Dasar Teknik

Total Page:16

File Type:pdf, Size:1020Kb

Dasar Teknik DASAR TEKNIK KOMPUTER R. Purnama, S.T., M.T. Penerbit K-Media Yogyakarta, 2020 DASAR TEKNIK KOMPUTER x + 256 hlm.; 14 x 20 cm ISBN: 978-602-451-706-9 Penulis : R. Purnama Tata Letak : Uki Desain Sampul : Hary Mulyanto Cetakan : Februari 2020 Copyright © 2020 by Penerbit K-Media All rights reserved Hak Cipta dilindungi Undang-Undang No 19 Tahun 2002. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku ini dalam bentuk apapun, baik secara elektris mau pun mekanis, termasuk memfotocopy, merekam atau dengan sistem penyimpanan lainnya, tanpa izin tertulis dari Penulis dan Penerbit. Isi di luar tanggung jawab percetakan Penerbit K-Media Anggota IKAPI No.106/DIY/2018 Banguntapan, Bantul, Yogyakarta. e-mail: [email protected] ii KATA PENGANTAR Alhamdulillah puji syukur penulis panjatkan kehadirat Allah SWT karena atas berkat rahmat dan karunianya, buku ajar ini dapat diseleaikan. Buku ini adalah merupakan buku ajar kedua yang penulis susun dan dipergunakan khususnya untuk para mahasiswa semester satu fakultas teknik program studi teknik komputer Universitas Wiralodra. Materi yang terdapat di dalam buku ini merupakan dasar-dasar teknik komputer yang harus dikuasai dan dipahami oleh para mahasiswa sebelum melanjutkan ke mata kuliah-mata kuliah keahlian yang akan diberikan pada semester-semeseter selanjutnya. Untuk memudahkan pemahaman, pada setiap bab penulis berikan beberapa contoh soal beserta penyelesaiannya. Sementara pada akhir setiap bab diberikan soal-soal sebagai latihan. Dan diharapkan para mahisiswa untuk aktif mempelajari teori dan mengerjakan contoh-contoh soal beserta latihan- latihannya. Dengan begitu proses belajar dan mengajar akan menjadi efektif dan didapatkan hasil yang maksimal. Ucapan terimakasih ingin penulis sampaikan kepada : 1. Bapak Hamdani Abdulgani, ST., M.Si selaku dekan fakultas teknik Universitas Wiralodra Indramayu. 2. Bapak Darsanto, ST.,M.Kom selaku kaprodi teknik komputer Universitas Wiralodra Indramayu. 3. Rekan-rekan sesama dosen beserta semua staff tata usaha fakultas teknik Universitas iii Wiralodra atas semua bentuk support dan dukungannya sehingga penulisan buku ajar ini dapat terselesaikan dengan baik. Akhirnya penulis pun menyadari bahwa tentu buku ajar ini masih jauh dari sempurna. Oleh karenanya, kritik dan saran terhadap penyempurnaan buku ajar ini sangat diharapkan. Semoga buku ajar ini dapat memberikan manfaat dan kemudahan bagi para mahasiswa khususnya program studi teknik komputer Universitas Wiralodra. Indramayu, 22 Januari 2020 Penulis, R. Purnama iv DAFTAR ISI KATA PENGANTAR .............................................................. iii DAFTAR ISI ............................................................................... v BAB 1. SEJARAH DAN EVOLUSI KOMPUTER ............ 1 1.1. Pendahuluan .............................................................. 1 1.2. Komputer-Komputer Mekanik .................................. 3 1.3. Komputer-Komputer Elektronik .............................. 10 1.3.1. Komputer Generasi Pertama ......................... 13 1.3.2. Komputer Generasi Kedua ............................ 20 1.3.3. Komputer Generasi Ketiga ............................ 22 1.3.4. Komputer Generasi Lanjut ............................ 24 1.4. Perkembangan Bahasa Pemrograman ...................... 26 1.5. Perkembangan Mikroprosesor (Intel) ...................... 30 BAB 2. ARSITEKTUR DASAR KOMPUTER ................ 47 2.1. Pendahuluan ............................................................ 47 2.2. Arsitektur Von Neumann ......................................... 48 2.3. Arsitektur Harvard ................................................... 50 2.4. Komputer Digital ..................................................... 51 2.4.1. Cara Kerja Komputer .................................... 55 2.4.2. Format Instruksi ............................................ 56 BAB 3. KONSEP DASAR SISTEM BILANGAN ............ 58 3.1. Pendahuluan ............................................................ 58 3.2. Sistem Bilangan Desimal ......................................... 59 3.3. Sistem Bilangan Biner ............................................. 60 3.4. Sistem Bilangan Oktal dan Heksadesimal ............... 62 3.5. Konversi Konversi Bilangan .................................... 63 3.5.1. Konversi Bilangan Desimal ke Biner ............ 64 v 3.5.2. Konversi Bilangan Desimal ke Oktal ............ 68 3.5.3. Konversi Bilangan Desimal ke Heksa ........... 69 3.5.4. Konversi Bilangan Biner ke Desimal ............ 73 3.5.5. Konversi Bilangan Biner ke Oktal ................. 74 3.5.6. Konversi Bilangan Biner ke Heksadesimal ................................................ 75 3.6. Representasi Bilangan Biner .................................... 75 3.6.1. Sign-Bit Magnitude ....................................... 75 3.6.2. Sistem Bilangan Komplemen ........................ 78 3.6.2.1. Representasi Komplemen -1 .......... 82 3.6.2.2. Representasi Komplemen -2 .......... 82 3.7. Bilangan Floating Point ........................................... 89 Bab 4. ARITMATIKA KOMPUTER .............................. 93 4.1. Pendahuluan ............................................................ 93 4.2. Aturan Dasar Penjumlahan Biner ............................ 93 4.3. Aturan Dasar Pengurangan Biner ............................ 97 4.4. Aturan Dasar Perkalian Biner ................................ 100 4.5. Pembagian Biner ................................................... 102 4.6. Operasi Aritmatika Komplemen -2 ........................ 103 4.6.1. Penjumlahan Dengan Menggunakan Komplemen -2 ............................................. 104 4.6.2. Pengurangan Dengan Menggunakan Komplemen -2 ............................................. 107 4.7. Aritmatika Bilangan Floating Point ....................... 113 4.7.1. Penjumlahan dan Pengurangan Bilangan Floating Point ............................... 114 4.7.2. Perkalian dan Pembagian Bilangan Floating Point .............................................. 115 vi Bab 5. ALJABAR BOOLEAN ....................................... 120 5.1. Pendahuluan .......................................................... 120 5.2. Operasi Dasar ........................................................ 121 5.2.1. Pernyataam (Ekspresi) Boolean .................. 123 5.2.2. Tabel Kebenaran .......................................... 123 5.2.3. Postulat-Postulat Aljabar Boolean ............... 124 5.2.4. Hukum-Hukum Aljabar Boolean ................. 124 5.2.4.1. Hukum identitas : .......................... 125 5.2.4.2. Hukum idempoten : ....................... 125 5.2.4.3. Hukum komplemen : ..................... 126 5.2.4.4. Hukum dominansi : ....................... 126 5.2.4.5. Hukum involusi : ........................... 127 5.2.4.6. Hukum penyerapan : ...................... 127 5.2.4.7. Hukum komutatif :......................... 128 5.2.4.8. Hukum asosiatif : ........................... 129 5.2.4.9. Hukum distributif : ........................ 129 5.2.4.10.Hukum De Morgan : ...................... 129 5.2.4.11.Hukum 0/1 ..................................... 130 5.3. Gerbang Logika ..................................................... 131 5.3.1. Gerbang AND .............................................. 131 5.3.2. Gerbang OR ................................................. 132 5.3.3. Gerbang NOT (Inverter) .............................. 133 5.3.4. Gerbang NAND ........................................... 134 5.3.5. Gerbang NOR .............................................. 135 5.3.6. Gerbang XOR .............................................. 135 5.3.7. Gerbang XNOR ........................................... 136 5.4. Penyederhanaan Fungsi Boolean ........................... 138 5.4.1. Penyederhanaan Secara Aljabar ................... 140 5.4.2. Metode Peta Karnaugh ................................ 146 5.5. Aplikasi Aljabar Boolean .......................................... 157 5.5.1. Rangkaian Switch ........................................ 157 vii 5.5.2. Rangkaian Aritmatika .................................. 159 5.5.2.1. Half Adder ...................................... 159 5.5.2.2. Full Adder ...................................... 161 5.5.2.3. Half Subtractor ............................... 163 5.5.2.4. Full Subtractor ................................ 164 5.5.2.5. Controlled Inverter ......................... 166 BAB 6. CENTRAL PROCESSING UNIT (CPU) .......... 170 6.1. Pendahuluan .......................................................... 170 6.2. Unit-Unit Fungsional Dari CPU ............................ 171 6.2.1. Control Unit (CU) ........................................ 173 6.2.2. Arithmetic And Logical Unit (ALU) ........... 175 6.2.3. Register ........................................................ 175 6.2.3.1. Program Counter (PC) .................. 179 6.2.3.2. Instruction Register (IR)............... 180 6.2.3.3. Memory Addres Register (MAR) .......................................... 182 6.2.3.4. Memory Buffer Register (MBR) .......................................... 182 6.2.3.5. Instruction Buffer Register (IBR) ............................................ 182 6.2.3.6. Accumulator (ACC) ..................... 182 6.2.3.7. Multiplier Quotient (MQ) ............. 183 BAB 7. UNIT MEMORI .................................................. 184 7.1. Pendahuluan .......................................................... 184 7.2. Memori Internal dan Eksternal .............................. 185 7.3. Hirarki Memori.....................................................
