Cell Proliferation Pattern and Twist Expression in an Aplacophoran
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Platyhelminthes, Nemertea, and "Aschelminthes" - A
BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. -
Number of Living Species in Australia and the World
Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure. -
Kinorhyncha:Cyclorhagida
JapaneseJapaneseSociety Society ofSystematicZoologyof Systematic Zoology Species Diversity, 2002, 7, 47-66 Echinoderesaureus n. sp. (Kinorhyncha: Cyclorhagida) from Tanabe Bay (Honshu Island), Japan, with a Key to the Genus Echinoderes Andrey V.Adrianovi, Chisato Murakami2and Yoshihisa Shirayama2 iinstitute ofMarine BiotQgy, Fkir-East Branch ofRetssian Accutemp of Sciences, Palchevskly St. IZ VIadivostok 690041, Russia 2Seto Marine Btolqgical Laboratorly, Its,oto U}ziversdy, Shirahama 459, IVishimuro, Vliakayama, 649-2211 Jicipan (Received 18 May 2001; Accepted 10 December 2oo1) A new species of echinoderid kinorhynch, Echinoderes aureus, is de- scribed and illustrated using a differential interference contrast microscope with Nomarski optics. The kinorhynchs were collected from washings of a brown alga, Padina arborescens Holmes, growing in tide pools in Tanabe Bay, Honshu Island, Japan. Diagnostic characters of E. aureLts are the pres- ence of middorsal spines on segments 6-10, lateral spines/tubu}es on seg- ments4 and 7-12, a pair of remarkably large subcuticular scars in a subven- tral position on segment 3, and an ineomplete rnidventral articulation on segment 4. The positions of numerous sensory-glandular organs, the sizes of various lateral spinesltubules, and the shapes of the terminal tergal and sternal extensions are also diagnostic. Echinoderes aureus constitutes the ' 59th valid species o ± the genus Echinoderes and the 15th speeies described from the Pacific Ocean. This is the fourth representative of Pacific ki- norhynchs found only in the intertidal zone and the second Pacific Ebhin- oderes living on macroalgae in tide pools, A dichotomous key to all 59 species is provided. Key Words: kinorhynch, taxonumy, Echinoderes, key, placid, spine, tubule, setae Introduction Kinorhyncha constitutes a taxon of meiobenthic, free-living, segmented and spiny marine invertebrates, generally less than lmm in length. -
Introduction to the Body-Plan of Onychophora and Tardigrada
Joakim Eriksson, 02.12.13 Animal bodyplans Onychophora Tardigrada Bauplan, bodyplan • A Bauplan is a set of conservative characters that are typical for one group but distinctively different from a Bauplan of another group Arthropoda Bauplan 2 Bauplan 3 Bauplan 4 Tardigrada Onychophora Euarthropoda/Arthropoda Insects Chelicerates Myriapods Crustaceans Arthropoda/Panarthropoda Bauplan 1 Arthropod characters • Body segmented, with limbs on several segments • Adult body cavity a haemocoel that extends into the limbs • Cuticle of α-chitin which is molted regularly • Appendages with chitinous claws, and mixocoel with metanephridia and ostiate heart (absent in tardigrades) • Engrailed gene expressed in posterior ectoderm of each segment • Primitively possess a terminal mouth, a non-retractable proboscis, and a thick integument of diverse plates Phylogenomics and miRNAs suggest velvets worm are the sister group to the arthropods within a monophyletic Panarthropoda. Campbell L I et al. PNAS 2011;108:15920-15924 Fossil arthropods, the Cambrian explosion Aysheaia An onychophoran or phylum of its own? Anomalocaris A phylum on its own? Crown group and stem group Arthropoda Bauplan 2 Bauplan 3 Bauplan 4 Tardigrada Onychophora Euarthropoda/Arthropoda Arthropoda/Panarthropoda Bauplan 1 How do arthropods relate to other animal groups Articulata Georges Cuvier, 1817 Characters uniting articulata: •Segmentation •Ventral nerv cord •Teloblastic growth zone Ecdysozoa Aguinaldo et al 1997 Ecdysozoa Character uniting ecdysozoa: •Body covered by cuticle of α-chitin -
Phylum Onychophora
