Epithelial Inflammation Is Associated with CCL28 Production and the Recruitment of Regulatory T Cells Expressing CCR10

Total Page:16

File Type:pdf, Size:1020Kb

Epithelial Inflammation Is Associated with CCL28 Production and the Recruitment of Regulatory T Cells Expressing CCR10 Epithelial Inflammation Is Associated with CCL28 Production and the Recruitment of Regulatory T Cells Expressing CCR10 This information is current as Bertus Eksteen, Alice Miles, Stuart M. Curbishley, Chris of September 26, 2021. Tselepis, Allister J. Grant, Lucy S. K. Walker and David H. Adams J Immunol 2006; 177:593-603; ; doi: 10.4049/jimmunol.177.1.593 http://www.jimmunol.org/content/177/1/593 Downloaded from References This article cites 51 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/1/593.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Epithelial Inflammation Is Associated with CCL28 Production and the Recruitment of Regulatory T Cells Expressing CCR101 Bertus Eksteen,* Alice Miles,* Stuart M. Curbishley,* Chris Tselepis,‡ Allister J. Grant,* Lucy S. K. Walker,† and David H. Adams2* Mucosal tissues require constant immune surveillance to clear harmful pathogens while maintaining tolerance to self Ags. Reg- ␣ ␤ ulatory T cells (Tregs) play a central role in this process and expression of E 7 has been reported to define a subset of Tregs with tropism for inflamed tissues. However, the signals responsible for recruiting Tregs to epithelial surfaces are poorly understood. We have isolated a subset of CCR10-expressing CD25؉CD4؉Foxp3؉ Tregs with potent anti-inflammatory properties from chronically inflamed human liver. The CCR10؉ Tregs were detected around bile ducts that expressed increased levels of the CCR10 ligand CCL28. CCL28 was secreted by primary human cholangiocytes in vitro in response to LPS, IL-1␤, or bile acids. Exposure of ؉ CCR10 Tregs to CCL28 in vitro stimulated migration and adhesion to mucosal addressin cell adhesion molecule-1 and VCAM-1. Downloaded from Liver-derived CCR10؉ Tregs expressed low levels of CCR7 but high levels of CXCR3, a chemokine receptor associated with ؉ ␤ ␣ infiltration into inflamed tissue and contained a subset of E 7 cells. We propose that CXCR3 promotes the recruitment of Tregs to inflamed tissues and CCR10 allows them to respond to CCL28 secreted by epithelial cells resulting in the accumulation of .CCR10؉ Tregs at mucosal surfaces. The Journal of Immunology, 2006, 177: 593–603 hronic inflammation leads to tissue damage and the re- important determinant of Treg function because CTLA-4-deficient http://www.jimmunol.org/ lease of multiple potential autoantigens. Although sec- mice have a similar phenotype to Foxp3 deficiency (8, 7). A recent C ondary immune responses against such Ags can be de- study suggests that Tregs do not express the inhibitory receptor tected, they are not a dominant feature of most chronic programmed cell death-1 (PD-1) on their surface, although it is inflammatory diseases suggesting that mechanisms exist to sup- retained intracellularly. This finding discriminates them from press the adaptive immune response in inflamed tissues. Regula- CD4ϩ/CD25ϩ effector cells that express high levels of cell surface tory T cells (Tregs)3 have evolved to limit the local damage re- PD-1 (9). sulting from infectious challenges to the host. Natural Tregs arise Tregs control inflammation by contact-dependent TGF-␤ and in the thymus and survive as well as operate in the periphery by IL-10 production (10, 11) and are able to control experimental gut by guest on September 26, 2021 responding to a large variety of self-Ags (1–3). Tregs are CD4 inflammation in adoptive transfer models (12). Paradoxically, cells that have a distinct phenotype characterized by expression of Tregs are required to maintain chronic intestinal inflammation in the a subunit of the high affinity IL-2R, CD25, and the glucocor- animal models, presumably by dampening more aggressive acute ticoid-induced TNFR (4). Despite displaying diverse TCR, there is inflammation (13). Epithelial surfaces in particular are vulnerable evidence to suggest Tregs have a higher propensity to recognize Ϫ to invasion by microbes and are a frequent target of chronic in- self peptides than conventional CD25 T cells (3, 5). The most flammatory diseases (14). Although Tregs have been reported in specific Treg marker is the transcription factor Foxp3, which is inflamed peripheral tissues, little is known about their function or critical for Treg function. Retroviral transfer of Foxp3 to naive T the homing mechanisms that localize them to epithelial sites (15). cells converts them into functional Tregs, whereas its deletion ab- The chemokine receptor CCR10 is detected on both T and B lates regulatory function and triggers autoimmunity (6, 7). Tregs lymphocytes at epithelial sites (16, 