Recommended publications
  • Intel Technology Journal
    Intel® Technology Journal | Volume 14, Issue 1, 2010 Intel Technology Journal Publisher Managing Editor Content Architect Richard Bowles Andrew Binstock Herman D’Hooge Esther Baldwin Program Manager Technical Editor Technical Illustrators Stuart Douglas Marian Lacey InfoPros Technical and Strategic Reviewers Maria Bezaitis Ashley McCorkle Xing Su John Gustafson Milan Milenkovic Rahul Sukthankar Horst Haussecker David O‘Hallaron Allison Woodruff Badarinah Kommandur Trevor Pering Jianping Zhou Anthony LaMarca Matthai Philipose Scott Mainwaring Uttam Sengupta Intel® Technology Journal | 1 Intel® Technology Journal | Volume 14, Issue 1, 2010 Intel Technology Journal Copyright © 2010 Intel Corporation. All rights reserved. ISBN 978-1-934053-28-7, ISSN 1535-864X Intel Technology Journal Volume 14, Issue 1 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR 97124-5961. E mail: [email protected]. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.
    [Show full text]
  • Trends in Electrical Efficiency in Computer Performance
    ASSESSING TRENDS IN THE ELECTRICAL EFFICIENCY OF COMPUTATION OVER TIME Jonathan G. Koomey*, Stephen Berard†, Marla Sanchez††, Henry Wong** * Lawrence Berkeley National Laboratory and Stanford University †Microsoft Corporation ††Lawrence Berkeley National Laboratory **Intel Corporation Contact: [email protected], http://www.koomey.com Final report to Microsoft Corporation and Intel Corporation Submitted to IEEE Annals of the History of Computing: August 5, 2009 Released on the web: August 17, 2009 EXECUTIVE SUMMARY Information technology (IT) has captured the popular imagination, in part because of the tangible benefits IT brings, but also because the underlying technological trends proceed at easily measurable, remarkably predictable, and unusually rapid rates. The number of transistors on a chip has doubled more or less every two years for decades, a trend that is popularly (but often imprecisely) encapsulated as “Moore’s law”. This article explores the relationship between the performance of computers and the electricity needed to deliver that performance. As shown in Figure ES-1, computations per kWh grew about as fast as performance for desktop computers starting in 1981, doubling every 1.5 years, a pace of change in computational efficiency comparable to that from 1946 to the present. Computations per kWh grew even more rapidly during the vacuum tube computing era and during the transition from tubes to transistors but more slowly during the era of discrete transistors. As expected, the transition from tubes to transistors shows a large jump in computations per kWh. In 1985, the physicist Richard Feynman identified a factor of one hundred billion (1011) possible theoretical improvement in the electricity used per computation.
    [Show full text]
  • Sperry Rand's Third-Generation Computers 1964–1980
    Sperry Rand’s Third-Generation Computers 1964–1980 George T. Gray and Ronald Q. Smith The change from transistors to integrated circuits in the mid-1960s marked the beginning of third-generation computers. A late entrant (1962) in the general-purpose, transistor computer market, Sperry Rand Corporation moved quickly to produce computers using ICs. The Univac 1108’s success (1965) reversed the company’s declining fortunes in the large-scale arena, while the 9000 series upheld its market share in smaller computers. Sperry Rand failed to develop a successful minicomputer and, faced with IBM’s dominant market position by the end of the 1970s, struggled to maintain its position in the computer industry. A latecomer to the general-purpose, transistor would be suitable for all types of processing. computer market, Sperry Rand first shipped its With its top management having accepted the large-scale Univac 1107 and Univac III comput- recommendation, IBM began work on the ers to customers in the second half of 1962, System/360, so named because of the intention more than two years later than such key com- to cover the full range of computing tasks. petitors as IBM and Control Data. While this The IBM 360 did not rely exclusively on lateness enabled Sperry Rand to produce rela- integrated circuitry but instead employed a tively sophisticated products in the 1107 and combination of separate transistors and chips, III, it also meant that they did not attain signif- called Solid Logic Technology (SLT). IBM made icant market shares. Fortunately, Sperry’s mili- a big event of the System/360 announcement tary computers and the smaller Univac 1004, on 7 April 1964, holding press conferences in 1005, and 1050 computers developed early in 62 US cities and 14 foreign countries.
