Determination of Molecular Stereochemistry Using Chiroptical Spectroscopic Methods Vanderbilt Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Determination of Molecular Stereochemistry Using Chiroptical Spectroscopic Methods Vanderbilt Chemistry Prasad L. Polavarapu Department of Chemistry Vanderbilt University Nashville TN 37235 USA Presented to Synthetic community/ Chemical-Biology training program February 15, 2011 Food for thought Vanderbilt Chemistry How would you determine: (A). the absolute configuration of: (1). Bromochlorofluoromethane, CHFClBr (2). Molecules that are chiral solely due to isotopic substitution (3). Diastereomers of Natural Products (B). The secondary structures of peptides/proteins Vanderbilt Chemistry ORD ECD Optical Electronic Circular Rotatory Dichroism dispersion Chiroptical Spectroscopic Vibrational methods Circular Vibrational Raman Dichroism Optical Activity VCD VROA Enantiomers of chiral molecules give oppositely signed chiroptical spectra and thus enable distinguishing enantiomers Optical Rotation: Experimental Measurement Vanderbilt Chemistry Chiral sample monochromator detector Analyzer Linear polarizer Specific Rotation: []= /c l is observed rotation c is concentration in g / mL l is path length in dm Specific Rotation & Molecular structure Vanderbilt Chemistry “Experimental determination of the absolute configuration of bromochlorofluoromethane is a challenge”. Wilen SH, Bunding KA, Kascheres CM, Weider MJ. J Am Chem Soc 1985; 107:6997-6998 Lack of a reliable method to correlate observed Specific rotation with molecular structure prevented optical rotation from becoming a structural tool for the most part of twentieth century. This status has changed now due to advances in quantum chemical theories and ever changing computer technology Vanderbilt Chemistry -1 2 2 Static method of Amos G’=-(4/h){[1/( ns- )]Im{,snm,ns}} Chem. Phys. Lett. 1982; 87: 23-26 -1 = -(1/3) [G’xx+ G’yy+ G’zz] -1 lim G’=-(h/) Im (s/F)|(s/B) 0 [] = 13.43 x10-5 2/M CPHF method implemented (in deg.cc.dm-1.g-1) in CADPAC program Molecule Pred Expt (R)-methyloxirane 2 14 (S)-methylthiirane -50 -51 (R,R)-dimethyloxirane 70 59 (S,S)-dimethylthiirane -248 -129 Using specific rotation at 589nm and Raman optical activity, absolute configuration of bromochlorofluoromethane was assigned as (S)-(+)/(R)-(-). Hecht L, Costante J, Polavarapu PL, Collet A, Barron LD. Angew. Chem. 1997; 36: 885-887; Calculations were done at Hartree-Fock level of Chem. Eng. News, 1997 theory using 6-31G*/DZP basis sets for 11 molecules Advanced theoretical methods Time dependent density functional theory for specific rotation Vanderbilt Chemistry (1). K. Yabana, G. F. Bertsch, Application of time-dependent density functional theory to optical activity, Phys. Rev. A 60 (1999) 1271-1279; (2). J. R. Cheeseman, M. J. Frisch, F. J. Devlin, P. J. Stephens, Hartree-Fock and Density functional theory ab initio calculation of optical rotation using GIAOs: Basis set dependence, J. Phys. Chem. A.104 (2000) 1039-1046; (3). S. Grimme, Calculation of frequency dependent optical rotation using density functional response theory, Chem. Phys. Lett. 339 (2001) 380-388 (4).K. Ruud, T. Helgaker, Optical rotation studied by density functional and coupled-cluster methods, Chem Phys Lett. 352 (2002) 533-539. (5). J. Autschbach, S. Patchkovskii, T. Ziegler, S. J. A. van Gisbergen, E. J. Baerends, Chiroptical properties from time- dependent density functional theory. II. Optical rotations of small to medium size organic molecules, J. Chem. Phys.117 (2002) 581-592. Advanced theoretical methods Coupled cluster theory for specific rotation Vanderbilt Chemistry (1). K. Ruud, T. Helgaker, Optical rotation studied by density-functional and coupled-cluster methods, Chem Phys Lett. 352 (2002) 533-539. (2). Ruud K, Stephens PJ, Devlin FJ, Taylor PR, Cheeseman JR, Frisch MJ. Coupled cluster calculations of optical rotation, Chem. Phys. Lett. 2003; 373:606-614. (3). Tam MC, Russ NJ, Crawford TD, Coupled cluster calculation of optical rotatory dispersion of (S)-methyloxirane, J. Chem. Phys. 2004; 121:3550-3557. (4). Pedersen TB, Sanchez de Meras AMJ, Koch H. Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decomposition. J. Chem. Phys. 2004; 120: 8887-8897. (5). Kongsted J, Pedersen TB, Strange M, Osted A, Hansen AE, Mikkelsen KV, Pawlowski F, Jorgensen P, Hattig C. “Coupled cluster calculations of optical rotation of S-propylene oxide in gas phase and solution”, Chem. Phys. Lett. 2005; 401:385-392 Absolute configuration of Bromochlorofluoromethane Vanderbilt Chemistry Optical rotatory dispersion in bromochlorofluoromethane (S)-(+)-CHFClBr Predicted with 4 in C H 6 12 B3LYP/aug-cc-pVTZ 3 neat liquid For (S)-CHFClBr 2 H 1 Specicic Rotation B3LYP/aug-cc-pVTZ 0 C 350 450 550 650 F Br nm) Cl Experimental data from: Canceill J, Lacombe L, Collet A., J Am Chem Soc 1985; 107: 6993-6996. Hecht L, Costante J, Polavarapu PL, Collet A, Barron LD. Angewandte Chemie 1997; 36: 885-887 P. L.Polavarapu, Angewandte Chemie Int. Ed 41(23),4544-4546 (2002). Summary for Optical rotatory dispersion Vanderbilt Chemistry Remarkable advances in calculation of specific rotations. ORD can now be calculated through resonant regions using sophisticated levels of theory Optical rotation at a single wavelength should never be used for establishing Molecular structure “Protocols for the analysis of theoretical optical rotations”, P. L. Polavarapu, Chirality 2006; 18: 348-356 However need a significant culture change in reporting Experimental solution phase optical rotations Vanderbilt Chemistry Errors are not usually reported for optical rotation measurements in liquid solutions Significant errors can arise from (a). Preparing solutions with smaller amount (~mg) of samples (b). Preparing smaller volume (~ mL) solutions (c). Measuring small (<0.01) optical rotation values Optical rotation measurements of organometallic compounds: Caveats and recommended procedures. Dewey MA, Gladysz JA. Organometallics 1993, 12, 2390-2392. Electronic Circular Dichroism (ECD) Vanderbilt Chemistry Excited electronic state AL-AR First Vibrational excited state 1 Ground electronic state Vibrational ground state 0 ECD technique is more than 100 yrs old Gained a new life, in the last decade, with the advent of reliable quantum chemical theories Measurement of Electronic Circular Dichroism Vanderbilt Chemistry Circularly Polarized light sample Detector Visible light source Experimental Theoretical Dipole Strength Absorbance 2 D01=|<0||1>| A= - log(I/I0) Circular Dichroism Rotational Strength R01=Im[<0||1>•<1|m|0>] A=AL-AR A typical ECD spectrum Vanderbilt Chemistry (aS)- 3,3'-diphenyl-[2,2'-binaphthalene]-1,1'-diol ECD and Molecular Structures… the Old Way Vanderbilt Chemistry Empirical rules: Octant rule etc [Lightner, D. A.; Gurst, J. E. Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy, John Wiley & Sons: New York, 2000.] Exciton coupling model [Harada, N.; Nakanishi, K. Circular Dichroism Spectroscopy: Exciton coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, 1983.; ] Semi-classical models: Devoe’s Polarizability model [Superchi, S.; Giorgio, E.; Rosini, A. Structural determinations by circular dichroism spectra analysis using coupled oscillator methods: An update of the applications of the DeVoe polarizability model, Chirality, 2004, 16, 422-451] ECD and Molecular Structures… the Modern Way Vanderbilt Chemistry th For i electronic transition, calculate rotational strength, Ri. o o o Ri Im s i i m s 2 Corresponding absorption intensity as dipole strength, Di=|<s||i>| 8 2 m D or dimensionless oscillator strength, f . f e i i i i 3e 2 h 3298.8 i Ri 40 Peak intensity of Lorentzian band: i,0 10 22.94 i 2 () i Lorentzian band intensity distribution: i i,0 2 2 ( i ) i Early Quantum chemical calculations with Random phase approximation: Hansen AE, Bouman TD, Natural chiroptical spectroscopy: Theory and computations, Adv Chem Phys 1980;44:545–644. Hansen AE, Voigt B, Rettrup S, Large-scale RPA calculations of chiroptical properties of organic molecules: Program RPAC, Int J Quantum Chem 1983;23: 595–611. Modern Quantum chemical calculations: Density functional theoretical method for ECD Vanderbilt Chemistry Autschbach, J.; Ziegler T.; van Gisbergen SJA.; Baerends EJ. Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules, J. Chem. Phys. 2002; 116: 6930-6940. Diedrich C.; Grimme S. Systematic Investigation of Modern Quantum Chemical Methods to Predict Electronic Circular Dichroism Spectra, J. Phys. Chem. A. 2003, 107, 2524-2539; Pecul M.; Ruud K.; Helgaker T. Density functional theory calculation of electronic circular dichroism using London orbitals, Chem. Phys. Lett. 2004; 388: 110-119; Stephens PJ, McCann DM, Devlin FJ, Cheeseman JR, Frisch MJ. Determination of the absolute configuration of [3(2)](1,4) barrelenophanedicarbonitrile using concerted time-dependent density functional theory calculations of optical rotation and electronic circular dichroism. J Am Chem Soc 126 (2004) 7514-7521. Modern Quantum chemical calculations: Coupled Cluster theoretical method for ECD Vanderbilt Chemistry Pedersen TB.; Koch H.; Ruud K. Coupled cluster response calculation of natural chiroptical spectra, J. Chem. Phys. 1999; 110: 2883-2892; Crawford TD.; Tam MC.; Abrams ML. The current state of ab initio calculations of optical rotation and electronic circular dichroism spectra. J. Phys. Chem. 2007, 111, 12057-12068 Molecular stereochemistry: