Garnet Kin-Lic Chan,a) Aron J. Cohen, and Nicholas C. Handy Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom ͑Received 7 June 2000; accepted 8 September 2000͒ To gain an understanding of the variational behavior of kinetic energy functionals, we perform a numerical study of the Thomas–Fermi–Dirac–von Weizsa¨cker theory in finite systems. A general purpose Gaussian-based code is constructed to perform energy and geometry optimizations on polyatomic systems to high accuracy. We carry out benchmark studies on atomic and diatomic systems. Our results indicate that the Thomas–Fermi–Dirac–von Weizsa¨cker theory can give an approximate description of matter, with atomic energies, binding energies, and bond lengths of the correct order of magnitude, though not to the accuracy required of a qualitative chemical theory. We discuss the implications for the development of new kinetic functionals. © 2001 American Institute of Physics. ͓DOI: 10.1063/1.1321308͔ I. INTRODUCTION
    [Show full text]
  • Quantum Chemical Calculations of NMR Parameters
    Quantum Chemical Calculations of NMR Parameters Tatyana Polenova University of Delaware Newark, DE Winter School on Biomolecular NMR January 20-25, 2008 Stowe, Vermont OUTLINE INTRODUCTION Relating NMR parameters to geometric and electronic structure Classical calculations of EFG tensors Molecular properties from quantum chemical calculations Quantum chemistry methods DENSITY FUNCTIONAL THEORY FOR CALCULATIONS OF NMR PARAMETERS Introduction to DFT Software Practical examples Tutorial RELATING NMR OBSERVABLES TO MOLECULAR STRUCTURE NMR Spectrum NMR Parameters Local geometry Chemical structure (reactivity) I. Calculation of experimental NMR parameters Find unique solution to CQ, Q, , , , , II. Theoretical prediction of fine structure constants from molecular geometry Classical electrostatic model (EFG)- only in simple ionic compounds Quantum mechanical calculations (Density Functional Theory) (EFG, CSA) ELECTRIC FIELD GRADIENT (EFG) TENSOR: POINT CHARGE MODEL EFG TENSOR IS DETERMINED BY THE COMBINED ELECTRONIC AND NUCLEAR WAVEFUNCTION, NO ANALYTICAL EXPRESSION IN THE GENERAL CASE THE SIMPLEST APPROXIMATION: CLASSICAL POINT CHARGE MODEL n Zie 4 V2,k = 3 Y2,k ()i,i i=1 di 5 ATOMS CONTRIBUTING TO THE EFG TENSOR ARE TREATED AS POINT CHARGES, THE RESULTING EFG TENSOR IS THE SUM WITH RESPECT TO ALL ATOMS VERY CRUDE MODEL, WORKS QUANTITATIVELY ONLY IN SIMPLEST IONIC SYSTEMS, BUT YIELDS QUALITATIVE TRENDS AND GENERAL UNDERSTANDING OF THE SYMMETRY AND MAGNITUDE OF THE EXPECTED TENSOR ELECTRIC FIELD GRADIENT (EFG) TENSOR: POINT CHARGE MODEL n Zie 4 V2,k = 3 Y2,k ()i,i i=1 di 5 Ze V = ; V = 0; V = 0 2,0 d 3 2,±1 2,±2 2Ze V = ; V = 0; V = 0 2,0 d 3 2,±1 2,±2 3 Ze V = ; V = 0; V = 0 2,0 2 d 3 2,±1 2,±2 V2,0 = 0; V2,±1 = 0; V2,±2 = 0 MOLECULAR PROPERTIES FROM QUANTUM CHEMICAL CALCULATIONS H = E See for example M.
    [Show full text]
  • Use of Mo”Ller-Plesset Perturbation Theory in Molecular Calculations: Spectroscopic Constants of First Row Diatomic Molecules
    JOURNAL OF CHEMICAL PHYSICS VOLUME 108, NUMBER 12 22 MARCH 1998 Use of Mo”ller-Plesset perturbation theory in molecular calculations: Spectroscopic constants of first row diatomic molecules Thom H. Dunning, Jr. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 Kirk A. Peterson Department of Chemistry, Washington State University and the Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 ~Received 9 December 1997; accepted 17 December 1997! The convergence of Mo”ller–Plesset perturbation expansions ~MP2–MP4/MP5! for the spectroscopic constants of a selected set of diatomic molecules ~BH, CH, HF, N2, CO, and F2! has been investigated. It was found that the second-order perturbation contributions to the spectroscopic constants are strongly dependent on basis set, more so for HF and CO than for BH. The MP5 contributions for HF were essentially zero for the cc-pVDZ basis set, but increased significantly with basis set illustrating the difficulty of using small basis sets as benchmarks for correlated calculations. The convergence behavior of the exact Mo”ller–Plesset perturbation expansions were investigated using estimates of the complete basis set limits obtained using large correlation consistent basis sets. For BH and CH, the perturbation expansions of the spectroscopic constants converge monotonically toward the experimental values, while for HF, N2, CO, and F2, the expansions oscillate about the experimental values. The perturbation expansions are, in general, only slowly converging and, for HF, N2, CO, and F2, appear to be far from convergence at MP4. In fact, for HF, N2, and CO, the errors in the calculated spectroscopic constants for the MP4 method are larger than those for the MP2 method ~the only exception is De!.