Lab exercise 6: Arthropoda General Zoology Laborarory . Matt Nelson phylum onychophora Velvet worms Once considered to represent a transitional form between annelids and arthropods, the Onychophora (velvet worms) are now generally considered to be sister to the Arthropoda, and are included in chordata the clade Panarthropoda. They are no hemichordata longer considered to be closely related to echinodermata the Annelida. Molecular evidence strongly deuterostomia supports the clade Panarthropoda, platyhelminthes indicating that those characteristics which the velvet worms share with segmented rotifera worms (e.g. unjointed limbs and acanthocephala metanephridia) must be plesiomorphies. lophotrochozoa nemertea mollusca Onychophorans share many annelida synapomorphies with arthropods. Like arthropods, velvet worms possess a chitinous bilateria protostomia exoskeleton that necessitates molting. The nemata ecdysozoa also possess a tracheal system similar to that nematomorpha of insects and myriapods. Onychophorans panarthropoda have an open circulatory system with tardigrada hemocoels and a ventral heart. As in arthropoda arthropods, the fluid-filled hemocoel is the onychophora main body cavity. However, unlike the arthropods, the hemocoel of onychophorans is used as a hydrostatic acoela skeleton. Onychophorans feed mostly on small invertebrates such as insects. These prey items are captured using a special “slime” which is secreted from large slime glands inside the body and expelled through two oral papillae on either side of the mouth. This slime is protein based, sticking to the cuticle of insects, but not to the cuticle of the velvet worm itself. Secreted as a liquid, the slime quickly becomes solid when exposed to air. Once a prey item is captured, an onychophoran feeds much like a spider. -
A Review on Taxonomy of Phylum Kinorhyncha
Open Journal of Marine Science, 2020, 10, 260-294 https://www.scirp.org/journal/ojms ISSN Online: 2161-7392 ISSN Print: 2161-7384 A Review on Taxonomy of Phylum Kinorhyncha C. Jeeva, P. M. Mohan, P. Ragavan, V. Muruganantham Department of Ocean Studies and Marine Biology, Pondicherry University, Brookshabad Campus, Port Blair, Andaman and Nicobar Islands, India How to cite this paper: Jeeva, C., Mo- Abstract han, P.M., Ragavan, P. and Muruganan- tham, V. (2020) A Review on Taxonomy Kinorhyncha is exclusively marine, holobenthic, free-living, meiofaunal spe- of Phylum Kinorhyncha. Open Journal of cies found in all marine habitats in the world. However, information on geo- Marine Science, 10, 260-294. graphical distribution and taxonomical distributional status of Kinorhyncha https://doi.org/10.4236/ojms.2020.104020 are needed further understanding. This research article presents a compiled, Received: September 10, 2020 up-to-date checklist of the Phylum Kinorhyncha based on bibliographical Accepted: October 27, 2020 survey and revision of taxon names. Present checklist of this phylum com- Published: October 30, 2020 prises 271 species belonging to 30 genera and 13 families. The families are Copyright © 2020 by author(s) and distributed under three orders, Echinorhagata Sørensen et al. 2015, Kentror- Scientific Research Publishing Inc. hagata Sørensen et al. 2015, Xenosomata Zelinka, 1907. Among the 271 valid This work is licensed under the Creative species, in the last five years 82 new species emerged, two new orders and Commons Attribution International three families were described. It also includes nine new genera. This checklist License (CC BY 4.0). -
(Includes Insects) Myriapods Pycnogonids Limulids Arachnids
N. Dean Pentcheff Insect Friends and Relations Regina Wetzer What do we know How do we know that? about arthropod relationships? Examples of lines of evidence: Onychophorans Genetics and Genomics Genomic approaches The figures at left show the can look at patterns protein structure of opsins Common of occurrence of (visual pigments). Yellow iden- tifies areas of the protein that Ancestor of whole genes across Crustaceans (includes Insects) have important evolutionary Panarthropoda taxa to identify pat- terns of common and functional differences. This ancestry. provides information about how the opsin gene family has Cook, C. E., Smith, M. L., evolved across different taxa. Telford, M. J., Bastianello, Myriapods A., Akam, M. 2001. Hox Porter, M. L., Cronin, T. W., McClellan, Panarthropoda genes and the phylogeny D. A., Crandall, K. A. 2007. Molecular of the arthropods. Cur- characterization of crustacean visual rent Biology 11: 759-763. pigments and the evolution of pan- crustacean opsins. Molecular Biology This phylogenetic tree of the Arthropoda and Evolution 24(1): 253-268. Arthropoda Pycnogonids outlines our best current knowledge about relationships in the group. Dunn, C.W. et al. 2008. Broad phylogenetic sampling improves resolution of the animal tree of life. Nature Morphology 452: 745-749. Limulids Comparing similarities and differences among arthropod appendages is a fertile source of infor- Chelicerata mation about patterns of ancestry. Morphological Arachnids evidence can be espec- ially valuable because it is available for both living Unraveling arthropod phylogeny and fossil taxa. There are about 1,100,000 described arthropods – 85% of multicellular animals! Segmentation, jointed appendages, and the devel- opment of pattern-forming genes profoundly affected arthropod evolution and created the most morphologically diverse taxon on [Left:] Cotton, T. -
The Salish Sea Ecosystem in Fishbase and Sealifebase
Western Washington University Western CEDAR 2014 Salish Sea Ecosystem Conference Salish Sea Ecosystem Conference (Seattle, Wash.) May 1st, 8:30 AM - 10:00 AM The Salish Sea Ecosystem in FishBase and SeaLifeBase Maria Lourdes D. Palomares Fisheries Centre, [email protected] Nicolas Bailly WorldFish Patricia Yap FIN Daniel Pauly Fisheries Centre Follow this and additional works at: https://cedar.wwu.edu/ssec Part of the Terrestrial and Aquatic Ecology Commons Palomares, Maria Lourdes D.; Bailly, Nicolas; Yap, Patricia; and Pauly, Daniel, "The Salish Sea Ecosystem in FishBase and SeaLifeBase" (2014). Salish Sea Ecosystem Conference. 62. https://cedar.wwu.edu/ssec/2014ssec/Day2/62 This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Salish Sea Ecosystem Conference by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. April 30 - May 2, 2014 Washington State Convention & Trade Center Seattle, Washington Marine Birds and Mammals of the Salish Sea: Identifying Patterns and Causes of Change The Salish Sea in FishBase and SeaLifeBase MLD Palomares and N Bailly 1 May 2014 www.sealifebase.ca www.fishbase.ca Objectives of the study • Document the marine biodiversity of the Salish Sea and its sub- ecosystems in FishBase and SeaLifeBase; • Complete this documentation at least for vertebrates. The Salish Sea in FishBase and SeaLifeBase April 2014 version 2,280 marine species assigned to the Salish Sea based on -
Animal Phylogeny and the Ancestry of Bilaterians: Inferences from Morphology and 18S Rdna Gene Sequences
EVOLUTION & DEVELOPMENT 3:3, 170–205 (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences Kevin J. Peterson and Douglas J. Eernisse* Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA; and *Department of Biological Science, California State University, Fullerton CA 92834-6850, USA *Author for correspondence (email: [email protected]) SUMMARY Insight into the origin and early evolution of the and protostomes, with ctenophores the bilaterian sister- animal phyla requires an understanding of how animal group, whereas 18S rDNA suggests that the root is within the groups are related to one another. Thus, we set out to explore Lophotrochozoa with acoel flatworms and gnathostomulids animal phylogeny by analyzing with maximum parsimony 138 as basal bilaterians, and with cnidarians the bilaterian sister- morphological characters from 40 metazoan groups, and 304 group. We suggest that this basal position of acoels and gna- 18S rDNA sequences, both separately and together. Both thostomulids is artifactal because for 1000 replicate phyloge- types of data agree that arthropods are not closely related to netic analyses with one random sequence as outgroup, the annelids: the former group with nematodes and other molting majority root with an acoel flatworm or gnathostomulid as the animals (Ecdysozoa), and the latter group with molluscs and basal ingroup lineage. When these problematic taxa are elim- other taxa with spiral cleavage. Furthermore, neither brachi- inated from the matrix, the combined analysis suggests that opods nor chaetognaths group with deuterostomes; brachiopods the root lies between the deuterostomes and protostomes, are allied with the molluscs and annelids (Lophotrochozoa), and Ctenophora is the bilaterian sister-group. -
Kinorhyncha) in the Fjords of Møre Og Romsdal, Norway