17) and defines subsets of lym- also constitutively express the negative regulatory receptor phocytes that can be recruited to either mucosal or cutaneous ep- CTLA-4, which binds the ligands CD80/CD86 and may be an ithelial sites. Mucosal homing is driven by the ligand CCL28, which is expressed by columnar epithelia in the gut, lung, breast *Liver Research Laboratories, †Medical Research Council Centre for Immune Reg- and salivary glands (18), whereas homing to the skin is triggered ulation, Institute for Biomedical Research, and ‡Epithelial Research Group, Univer- by the alternative CCR10 ligand, CCL27 (19). Specificity is en- sity of Birmingham, Birmingham, United Kingdom hanced by the coexpression of CCR10 with organ-specific adhe- Received for publication October 14, 2005. Accepted for publication April 12, 2006. sion receptors. Thus mucosal CCR10ϩ lymphocytes also express The costs of publication of this article were defrayed in part by the payment of page ␣ ␤ required for recruitment to the gut, whereas CCR10ϩ lym- charges. This article must therefore be hereby marked advertisement in accordance 4 7 with 18 U.S.C. Section 1734 solely to indicate this fact. phocytes, which show tropism for the skin, coexpress the skin- 1 This work was supported by grants from The Medical Research Council and Core homing receptor CCR4 and the cutaneous lymphocyte Ag (19). Charity, U.K. CCL28 is constitutively expressed in the colon and increased by 2 Address correspondence and reprint requests to Dr. David H. Adams, Liver Re- proinflammatory cytokines (20) and bacterial products, suggesting search Group, Medical Research Council Centre for Immune Regulation, 5th Floor it has a role in recruiting effector cells to areas of epithelial injury Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TH, U.K. E-mail address: [email protected] (21). CCR10 expression has also been reported on nonlymphoid 3 Abbreviations used in this paper: Treg, regulatory T cell; LIL, liver-infiltrating malignant cells (22), and coexpression of CCR9 and CCR10 has lymphocyte; PSC, primary sclerosing cholangitis; PBC, primary biliary cirrhosis; been implicated in the formation of small bowel melanoma me- ALD, alcoholic liver disease; MAdCAM-1, mucosal addressin cell adhesion mole- ϩ cule-1; hpf, high-power field; BEC, biliary epithelial cell; CDCA, chenodeoxycholic tastases (23). CCR10 lymphocytes are positioned in the intraepi- ␣ ␤ acid. thelial compartment where coexpression of E 7 integrins (24) Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 594 CCR10 EXPRESSION ON EPITHELIAL Tregs allows them to interact with E-cadherin expressed at epithelial ad- phocytes were separated using 33%/77% (v/v) Percoll (Amersham Bio- ␣ sciences) density gradient centrifugation at 2000 rpm (650 ϫ g) for 30 min. herens junctions (25). The expression of E integrins also defines ϩ a population of CD25 Tregs with enhanced suppressive proper- PBL isolation ␣ Ϫ ϩ ties compared with E CD25 Tregs (26). Recent studies have suggested that the function of ␣ ϩ Tregs is at least in part depen- Lymphocytes were isolated from peripheral venous blood and diluted 1/1 E with PBS before centrifuged over a Lymphoprep (Invitrogen Life Tech- dent on their ability to be recruited to inflamed tissue compart- nologies) gradient for 30 min at 2000 rpm (650 ϫ g). ments (27). Experimental animals that lack fucosultransferase re- quired to synthesize E- and P-selectin ligands during inflammation Isolation and culture of BEC ␣ ϩ are unable to recruit E effector/memory Tregs to inflammatory BEC were isolated according to previously described methods (30). sites and as a consequence display a reduced ability to suppress Briefly, liver tissue was finely chopped and subjected to enzyme digestion ϩ␣ Ϫ (collagenase type IV) and density gradient centrifugation. Nonparenchymal inflammation (27). In contrast, naive Tregs (CD25 E ) express CCR7 and CD62L, allowing them to enter lymphoid tissues to cells were then removed and separated by immunomagnetic selection. Cells positive for mAb
Recommended publications
  • Induces Homing of Antigen-Specific and Non Chemokine-Adjuvanted
    Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non −Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae This information is current as of September 25, 2021. Yoann Aldon, Sven Kratochvil, Robin J. Shattock and Paul F. McKay J Immunol published online 8 January 2020 http://www.jimmunol.org/content/early/2020/01/07/jimmun ol.1901184 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/01/07/jimmunol.190118 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 8, 2020, doi:10.4049/jimmunol.1901184 The Journal of Immunology Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non–Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae Yoann Aldon, Sven Kratochvil, Robin J.
    [Show full text]
  • Human B Cells Expression in Terminally Differentiating Induces
    1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells This information is current as Aiko-Konno Shirakawa, Daisuke Nagakubo, Kunio of September 28, 2021. Hieshima, Takashi Nakayama, Zhe Jin and Osamu Yoshie J Immunol 2008; 180:2786-2795; ; doi: 10.4049/jimmunol.180.5.2786 http://www.jimmunol.org/content/180/5/2786 Downloaded from References This article cites 55 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/180/5/2786.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology 1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells1 Aiko-Konno Shirakawa,2 Daisuke Nagakubo,2 Kunio Hieshima, Takashi Nakayama, Zhe Jin, and Osamu Yoshie3 In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA.
    [Show full text]
  • Antimicrobial Activity As a Chemokine with Broad-Spectrum CCL28 Has
    CCL28 Has Dual Roles in Mucosal Immunity as a Chemokine with Broad-Spectrum Antimicrobial Activity This information is current as Kunio Hieshima, Haruo Ohtani, Michiko Shibano, Dai of September 26, 2021. Izawa, Takashi Nakayama, Yuri Kawasaki, Fumio Shiba, Mitsuru Shiota, Fuminori Katou, Takuya Saito and Osamu Yoshie J Immunol 2003; 170:1452-1461; ; doi: 10.4049/jimmunol.170.3.1452 Downloaded from http://www.jimmunol.org/content/170/3/1452 References This article cites 36 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/170/3/1452.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL28 Has Dual Roles in Mucosal Immunity as a Chemokine with Broad-Spectrum Antimicrobial Activity1 Kunio Hieshima,* Haruo Ohtani,2‡ Michiko Shibano,* Dai Izawa,* Takashi Nakayama,* Yuri Kawasaki,* Fumio Shiba,* Mitsuru Shiota,† Fuminori Katou,§ Takuya Saito,¶ and Osamu Yoshie3* CCL28 is a CC chemokine signaling via CCR10 and CCR3 that is selectively expressed in certain mucosal tissues such as exocrine glands, trachea, and colon.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Immune Evasion by Murine Melanoma Mediated Through CC Chemokine
    Immune Evasion by Murine Melanoma Mediated through CC Chemokine Receptor-10 Takashi Murakami,1 Adela R. Cardones,1 Steven E. Finkelstein,2 Nicholas P. Restifo,2 Brenda A. Klaunberg,5 Frank O. Nestle,4 S. Sianna Castillo,3 Phillip A. Dennis,3 and Sam T. Hwang1 1Dermatology, 2Surgery, and 3Cancer Therapeutics Branches, CCR, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892 4National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892 5Department of Dermatology, University of Zürich Hospital, CH-8091 Zürich, Switzerland Abstract Human melanoma cells frequently express CC chemokine receptor (CCR)10, a receptor whose ligand (CCL27) is constitutively produced by keratinocytes. Compared with B16 murine melanoma, cells rendered more immunogenic via overexpression of luciferase, B16 cells that overexpressed both luciferase and CCR10 resisted host immune responses and readily formed tumors. In vitro, exposure of tumor cells to CCL27 led to rapid activation of Akt, resistance to cell death induced by melanoma antigen-specific cytotoxic T cells, and phosphatidylinositol-3- kinase (PI3K)–dependent protection from apoptosis induced by Fas cross-linking. In vivo, cutaneous injection of neutralizing antibodies to endogenous CCL27 blocked growth of CCR10-expressing melanoma cells. We propose that CCR10 engagement by locally produced CCL27 allows melanoma cells to escape host immune antitumor killing mechanisms (possibly through activation of PI3K/Akt), thereby providing a means for tumor progression. Key words: metastasis • chemokine receptor • cancer • cell signaling Introduction Malignant melanoma is a potentially fatal skin cancer that is In this paper, we explore the role of chemokine recep- increasing in incidence (1). The ability of tumor cells to tors in the context of tumor escape from immune cell avoid immune surveillance is likely to be central to the clearance mechanisms.