    [Show full text]
  • Sperry Corporation, UNIVAC Division Photographs and Audiovisual Materials 1985.261
    Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 Table of Contents Summary Information .................................................................................................................................... 3 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Arrangement ................................................................................................................................................... 6 Administrative Information ............................................................................................................................ 6 Related Materials ........................................................................................................................................... 7 Controlled Access Headings .......................................................................................................................... 8 Bibliography
    [Show full text]
  • Sperry Corporation, Univac Division Records 1825.I
    Sperry Corporation, Univac Division records 1825.I This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Manuscripts and Archives PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, Univac Division records 1825.I Table of Contents Summary Information .................................................................................................................................... 4 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Administrative Information ............................................................................................................................ 7 Related Materials ........................................................................................................................................... 8 Controlled Access Headings .......................................................................................................................... 9 Appendices ..................................................................................................................................................... 9 Bibliography ................................................................................................................................................
    [Show full text]
  • Sperry Rand Third-Generation Computers
    UNISYS: HISTORY: • 1873 E. Remington & Sons introduces first commercially viable typewriter. • 1886 American Arithmometer Co. founded to manufacture and sell first commercially viable adding and listing machine, invented by William Seward Burroughs. • 1905 American Arithmometer renamed Burroughs Adding Machine Co. • 1909 Remington Typewriter Co. introduces first "noiseless" typewriter. • 1910 Sperry Gyroscope Co. founded to manufacture and sell navigational equipment. • 1911 Burroughs introduces first adding-subtracting machine. • 1923 Burroughs introduces direct multiplication billing machine. • 1925 Burroughs introduces first portable adding machine, weighing 20 pounds. Remington Typewriter introduces America's first electric typewriter. • 1927 Remington Typewriter and Rand Kardex merge to form Remington Rand. • 1928 Burroughs ships its one millionth adding machine. • 1930 Working closely with Lt. James Doolittle, Sperry Gyroscope engineers developed the artificial horizon and the aircraft directional gyro – which quickly found their way aboard airmail planes and the aircraft of the fledgling commercial airlines. TWA was the first commercial buyer of these two products. • 1933 Sperry Corp. formed. • 1946 ENIAC, the world's first large-scale, general-purpose digital computer, developed at the University of Pennsylvania by J. Presper Eckert and John Mauchly. • 1949 Remington Rand produces 409, the worlds first business computer. The 409 was later sold as the Univac 60 and 120 and was the first computer used by the Internal Revenue Service and the first computer installed in Japan. • 1950 Remington Rand acquires Eckert-Mauchly Computer Corp. 1951 Remington Rand delivers UNIVAC computer to the U.S. Census Bureau. • 1952 UNIVAC makes history by predicting the election of Dwight D. Eisenhower as U.S. president before polls close.
    [Show full text]
  • R00456--FM Getting up to Speed
    GETTING UP TO SPEED THE FUTURE OF SUPERCOMPUTING Susan L. Graham, Marc Snir, and Cynthia A. Patterson, Editors Committee on the Future of Supercomputing Computer Science and Telecommunications Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Gov- erning Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engi- neering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for ap- propriate balance. Support for this project was provided by the Department of Energy under Spon- sor Award No. DE-AT01-03NA00106. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the organizations that provided support for the project. International Standard Book Number 0-309-09502-6 (Book) International Standard Book Number 0-309-54679-6 (PDF) Library of Congress Catalog Card Number 2004118086 Cover designed by Jennifer Bishop. Cover images (clockwise from top right, front to back) 1. Exploding star. Scientific Discovery through Advanced Computing (SciDAC) Center for Supernova Research, U.S. Department of Energy, Office of Science. 2. Hurricane Frances, September 5, 2004, taken by GOES-12 satellite, 1 km visible imagery. U.S. National Oceanographic and Atmospheric Administration. 3. Large-eddy simulation of a Rayleigh-Taylor instability run on the Lawrence Livermore National Laboratory MCR Linux cluster in July 2003.