The Biodiversity of Mud Dragons (Kinorhyncha) in the Fjords of Møre og Romsdal, Norway Astrid Eggemoen Bang Thesis submitted for the degree of Master of Science in Bioscience: Ecology and Evolution 60 credits Institute of Bioscience Faculty of Mathematics and Natural Sciences University of Oslo June 2020 Main supervisor Prof. Lutz Bachmann Co-supervisors Prof. Torsten Hugo Struck PhD. José Cerca de Oliveira 1 Abstract The poorly studied phylum Kinorhyncha (mud dragons) consists of small, benthic invertebrates inhabiting marine environments at depths ranging from the intertidal- to abyssal zones worldwide. Kinorhyncha are members of the meiofauna, inhabiting the upper layers of oxygenated sediment on the ocean floor. This study aimed at assessing the biodiversity of Kinorhyncha in five selected fjords on the Norwegian Northwest coast in the Møre og Romsdal county; Ålvundfjord, Sunndalsøra, Øksendal, Eidsvåg and Eresfjord. In total, 166 Kinorhyncha specimens were identified to species/genus levels through sequencing parts of the nuclear 18S gene. The identified Kinorhyncha belong to the six genera Pycnophyes, Paracentrophyes, Kinorhynchus, Echinoderes, Semnoderes and Condyloderes. A significant differentiation between number of specimens per species in each fjord was detected. There was also discovered trends that different kinorhynch species prefer different microenvironments (depths). High boat traffic and affiliated port activity, as taking place in Sunndalsøra, likely reduces the diversity and abundance of kinorhynch communities. 2 Table of contents Abstract 2 1. Introduction 1.1 Mud dragons (Kinorhyncha) 4 1.2 Aim of the thesis 9 2. Materials and methods 2.1 Sampling locations 10 2.2 Sampling methods 16 2.3 Molecular analyses 18 2.4 Statistics 20 3. -
An Exploration of Echinoderes (Kinorhyncha: Cyclorhagida) in Korean and Neighboring Waters, with the Description of Four New Species and a Redescription of E
Zootaxa 3368: 161–196 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) An exploration of Echinoderes (Kinorhyncha: Cyclorhagida) in Korean and neighboring waters, with the description of four new species and a redescription of E. tchefouensis Lou, 1934* MARTIN V. SØRENSEN1,5, HYUN SOO RHO2, WON-GI MIN2, DONGSUNG KIM3 & CHEON YOUNG CHANG4 1Zoological Museum, The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 2Dokdo Research Center, Korea Ocean Research and Development Institute, Uljin 767-813, Korea 3Marine Living Resources Research Department, Korea Ocean Research and Development Institute, Ansan 425-600, Korea 4Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan 712-714, Korea 5Corresponding author, E-mail: [email protected] *In: Karanovic, T. & Lee, W. (Eds) (2012) Biodiversity of Invertebrates in Korea. Zootaxa, 3368, 1–304. Abstract A large collection of kinorhynch specimens from coastal and subtidal localities around the Korean Peninsula and in the East China Sea was examined, and the material included several species of undescribed or poorly known species of Echinoderes Claparède, 1863. The present paper is part of a series dealing with echinoderid species from this material, and inludes descriptions of four new species of Echinoderes, E. aspinosus sp. nov., E. cernunnos sp. nov., E. microaperturus sp. nov. and E. obtuspinosus sp. nov., and redescriprion of the poorly known Echinoderes tchefouensis Lou, 1934. Key words: East Sea, East China Sea, kinorhynch, Korea, meiofauna, taxonomy Introduction Echinoderes Claparède, 1863 appears to be the most diverse genus within the Kinorhyncha. -
Ecdysozoan Phylogeny and Bayesian Inference: First Use of Nearly Complete 28S and 18S Rrna Gene Sequences to Classify the Arthro
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 31 (2004) 178–191 www.elsevier.com/locate/ympev Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kinq Jon M. Mallatt,a,* James R. Garey,b and Jeffrey W. Shultzc a School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA b Department of Biology, University of South Florida, 4202 East Fowler Ave. SCA110, Tampa, FL 33620, USA c Department of Entomology, University of Maryland, College Park, MD 20742, USA Received 4 March 2003; revised 18 July 2003 Abstract Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S + 18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-trans- formed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of estab- lished taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by ne- matomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods—hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)—formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and ÔChelicerata + MyriapodaÕ (a clade that we name ÔParadoxopodaÕ).