    [Show full text]
  • Chloride Channels Regulate Differentiation and Barrier Functions
    RESEARCH ARTICLE Chloride channels regulate differentiation and barrier functions of the mammalian airway Mu He1†*, Bing Wu2†, Wenlei Ye1, Daniel D Le2, Adriane W Sinclair3,4, Valeria Padovano5, Yuzhang Chen6, Ke-Xin Li1, Rene Sit2, Michelle Tan2, Michael J Caplan5, Norma Neff2, Yuh Nung Jan1,7,8, Spyros Darmanis2*, Lily Yeh Jan1,7,8* 1Department of Physiology, University of California, San Francisco, San Francisco, United States; 2Chan Zuckerberg Biohub, San Francisco, United States; 3Department of Urology, University of California, San Francisco, San Francisco, United States; 4Division of Pediatric Urology, University of California, San Francisco, Benioff Children’s Hospital, San Francisco, United States; 5Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Heaven, United States; 6Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, United States; 7Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; 8Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States *For correspondence: Abstract The conducting airway forms a protective mucosal barrier and is the primary target of [email protected] (MH); [email protected] airway disorders. The molecular events required for the formation and function of the airway (SD); mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway [email protected] (LYJ) diseases,
    [Show full text]
  • CCL28 a Mucosal Chemokine That Has a Protective Role in the MALT
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Functional Characterization of IL-40 a novel B cell cytokine and Physiological implications of CCL28 ablation Permalink https://escholarship.org/uc/item/2m7018vx Author Vazquez, Monica Ivonne Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Functional Characterization of IL-40 a novel B cell cytokine and Physiological Implications of CCL28 ablation DISSERTATION Submitted in Partial Satisfaction of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In Biomedical Sciences By Monica Ivonne Vazquez Dissertation Committee: Professor Albert Zlotnik, Chair Professor Kenneth J. Longmuir Professor Craig M. Walsh 2015 Portions of Chapter 1 © 2015 Elselvier Ltd. All other chapters © 2015 Monica Ivonne Vazquez DEDICATION TO My husband Brian Vazquez And son Isaiah Vazquez They have been part of my entire life as a student from my undergraduate years to my graduate career. They both provided a much needed sense of balance and always brought me back to what matters the most: Family. My little girl, Penelope, who always brings a smile to face and has given me the strength to continue. Getsemani, expected April 7, 2015, who I cannot wait to meet. Thank you for your unending love and support. ii TABLE OF CONTENTS Page LIST OF FIGURES iv-vi LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE ix-x LIST OF ABBREVIATIONS xi-xiv ABSTRACT OF THE DISSERTATION xv-xvi Chapter
    [Show full text]
  • Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1
    pathogens Article Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1 Acacia F. Dishman 1,2,†, Jie He 3,†, Brian F. Volkman 1,* and Anna R. Huppler 3,* 1 Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 2 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA 3 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] * Correspondence: [email protected] (B.F.V.); [email protected] (A.R.H.) † These authors contributed equally. Abstract: Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α–β monomer) and an alternate fold (an all-β dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate Citation: Dishman, A.F.; He, J.; the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associ- Volkman, B.F.; Huppler, A.R.
