DALTON2011 Program Manual C. Angeli, K. L. Bak, V. Bakken, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, L. Ferrighi, L. Frediani, C. H¨attig, K. Hald, A. Halkier, H. Heiberg, T. Helgaker, H. Hettema, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, S. Kirpekar, W. Klopper, S. Knecht, R. Kobayashi, J. Kongsted, H. Koch, A. Ligabue, O. B. Lutnæs, K. V. Mikkelsen, C. B. Nielsen, P. Norman, J. Olsen, A. Osted, M. J. Packer, T. B. Pedersen, Z. Rinkevicius, E. Rudberg, T. A. Ruden, K. Ruud, P. Sa lek,C. C. M. Samson, A. Sanchez de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, O. Vahtras, D. J. Wilson, and H. Agren,˚ Contents Preface ix 1 Introduction 1 1.1 General description of the manual . 2 1.2 Acknowledgments . 3 2 New features in the Dalton releases 4 2.1 New features in Dalton2011 . 4 2.2 New features in Dalton 2.0 (2005) . 7 2.3 New features in Dalton 1.2 . 10 I DALTON Installation Guide 13 3 Installation 14 3.1 Hardware/software supported . 14 3.2 Source files . 14 3.3 Installing the program using the Makefile . 15 3.4 Running the dalton2011 test suite . 18 4 Maintenance 20 4.1 Memory requirements . 20 4.1.1 Redimensioning dalton2011 ...................... 20 4.2 New versions, patches . 21 4.3 Reporting bugs and user support . 22 II DALTON User’s Guide 23 5 Getting started with dalton2011 24 5.1 The DALTON.INP file . 24 i CONTENTS ii 5.1.1 A CASSCF geometry optimization . 24 5.1.2 A RASSCF calculation of NMR parameters . 25 5.1.3 A parallel cubic response calculation . 26 5.2 General structure of the DALTON.INP file . 27 5.3 The molecule input file . 29 5.4 The first calculation with dalton2011 ..................... 31 6 Getting the wave function you want 35 6.1 Necessary input to SIRIUS . 36 6.2 An input example for SIRIUS . 36 6.3 Hints on the structure of the **WAVE FUNCTIONS input . 39 6.4 How to restart a wave function calculation . 41 6.5 Transfer of molecular orbitals between different computers . 42 6.6 Wave function input examples . 42 7 Potential energy surfaces 51 7.1 Locating stationary points . 52 7.1.1 Equilibrium geometries . 52 7.1.2 Transition states using the image method . 57 7.1.3 Transition states using first-order methods . 59 7.1.4 Transition states following a gradient extremal . 60 7.1.5 Level-shifted mode-following . 62 7.2 Trajectories and Dynamics . 63 7.2.1 Intrinsic reaction coordinates . 63 7.2.2 Doing a dynamical walk . 64 7.2.3 Calculating relative translational energy release . 67 7.3 Geometry optimization using non-variational wave functions . 67 8 Molecular vibrations 69 8.1 Vibrational frequencies . 69 8.2 Infrared (IR) intensities . 70 8.3 Dipole-gradient based population analysis . 71 8.4 Raman intensities . 72 8.5 Vibrational g factor . 74 9 Electric properties 77 9.1 Dipole moment . 77 9.2 Quadrupole moment . 77 9.3 Nuclear quadrupole coupling constants . 78 CONTENTS iii 9.4 Static and frequency dependent polarizabilities . 79 10 Calculation of magnetic properties 81 10.1 Magnetizabilities . 82 10.2 Nuclear shielding constants . 84 10.3 Rotational g tensor . 85 10.4 Nuclear spin–rotation constants . 86 10.5 Indirect nuclear spin–spin coupling constants . 87 10.6 Hyperfine Coupling Tensors . 89 10.7 Electronic g-tensors . 91 10.8 Zero field splitting . 91 10.9 CTOCD-DZ calculations . 92 10.9.1 General considerations . 92 10.9.2 Input description . 93 11 Calculation of optical and Raman properties 96 11.1 Electronic excitation energies and oscillator strengths . 96 11.2 Vibrational Circular Dichroism calculations . 98 11.3 Electronic circular dichroism (ECD) . 100 11.4 Optical Rotation . 103 11.5 Vibrational Raman Optical Activity (VROA) . 105 12 Getting the property you want 109 12.1 General considerations . 109 12.2 Input description . 110 12.2.1 Linear response . 