    [Show full text]
  • Virt&L-Comm.3.2012.1
    Virt&l-Comm.3.2012.1 A MODERN APPROACH TO AB INITIO COMPUTING IN CHEMISTRY, MOLECULAR AND MATERIALS SCIENCE AND TECHNOLOGIES ANTONIO LAGANA’, DEPARTMENT OF CHEMISTRY, UNIVERSITY OF PERUGIA, PERUGIA (IT)* ABSTRACT In this document we examine the present situation of Ab initio computing in Chemistry and Molecular and Materials Science and Technologies applications. To this end we give a short survey of the most popular quantum chemistry and quantum (as well as classical and semiclassical) molecular dynamics programs and packages. We then examine the need to move to higher complexity multiscale computational applications and the related need to adopt for them on the platform side cloud and grid computing. On this ground we examine also the need for reorganizing. The design of a possible roadmap to establishing a Chemistry Virtual Research Community is then sketched and some examples of Chemistry and Molecular and Materials Science and Technologies prototype applications exploiting the synergy between competences and distributed platforms are illustrated for these applications the middleware and work habits into cooperative schemes and virtual research communities (part of the first draft of this paper has been incorporated in the white paper issued by the Computational Chemistry Division of EUCHEMS in August 2012) INTRODUCTION The computational chemistry (CC) community is made of individuals (academics, affiliated to research institutions and operators of chemistry related companies) carrying out computational research in Chemistry, Molecular and Materials Science and Technology (CMMST). It is to a large extent registered into the CC division (DCC) of the European Chemistry and Molecular Science (EUCHEMS) Society and is connected to other chemistry related organizations operating in Chemical Engineering, Biochemistry, Chemometrics, Omics-sciences, Medicinal chemistry, Forensic chemistry, Food chemistry, etc.
    [Show full text]
  • Ab Initio Investigation of the Ground State Properties of PO, PO + , and PO − Aristophanes Metropoulos, Aristotle Papakondylis, and Aristides Mavridis
    Ab initio investigation of the ground state properties of PO, PO + , and PO − Aristophanes Metropoulos, Aristotle Papakondylis, and Aristides Mavridis Citation: The Journal of Chemical Physics 119, 5981 (2003); doi: 10.1063/1.1599341 View online: http://dx.doi.org/10.1063/1.1599341 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/119/12?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Correlated ab initio investigations on the intermolecular and intramolecular potential energy surfaces in the ground electronic state of the O 2 − ( X Π g 2 ) − HF ( X Σ + 1 ) complex J. Chem. Phys. 138, 014304 (2013); 10.1063/1.4772653 Molecular geometry of OCAgI determined by broadband rotational spectroscopy and ab initio calculations J. Chem. Phys. 136, 064306 (2012); 10.1063/1.3683221 Ab initio properties of Li-group-II molecules for ultracold matter studies J. Chem. Phys. 135, 164108 (2011); 10.1063/1.3653974 Calculation of the structure, potential energy surface, vibrational dynamics, and electric dipole properties for the Xe:HI van der Waals complex J. Chem. Phys. 134, 174302 (2011); 10.1063/1.3583817 Potential curves and spectroscopic properties for the ground state of ClO and for the ground and various excited states of ClO − J. Chem. Phys. 117, 9703 (2002); 10.1063/1.1516803 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.240.225.44 On: Sat, 20 Dec 2014 03:10:02 JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 12 22 SEPTEMBER 2003 Ab initio investigation of the ground state properties of PO, PO¿, and POÀ Aristophanes Metropoulosa) Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass.
    [Show full text]
  • Computational Chemistry: a Practical Guide for Applying Techniques to Real-World Problems
    Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. David C. Young Copyright ( 2001 John Wiley & Sons, Inc. ISBNs: 0-471-33368-9 (Hardback); 0-471-22065-5 (Electronic) COMPUTATIONAL CHEMISTRY COMPUTATIONAL CHEMISTRY A Practical Guide for Applying Techniques to Real-World Problems David C. Young Cytoclonal Pharmaceutics Inc. A JOHN WILEY & SONS, INC., PUBLICATION New York . Chichester . Weinheim . Brisbane . Singapore . Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Copyright ( 2001 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.