    [Show full text]
  • Role of Chemokines in Hepatocellular Carcinoma (Review)
    ONCOLOGY REPORTS 45: 809-823, 2021 Role of chemokines in hepatocellular carcinoma (Review) DONGDONG XUE1*, YA ZHENG2*, JUNYE WEN1, JINGZHAO HAN1, HONGFANG TUO1, YIFAN LIU1 and YANHUI PENG1 1Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051; 2Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China Received September 5, 2020; Accepted December 4, 2020 DOI: 10.3892/or.2020.7906 Abstract. Hepatocellular carcinoma (HCC) is a prevalent 1. Introduction malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges Hepatocellular carcinoma (HCC) is the sixth most common for the treatment of HCC is the prevention or management type of cancer worldwide and the third leading cause of of recurrence and metastasis of HCC. It has been found that cancer-associated death (1). Most patients cannot undergo chemokines and their receptors serve a pivotal role in HCC radical surgery due to the presence of intrahepatic or distant progression. In the present review, the literature on the multi- organ metastases, and at present, the primary treatment methods factorial roles of exosomes in HCC from PubMed, Cochrane for HCC include surgery, local ablation therapy and radiation library and Embase were obtained, with a specific focus on intervention (2). These methods allow for effective treatment the functions and mechanisms of chemokines in HCC. To and management of patients with HCC during the early stages, date, >50 chemokines have been found, which can be divided with 5-year survival rates as high as 70% (3). Despite the into four families: CXC, CX3C, CC and XC, according to the continuous development of traditional treatment methods, the different positions of the conserved N-terminal cysteine resi- issue of recurrence and metastasis of HCC, causing adverse dues.
    [Show full text]
  • Ccl27/Ccl2 Ccl28
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Structural and Functional Analysis of the Chemokine CCL27 and the Expression and Purification of Silent Chemokine Receptors D6 and DARC A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry and Biochemistry by Ariane L. Jansma Committee in charge: Professor Tracy M. Handel, Chair Professor Patricia Jennings, Co-Chair Professor William Gerwick Professor Susan Taylor Asst. Professor Faik A. Tezcan 2009 This Dissertation of Ariane L. Jansma is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ Co-Chair ________________________________________________________ Chair iv TABLE OF CONTENTS Signature Page ................................................................................................................ iii Table of Contents............................................................................................................. iv List of Figures.................................................................................................................... x List of Tables...................................................................................................................xiii List of Abbreviations........................................................................................................xiv
    [Show full text]
  • A Novel Role for Constitutively Expressed Epithelial-Derived Chemokines As Antibacterial Peptides in the Intestinal Mucosa
    ARTICLES nature publishing group A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa K K o t a r s k y 1 , K M S i t n i k 1 , H S t e n s t a d 1 , H K o t a r s k y 2 , A S c h m i d t c h e n 3 , M K o s l o w s k i 4 , J We h k a m p 4 a n d W W A g a c e 1 Intestinal-derived chemokines have a central role in orchestrating immune cell influx into the normal and inflamed intestine. Here, we identify the chemokine CCL6 as one of the most abundant chemokines constitutively expressed by both murine small intestinal and colonic epithelial cells. CCL6 protein localized to crypt epithelial cells, was detected in the gut lumen and reached high concentrations at the mucosal surface. Its expression was further enhanced in the small intestine following in vivo administration of LPS or after stimulation of the small intestinal epithelial cell line, mICc12 , with IFN , IL-4 or TNF . Recombinant- and intestinal-derived CCL6 bound to a subset of the intestinal microflora and displayed antibacterial activity. Finally, the human homologs to CCL6, CCL14 and CCL15 were also constitutively expressed at high levels in human intestinal epithelium, were further enhanced in inflammatory bowel disease and displayed similar antibacterial activity. These findings identify a novel role for constitutively expressed, epithelial-derived chemokines as antimicrobial peptides in the intestinal mucosa.
    [Show full text]