    [Show full text]
  • Annotations of First Generation Systems Development in Sweden
    Annotations of First Generation Systems Development in Sweden Janis Bubenko, Jr. Department of Computer and Systems Science, Royal Institute of Technology and Stockholm University, Forum 100, SE-16440, Kista, Sweden, [email protected] Abstract: This work presents episodes of first generation information systems development in Sweden using two particular computers, ALWAC IIIE, during the period 1957–1961, and Univac III during 1963–1964. The ALWAC IIIE at ADB Institute, Gothenburg, was used for technical as well as for administrative applications. Another episode concerns re- engineering of an inventory management application; it used the ALWAC IIIE for the Swedish Defence Material Administration in 1960. The next episode concerns the computer Univac III. A sales contract between Götaverken AB and Univac included a guarantee by Univac to transfer one of Götaverken’s punched card routines to a magnetic tape oriented routine on Univac III. The development work was carried out on a Univac III at Kantonalbank in Bern, Switzerland. They did the work in night shifts during a period of five months. Only one Univac III was installed in Sweden. Keywords: First generation, information system development, Alwac IIIE, Univac III, Gothenburg 1. Introduction Information systems development is today a complex activity encompassing many types of activities and involving different kinds of stakeholders. It uses many different methods, techniques, and supporting tools. The development process deals with issues of many kinds such as organisational, economic, administrative, technical, social, as well as political. During the 1950-1960 decade, called the first generation of systems development, the development process was much simpler. In the 1950s, heavy emphasis was on primarily two types of activities: programming and testing.
    [Show full text]
  • DEPARTMENT of COMPUTER SCIENCE Carneg=E-Iellon Un=Vers=Ty
    CMU-CS-84-122 Error Detection with Memory Tags Richard H. Gumpertz Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania December, 1981 DEPARTMENT of COMPUTER SCIENCE Carneg=e-iellon Un=vers=ty CMU-CS-84-122 Error Detection with Memory Tags Richard H. Gumpertz Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania December, 1981 Submitted to Carnegie-Mellon University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Copyright © 1981 Richard H. Gumpertz This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory tinder Contract F33615-78-C-1551. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the United States Government, or Carnegie-Mellon University. Richard H. Gumpertz i Error I)ctection with Memory Tags Abstract The ability to achieve and maintain system reliability is an important problem that has become more critical as the use of computers has become more common. Fundamental to improved reliability is the ability to detect errors promptly, before their effects can be propagated. This dissertation proposes methods for using storage tags to detect a broad class of hardware and software errors that might otherwise go undetected. Moreover, the suggested schemes require minimal extensions to the hardware of typical computers. In fact, it is shown that in many situations tags can be added to words of storage without using any extra bits at all.
    [Show full text]
  • Ensemble Computing: Opportunities and Challenges
    Intel® Technology Journal | Volume 14, Issue 1, 2010 ENSEMBLE COMPUTING: OPPORTUNITIES AND CHALLENGES Contributors Roy Want Abstract Intel Corporation SSinceince tthehe aadventdvent ooff tthehe fi rrstst ppracticalractical mmobileobile ccomputersomputers mmoreore tthanhan 2200 yyearsears aago,go, aadvancesdvances iinn tthehe uunderlyingnderlying ttechnologyechnology hhaveave mmovedoved ooutut ooff rresearchesearch aandnd EEveve SSchoolerchooler ddevelopmentevelopment aandnd iintonto bbothoth tthehe eenterprisenterprise aandnd tthehe aarearea ooff cconsumeronsumer eelectronics.lectronics. IIntelntel CCorporationorporation TToday,oday, mmobileobile nnetworkedetworked ccomputersomputers aarere uubiquitous.biquitous. TTrendsrends tthathat hhaveave eenablednabled Lenka Jelinek tthishis rrevolutionevolution iincludenclude iimprovedmproved pprocessorrocessor pperformance,erformance, eexponentiallyxponentially Intel Corporation iincreasingncreasing sstoragetorage ddensity,ensity, aandnd hhigh-bandwidthigh-bandwidth sstandardizedtandardized rradios:adios: aallll ooff tthesehese ccomputersomputers cconsumeonsume llessess ppowerower aandnd aarere ppackagedackaged iinn ssmallermaller fform-factorsorm-factors tthanhan JJaeyeonaeyeon JJungung ttheirheir ppredecessors.redecessors. HHowever,owever, tthehe fformationormation ooff mmobileobile ccollectionsollections ooff ddevices,evices, IIntelntel CCorporationorporation oorr eensembles,nsembles, ccanan ffurtherurther bbuilduild oonn tthehe nnetworketwork eeffff eectct ttoo aamplifymplify eensembles’nsembles’
