Role of Chemokines in Hepatocellular Carcinoma (Review)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Induces Homing of Antigen-Specific and Non Chemokine-Adjuvanted
Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non −Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae This information is current as of September 25, 2021. Yoann Aldon, Sven Kratochvil, Robin J. Shattock and Paul F. McKay J Immunol published online 8 January 2020 http://www.jimmunol.org/content/early/2020/01/07/jimmun ol.1901184 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/01/07/jimmunol.190118 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 8, 2020, doi:10.4049/jimmunol.1901184 The Journal of Immunology Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non–Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae Yoann Aldon, Sven Kratochvil, Robin J. -
Gene Expression Polarization
Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O. -
Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells
Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells This information is current as Hyung W. Lim, Jeeho Lee, Peter Hillsamer and Chang H. of September 28, 2021. Kim J Immunol 2008; 180:122-129; ; doi: 10.4049/jimmunol.180.1.122 http://www.jimmunol.org/content/180/1/122 Downloaded from References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/1/122.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3؉ Regulatory T Cells1 Hyung W. Lim,* Jeeho Lee,* Peter Hillsamer,† and Chang H. Kim2* It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites. -
Disease Lymphocytes in Small Intestinal Crohn's Chemokine
Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn's Disease This information is current as of September 29, 2021. Masayuki Saruta, Qi T. Yu, Armine Avanesyan, Phillip R. Fleshner, Stephan R. Targan and Konstantinos A. Papadakis J Immunol 2007; 178:3293-3300; ; doi: 10.4049/jimmunol.178.5.3293 http://www.jimmunol.org/content/178/5/3293 Downloaded from References This article cites 26 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/178/5/3293.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn’s Disease1 Masayuki Saruta,2*QiT.Yu,2* Armine Avanesyan,* Phillip R. Fleshner,† Stephan R. -
Toxicogenomics Article
Toxicogenomics Article Discovery of Novel Biomarkers by Microarray Analysis of Peripheral Blood Mononuclear Cell Gene Expression in Benzene-Exposed Workers Matthew S. Forrest,1 Qing Lan,2 Alan E. Hubbard,1 Luoping Zhang,1 Roel Vermeulen,2 Xin Zhao,1 Guilan Li,3 Yen-Ying Wu,1 Min Shen,2 Songnian Yin,3 Stephen J. Chanock,2 Nathaniel Rothman,2 and Martyn T. Smith1 1School of Public Health, University of California, Berkeley, California, USA; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA; 3National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China were then ranked and selected for further exam- Benzene is an industrial chemical and component of gasoline that is an established cause of ination using several forms of statistical analysis. leukemia. To better understand the risk benzene poses, we examined the effect of benzene expo- We also specifically examined the expression sure on peripheral blood mononuclear cell (PBMC) gene expression in a population of shoe- of all cytokine genes on the array under the factory workers with well-characterized occupational exposures using microarrays and real-time a priori hypothesis that these key genes polymerase chain reaction (PCR). PBMC RNA was stabilized in the field and analyzed using a involved in immune function are likely to be comprehensive human array, the U133A/B Affymetrix GeneChip set. A matched analysis of six altered by benzene exposure (Aoyama 1986). exposed–control pairs was performed. A combination of robust multiarray analysis and ordering We then attempted to confirm the array find- of genes using paired t-statistics, along with bootstrapping to control for a 5% familywise error ings for the leading differentially expressed rate, was used to identify differentially expressed genes in a global analysis. -
Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3