    [Show full text]
  • A PILOT INITIATIVE for EGI-XSEDE COLLABORATION Laganà A
    A PILOT INITIATIVE FOR EGI-XSEDE COLLABORATION Laganà A. Dept of Chemistry, Biology & Biotechnologies, PG, IT A PROPOSAL FROM THE CMMST (Chemistry, Molecular, Materials Science and Technologies) COMMUNITY: implement a Synergistic High- Throughput&Performance Universal Molecular Simulator as a service for scientists and technologists 1 EGI-InSPIRE RI-261323 www.egi.eu The goals of the EGI-CMMST community THE GOALS wImplement a SYNERGISTIC (collaborative/competitive) HW, SW, MW work-model for molecular sciences & technologies computing wOffer a SERVICE for new discoveries by means of extremely accurate (quantum), efficient and versatile multiscale real-like SIMULATOR operating on distributed platforms FOR THIS PURPOSE IN EGI WE ARE STRUCTURING theEuropean CMMST (Chemistry, Molecular, Materials Sciences & Techno-logies) VRC (Virtual Research Community) based on: - EGI National Grid infrastructures, resources and operations - EGI and COMMUNITY user support, tools and services 2 EGI-InSPIRE RI-261323 www.egi.eu 1st target: A WORLDWIDE DISTRIBUTED PLATFORM • CONNECT EGI distributed operations platform to XSEDE (PRACE, etc.) network and consortia of resource providers by placing allocation requests in an appropriate form 3 EGI-InSPIRE RI-261323 www.egi.eu 2nd TARGET: A WORLDWIDE RESEARCH FEDERATION • FEDERATE CMMST communities around the world (EU, US, CANADA, PACIFIC ASIA, …) for reciprocal collaboration, support and servicing 4 EGI-InSPIRE RI-261323 www.egi.eu 3rd TARGET: QUALITY EVALUATION • IMPLEMENT proper quality evaluation criteria in
    [Show full text]
  • DALTON2011 Program Manual
    DALTON2011 Program Manual C. Angeli, K. L. Bak, V. Bakken, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, L. Ferrighi, L. Frediani, C. H¨attig, K. Hald, A. Halkier, H. Heiberg, T. Helgaker, H. Hettema, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, S. Kirpekar, W. Klopper, S. Knecht, R. Kobayashi, J. Kongsted, H. Koch, A. Ligabue, O. B. Lutnæs, K. V. Mikkelsen, C. B. Nielsen, P. Norman, J. Olsen, A. Osted, M. J. Packer, T. B. Pedersen, Z. Rinkevicius, E. Rudberg, T. A. Ruden, K. Ruud, P. Sa lek,C. C. M. Samson, A. Sanchez de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, O. Vahtras, D. J. Wilson, and H. Agren,˚ Contents Preface ix 1 Introduction 1 1.1 General description of the manual . 2 1.2 Acknowledgments . 3 2 New features in the Dalton releases 4 2.1 New features in Dalton2011 . 4 2.2 New features in Dalton 2.0 (2005) . 7 2.3 New features in Dalton 1.2 . 10 I DALTON Installation Guide 13 3 Installation 14 3.1 Hardware/software supported . 14 3.2 Source files . 14 3.3 Installing the program using the Makefile . 15 3.4 Running the dalton2011 test suite . 18 4 Maintenance 20 4.1 Memory requirements . 20 4.1.1 Redimensioning dalton2011 ...................... 20 4.2 New versions, patches . 21 4.3 Reporting bugs and user support . 22 II DALTON User’s Guide 23 5 Getting started with dalton2011 24 5.1 The DALTON.INP file .
    [Show full text]
  • Acronyms Used in Theoretical Chemistry
    Pure & Appl. Chem., Vol. 68, No. 2, pp. 387-456, 1996. Printed in Great Britain. INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION WORKING PARTY ON THEORETICAL AND COMPUTATIONAL CHEMISTRY ACRONYMS USED IN THEORETICAL CHEMISTRY Prepared for publication by the Working Party consisting of R. D. BROWN* (Australia, Chiman);J. E. BOWS (USA); R. HILDERBRANDT (USA); K. LIM (Australia); I. M. MILLS (UK); E. NIKITIN (Russia); M. H. PALMER (UK). The focal point to which to send comments and suggestions is the coordinator of the project: RONALD D. BROWN Chemistry Department, Monash University, Clayton, Victoria 3 168, Australia. Responses by e-mail would be particularly appreciated, the number being: rdbrown @ vaxc.cc .monash.edu.au another alternative is fax at: +61 3 9905 4597 Acronyms used in theoretical chemistry synogsis An alphabetic list of acronyms used in theoretical chemistry is presented. Some explanatory references have been added to make acronyms better understandable but still more are needed. Critical comments, additional references, etc. are requested. INTRODUC'IION The IUPAC Working Party on Theoretical Chemistry was persuaded, by discussion with colleagues, that the compilation of a list of acronyms used in theoretical chemistry would be a useful contribution. Initial lists of acronyms drawn up by several members of the working party have been augmented by the provision of a substantial list by Chemical Abstract Service (see footnote below). The working party is particularly grateful to CAS for this generous help. It soon became apparent that many of the acron ms needed more than mere spelling out to make them understandable and so we have added expr anatory references to many of them.
    [Show full text]