110 12.2.2 Quadratic response . 113 12.2.3 Cubic response . 115 13 Direct and parallel calculations 117 13.1 Direct methods . 117 13.2 Parallel methods . 118 14 Finite field calculations 119 14.1 General considerations . 119 14.2 Input description . 120 15 Solvent calculations 122 15.1 General considerations . 122 15.2 Input description . 123 CONTENTS iv 15.2.1 Geometry optimization . 125 15.2.2 Non-equilibrium solvation . 125 16 Vibrational corrections 128 16.1 Effective geometries . 128 16.2 Vibrational averaged properties . 130 16.3 Vibrationally averaged spin–spin coupling constants . 132 17 Relativistic Effects 134 18 SOPPA, SOPPA(CC2), SOPPA(CCSD) and RPA(D) 136 18.1 General considerations . 136 18.2 Input description molecular orbital based SOPPA . 138 18.3 Input description atomic orbital based SOPPA module . 141 19 NEVPT2 calculations 145 19.1 General considerations . 145 19.2 Input description . 146 20 Examples of generalized active space CI calculations 147 20.1 Energy calculation with a GAS-type active space decomposition I . 147 20.2 Energy calculation with a GAS-type active space decomposition II . 149 20.3 Energy calculation with a RAS-type active space decomposition . 150 21 Examples of coupled cluster calculations 152 21.1 Multiple model energy calculations . 152 21.2 First-order property calculation . 153 21.3 Static and frequency-dependent dipole polarizabilities and corresponding dis- persion coefficients . 153 21.4 Static and frequency-dependent dipole hyperpolarizabilities and correspond- ing dispersion coefficients . 154 21.5 Excitation energies and oscillator strengths . 155 21.6 Gradient calculation, geometry optimization . 156 21.7 R12 methods . 157 22 Examples of Cholesky decomposition-based calculations 158 22.1 Hartree-Fock energy and polarizability . 158 22.2 KT3 magnetic properties using London orbitals . 159 22.3 MP2 energy . 159 22.4 Restart of MP2 energy . 160 CONTENTS v 22.5 CC2 magnetic properties using the CTOCD/DZ method . 162 22.6 CCSD(T) energy calculation using decomposed energy denominators . 163 III DALTON Reference Manual 164 23 General input module 165 23.1 General input to DALTON : **DALTON ..................... 165 23.1.1 Geometry optimization module 1: *OPTIMIZE ............. 168 23.1.2 Parallel calculations : *PARALLEL .................... 178 23.1.3 PCM environment model: *PCM ..................... 178 23.1.4 QM/MM environment model: *QM3 .................. 178 23.1.5 Geometry optimization module 2: *WALK ................ 179 23.1.6 Molecule geometry and basis sets, *MOLBAS .............. 184 23.2 Numerical differentiation : **NMDDRV ...................... 185 23.2.1 Vibrational averaging of molecular properties: *PROPAV ....... 188 23.2.2 Vibrational analysis: *VIBANA ...................... 189 23.3 Decomposition of two-electron integrals : **CHOLES .............. 190 24 Integral evaluation, hermit 192 24.1 General . 192 24.2 **INTEGRALS directives . 193 24.2.1 General: **INTEGRALS .......................... 193 24.2.2 One-electron integrals: *ONEINT ..................... 210 24.2.3 Two-electron integrals using twoint: *TWOINT ............ 211 24.2.4 Two-electron integrals using eri: *ER2INT ............... 212 24.2.5 Integral sorting: *SORINT ........................ 214 24.2.6 Construction of the supermatrix file: *SUPINT ............. 215 25 molecule input style 216 25.1 General molecule input ............................ 217 25.2 Cartesian geometry input . 220 25.3 Z-matrix input . 223 25.4 Using basis set libraries . 224 25.5 Auxiliary basis sets . 227 25.6 The basis sets supplied with dalton2011 ................... 228 26 Molecular wave functions, sirius 236 26.1 General notes for the sirius input reference manual . 236.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages444 Page
-
File Size-