DALTON2011 Program Manual
Total Page:16
File Type:pdf, Size:1020Kb
DALTON2011 Program Manual C. Angeli, K. L. Bak, V. Bakken, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, L. Ferrighi, L. Frediani, C. H¨attig, K. Hald, A. Halkier, H. Heiberg, T. Helgaker, H. Hettema, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, S. Kirpekar, W. Klopper, S. Knecht, R. Kobayashi, J. Kongsted, H. Koch, A. Ligabue, O. B. Lutnæs, K. V. Mikkelsen, C. B. Nielsen, P. Norman, J. Olsen, A. Osted, M. J. Packer, T. B. Pedersen, Z. Rinkevicius, E. Rudberg, T. A. Ruden, K. Ruud, P. Sa lek,C. C. M. Samson, A. Sanchez de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, O. Vahtras, D. J. Wilson, and H. Agren,˚ Contents Preface ix 1 Introduction 1 1.1 General description of the manual . 2 1.2 Acknowledgments . 3 2 New features in the Dalton releases 4 2.1 New features in Dalton2011 . 4 2.2 New features in Dalton 2.0 (2005) . 7 2.3 New features in Dalton 1.2 . 10 I DALTON Installation Guide 13 3 Installation 14 3.1 Hardware/software supported . 14 3.2 Source files . 14 3.3 Installing the program using the Makefile . 15 3.4 Running the dalton2011 test suite . 18 4 Maintenance 20 4.1 Memory requirements . 20 4.1.1 Redimensioning dalton2011 ...................... 20 4.2 New versions, patches . 21 4.3 Reporting bugs and user support . 22 II DALTON User’s Guide 23 5 Getting started with dalton2011 24 5.1 The DALTON.INP file . 24 i CONTENTS ii 5.1.1 A CASSCF geometry optimization . 24 5.1.2 A RASSCF calculation of NMR parameters . 25 5.1.3 A parallel cubic response calculation . 26 5.2 General structure of the DALTON.INP file . 27 5.3 The molecule input file . 29 5.4 The first calculation with dalton2011 ..................... 31 6 Getting the wave function you want 35 6.1 Necessary input to SIRIUS . 36 6.2 An input example for SIRIUS . 36 6.3 Hints on the structure of the **WAVE FUNCTIONS input . 39 6.4 How to restart a wave function calculation . 41 6.5 Transfer of molecular orbitals between different computers . 42 6.6 Wave function input examples . 42 7 Potential energy surfaces 51 7.1 Locating stationary points . 52 7.1.1 Equilibrium geometries . 52 7.1.2 Transition states using the image method . 57 7.1.3 Transition states using first-order methods . 59 7.1.4 Transition states following a gradient extremal . 60 7.1.5 Level-shifted mode-following . 62 7.2 Trajectories and Dynamics . 63 7.2.1 Intrinsic reaction coordinates . 63 7.2.2 Doing a dynamical walk . 64 7.2.3 Calculating relative translational energy release . 67 7.3 Geometry optimization using non-variational wave functions . 67 8 Molecular vibrations 69 8.1 Vibrational frequencies . 69 8.2 Infrared (IR) intensities . 70 8.3 Dipole-gradient based population analysis . 71 8.4 Raman intensities . 72 8.5 Vibrational g factor . 74 9 Electric properties 77 9.1 Dipole moment . 77 9.2 Quadrupole moment . 77 9.3 Nuclear quadrupole coupling constants . 78 CONTENTS iii 9.4 Static and frequency dependent polarizabilities . 79 10 Calculation of magnetic properties 81 10.1 Magnetizabilities . 82 10.2 Nuclear shielding constants . 84 10.3 Rotational g tensor . 85 10.4 Nuclear spin–rotation constants . 86 10.5 Indirect nuclear spin–spin coupling constants . 87 10.6 Hyperfine Coupling Tensors . 89 10.7 Electronic g-tensors . 91 10.8 Zero field splitting . 91 10.9 CTOCD-DZ calculations . 92 10.9.1 General considerations . 92 10.9.2 Input description . 93 11 Calculation of optical and Raman properties 96 11.1 Electronic excitation energies and oscillator strengths . 96 11.2 Vibrational Circular Dichroism calculations . 98 11.3 Electronic circular dichroism (ECD) . 100 11.4 Optical Rotation . 103 11.5 Vibrational Raman Optical Activity (VROA) . 105 12 Getting the property you want 109 12.1 General considerations . 109 12.2 Input description . 110 12.2.1 Linear response . 110 12.2.2 Quadratic response . 113 12.2.3 Cubic response . 115 13 Direct and parallel calculations 117 13.1 Direct methods . 117 13.2 Parallel methods . 118 14 Finite field calculations 119 14.1 General considerations . 119 14.2 Input description . 120 15 Solvent calculations 122 15.1 General considerations . 122 15.2 Input description . 123 CONTENTS iv 15.2.1 Geometry optimization . 125 15.2.2 Non-equilibrium solvation . 125 16 Vibrational corrections 128 16.1 Effective geometries . 128 16.2 Vibrational averaged properties . 130 16.3 Vibrationally averaged spin–spin coupling constants . 132 17 Relativistic Effects 134 18 SOPPA, SOPPA(CC2), SOPPA(CCSD) and RPA(D) 136 18.1 General considerations . 136 18.2 Input description molecular orbital based SOPPA . 138 18.3 Input description atomic orbital based SOPPA module . 141 19 NEVPT2 calculations 145 19.1 General considerations . 145 19.2 Input description . 146 20 Examples of generalized active space CI calculations 147 20.1 Energy calculation with a GAS-type active space decomposition I . 147 20.2 Energy calculation with a GAS-type active space decomposition II . 149 20.3 Energy calculation with a RAS-type active space decomposition . 150 21 Examples of coupled cluster calculations 152 21.1 Multiple model energy calculations . 152 21.2 First-order property calculation . 153 21.3 Static and frequency-dependent dipole polarizabilities and corresponding dis- persion coefficients . 153 21.4 Static and frequency-dependent dipole hyperpolarizabilities and correspond- ing dispersion coefficients . 154 21.5 Excitation energies and oscillator strengths . 155 21.6 Gradient calculation, geometry optimization . 156 21.7 R12 methods . 157 22 Examples of Cholesky decomposition-based calculations 158 22.1 Hartree-Fock energy and polarizability . 158 22.2 KT3 magnetic properties using London orbitals . 159 22.3 MP2 energy . 159 22.4 Restart of MP2 energy . 160 CONTENTS v 22.5 CC2 magnetic properties using the CTOCD/DZ method . 162 22.6 CCSD(T) energy calculation using decomposed energy denominators . 163 III DALTON Reference Manual 164 23 General input module 165 23.1 General input to DALTON : **DALTON ..................... 165 23.1.1 Geometry optimization module 1: *OPTIMIZE ............. 168 23.1.2 Parallel calculations : *PARALLEL .................... 178 23.1.3 PCM environment model: *PCM ..................... 178 23.1.4 QM/MM environment model: *QM3 .................. 178 23.1.5 Geometry optimization module 2: *WALK ................ 179 23.1.6 Molecule geometry and basis sets, *MOLBAS .............. 184 23.2 Numerical differentiation : **NMDDRV ...................... 185 23.2.1 Vibrational averaging of molecular properties: *PROPAV ....... 188 23.2.2 Vibrational analysis: *VIBANA ...................... 189 23.3 Decomposition of two-electron integrals : **CHOLES .............. 190 24 Integral evaluation, hermit 192 24.1 General . 192 24.2 **INTEGRALS directives . 193 24.2.1 General: **INTEGRALS .......................... 193 24.2.2 One-electron integrals: *ONEINT ..................... 210 24.2.3 Two-electron integrals using twoint: *TWOINT ............ 211 24.2.4 Two-electron integrals using eri: *ER2INT ............... 212 24.2.5 Integral sorting: *SORINT ........................ 214 24.2.6 Construction of the supermatrix file: *SUPINT ............. 215 25 molecule input style 216 25.1 General molecule input ............................ 217 25.2 Cartesian geometry input . 220 25.3 Z-matrix input . 223 25.4 Using basis set libraries . 224 25.5 Auxiliary basis sets . 227 25.6 The basis sets supplied with dalton2011 ................... 228 26 Molecular wave functions, sirius 236 26.1 General notes for the sirius input reference manual . 236.