    [Show full text]
  • Eighteen Bit Computers
    IT Legacy Article for the Month September 2015 Eighteen Bit Computers INTRODUCTION This article was inspired by communications from three 'outside-of-Minnesota' people who discovered our IT Legacy web site via their internet browsers: From George Keremedjiev; Director of the American Computer Museum in Bozeman, MT: "We have the last remaining mainframe computer used by NASA for the Apollo Moon Missions, a UNIVAC 418-II used at Mission Control in Houston. We will be opening a new comprehensive exhibit on computers and the Apollo Moon Missions on June 1, 2015." From Duane Craps: "The Mid Atlantic Retro Computer Hobbyists (MARCH) are looking for info on 1219’s, 1532’s, and 1540’s that they rescued from Johns Hopkins APL." From Anders Carlsson, Sweden: "Hello. I am an old service engineer from Univac to Unisys. I am trying to find out if there are any more physical units (418-II) in the world. Our simple website has some pictures from our collection, https://datamuseet.wordpress.com." The VIP Club, here in Minnesota, appreciates the efforts of these people and their organizations in preserving parts of our Information Technology (IT) Legacy. This paper includes communications clips from these people and retirees who have contributed to our web site anthology. LABenson This NASA installation1 has (left to right) a UNIVAC 1232 I/O Console, two UNIVAC 1218 computers, two UNIVAC dual transport 1240 magnetic tape units, and a UNIVAC 418 computer with operator keyboard/printer. The elapsed time mission clock above the 418 operator/maintenance console shows 14:42.83 hours/minutes.
    [Show full text]
  • ORGANISASI DAN ARSITEKTUR KOMPUTER Organisasi Komputer
    ORGANISASI DAN ARSITEKTUR KOMPUTER Organisasi komputer mempelajari bagian yang terkait dengan unit-unit operasional komputer dan hubungan antara komponen sistem komputer,contoh : sinyal kontrol, prosesor, interface komputer dan peripheral, teknologi memori yang digunakan. Arsitektur komputer mempelajari atribut-atribut sistem komputer yang terkait dengan seorang programmer dan memiliki dampak langsung pada eksekusi logis sebuah program, contoh : set instruksi, jumlah bit yang digunakan untuk merepresentasikan bermacam-macam jenis data (misal bilangan, karakter), aritmetika yang digunakan, teknik pengalamatan, mekanisme I/O. Arsitektur komputer dapat bertahan bertahun-tahun tapi organisasi komputer dapat berubah sesuai dengan perkembangan teknologi. Pabrik komputer memproduksi sekelompok model komputer, yang memiliki arsitektur sama tapi berbeda dari segi organisasinya yang mengakibatkan harga dan karakteristik unjuk kerja yang berbeda. KOMPUTER SEBAGAI MESIN MULTI LEVEL Level adalah suatu tingkatan bahasa dan mesin virtual yang mencerminkan tingkat kemudahan komunikasi antara manusia sebagai pemrogram dengan komponen sirkuit elektronik dalam sebuah komputer sebagai pelaksana instruksi sebuah pemrograman. Bahasa atau level yang terletak paling bawah adalah yang paling sederhana dan dapat diproses dengan cepat oleh mesin komputer, tetapi sulit untuk dipahami oleh manusia. Bahasa atau level yang paling atas adalah yang paling rumit dan mesin akan lebih lama melakukan proses instruksinya karena memerlukan interpreter, tetapi manusia lebih mudah memahami bahasa level tersebut. KOMPUTER SEBAGAI MESIN 6 LEVEL Pada level 1 – 3 merupakan bahasa mesin bersifat numerik. Program-program didalamnya terdiri dari deretan angka yang panjang, yang tidak menjadi masalah untuk mesin tapi merupakan persoalan untuk manusia. Mulai pada level 4 bahasa berisi kata/singkatan yang mempunyai arti bagi manusia. Komputer dirancang sebagai suatu rangkaian level, dimana setiap level dibangun diatas level sebelumnya.
    [Show full text]