RX Zhang, et al ORIGINAL ARTICLE Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3 1 Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China 2 Department of Otolaryngology , Jinan General Hospital of PLA, Shandong, China 3 Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China ■ Abstract Objective: To analyze the roles of chemokines and their receptors in the pathogenesis of allergic rhinitis by observing the complementary DNA (cDNA) expression of the chemokines and their receptors in the nasal mucosa of patients with and without allergic rhinitis, using gene chips. Methods: The total RNAs were isolated from the nasal mucosa of 20 allergic rhinitis patients and purifi ed to messenger RNAs, and then reversely transcribed to cDNAs and incorporated with samples of fl uorescence-labeled with Cy5-dUPT (rhinitis patient samples) or Cy3- dUTP (control samples of nonallergic nasal mucosa). Thirty-nine cDNAs of chemokines and their receptors were latticed into expression profi le chips, which were hybridized with probes and then scanned with the computer to study gene expression according to the different fl uorescence intensities. Results: The cDNAs of the following chemokines were upregulated: CCL1, CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19, CCL24, and CX3CL1 in most of the allergic rhinitis sample chips. CCR2, CCR3, CCR4, CCR5, CCR8 and CX3CR1 were the highly expressed receptor genes. Low expression of CXCL4 was found in these tissues. Conclusion: The T helper cell (TH) immune system is not well regulated in allergic rhinitis. -
Atypical Chemokine Receptor 4 Shapes Activated B Cell Fate
Brief Definitive Report Atypical chemokine receptor 4 shapes activated B cell fate Ervin E. Kara,1 Cameron R. Bastow,1 Duncan R. McKenzie,1 Carly E. Gregor,1 Kevin A. Fenix,1 Rachelle Babb,1 Todd S. Norton,1 Dimitra Zotos,3 Lauren B. Rodda,4 Jana R. Hermes,6 Katherine Bourne,6 Derek S. Gilchrist,7 Robert J. Nibbs,7 Mohammed Alsharifi,1 Carola G. Vinuesa,8 David M. Tarlinton,3,9 Robert Brink,6,10 Geoffrey R. Hill,11 Jason G. Cyster,4,5 Iain Comerford,1 and Shaun R. McColl1,2 1Department of Molecular and Cellular Biology, School of Biological Sciences and 2Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia 3Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia 4Department of Microbiology and Immunology and 5Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, Downloaded from http://rupress.org/jem/article-pdf/215/3/801/1168927/jem_20171067.pdf by guest on 28 September 2021 San Francisco, San Francisco, CA 6Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia 7Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK 8Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia 9Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia 10St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia 11Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia Activated B cells can initially differentiate into three functionally distinct fates—early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells—by mechanisms that remain poorly understood. -
CXCR7/ACKR3-Targeting Ligands Interfere with X7 HIV-1 and HIV-2
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Received: 11 December 2017 CXCR7/ACKR3-targeting Revised: 9 February 2018 Accepted: ligands interfere with X7 22 February 2018 Cite as: Thomas D’huys, HIV-1 and HIV-2 entry and Sandra Claes, Tom Van Loy, Dominique Schols. CXCR7/ ACKR3-targeting ligands replication in human host cells interfere with X7 HIV-1 and HIV-2 entry and replication in human host cells. Heliyon 4 (2018) e00557. doi: 10.1016/j.heliyon.2018. Thomas D’huys, Sandra Claes, Tom Van Loy, Dominique Schols∗ e00557 Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium ∗ Corresponding author. E-mail address: [email protected] (D. Schols). Abstract Chemokine receptors CCR5 and CXCR4 are considered the main coreceptors for initial HIV infection, replication and transmission, and subsequent AIDS progression. Over the years, other chemokine receptors, belonging to the family of G protein-coupled receptors, have also been identified as candidate coreceptors for HIV entry into human host cells. Amongst them, CXCR7, also known as atypical chemokine receptor 3 (ACKR3), was suggested as a coreceptor candidate capable of facilitating both HIV-1 and HIV-2 entry in vitro. In this study, a cellular infection model was established to further decipher the role of CXCR7 as an HIV coreceptor. Using this model, CXCR7-mediated viral entry was demonstrated for several clinical HIV isolates as well as laboratory strains. Of interest, the X4-tropic HIV-1 HE strain showed rapid adaptation towards CXCR7-mediated infection after continuous passaging on CD4- and CXCR7-expressing cells. -
Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response
REVIEW published: 10 June 2016 doi: 10.3389/fimmu.2016.00224 Atypical Chemokine Receptors and Their Roles in the Resolution of the inflammatory Response Raffaella Bonecchi1,2 and Gerard J. Graham3* 1 Humanitas Clinical and Research Center, Rozzano, Italy, 2 Department of Biomedical Sciences, Humanitas University, Rozzano, Italy, 3 Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK Chemokines and their receptors are key mediators of the inflammatory process regulating leukocyte extravasation and directional migration into inflamed and infected tissues. The control of chemokine availability within inflamed tissues is necessary to attain a resolving environment and when this fails chronic inflammation ensues. Accordingly, vertebrates have adopted a number of mechanisms for removing chemokines from inflamed sites to help precipitate resolution. Over the past 15 years, it has become apparent that essential players in this process are the members of the atypical chemokine receptor (ACKR) family. Broadly speaking, this family is expressed on stromal cell types and scavenges Edited by: Mariagrazia Uguccioni, chemokines to either limit their spatial availability or to remove them from in vivo sites. Institute for Research in Biomedicine, Here, we provide a brief review of these ACKRs and discuss their involvement in the Switzerland resolution of inflammatory responses and the therapeutic implications of our current Reviewed by: knowledge. Mette M. M. Rosenkilde, University of Copenhagen, Keywords: chemokines, immunity, inflammation, scavenging, atypical receptors Denmark Mario Mellado, Spanish National Research Council, Spain INTRODUCTION *Correspondence: Gerard J. Graham An effective inflammatory response requires carefully regulated initiation, maintenance, and [email protected] resolution phases (1). -
Human B Cells Expression in Terminally Differentiating Induces
1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells This information is current as Aiko-Konno Shirakawa, Daisuke Nagakubo, Kunio of September 28, 2021. Hieshima, Takashi Nakayama, Zhe Jin and Osamu Yoshie J Immunol 2008; 180:2786-2795; ; doi: 10.4049/jimmunol.180.5.2786 http://www.jimmunol.org/content/180/5/2786 Downloaded from References This article cites 55 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/180/5/2786.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology 1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells1 Aiko-Konno Shirakawa,2 Daisuke Nagakubo,2 Kunio Hieshima, Takashi Nakayama, Zhe Jin, and Osamu Yoshie3 In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA. -
G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations. -
CXCL16 Suppresses Liver Metastasis of Colorectal Cancer by Promoting
Kee et al. BMC Cancer 2014, 14:949 http://www.biomedcentral.com/1471-2407/14/949 RESEARCH ARTICLE Open Access CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages Ji-Ye Kee1†, Aya Ito1,2†, Shozo Hojo3, Isaya Hashimoto3, Yoshiko Igarashi2, Koichi Tsuneyama4, Kazuhiro Tsukada3, Tatsuro Irimura5, Naotoshi Shibahara2, Ichiro Takasaki9, Akiko Inujima2, Takashi Nakayama6, Osamu Yoshie7, Hiroaki Sakurai8, Ikuo Saiki1 and Keiichi Koizumi2*† Abstract Background: Inhibition of metastasis through upregulation of immune surveillance is a major purpose of chemokine gene therapy. In this study, we focused on a membrane-bound chemokine CXCL16, which has shown a correlation with a good prognosis for colorectal cancer (CRC) patients. Methods: We generated a CXCL16-expressing metastatic CRC cell line and identified changes in TNF and apoptosis- related factors. To investigate the effect of CXCL16 on colorectal liver metastasis, we injected SL4-Cont and SL4-CXCL16 cells into intraportal vein in C57BL/6 mice and evaluated the metastasis. Moreover, we analyzed metastatic liver tissues using flow cytometry whether CXCL16 expression regulates the infiltration of M1 macrophages. Results: CXCL16 expression enhanced TNF-α-induced apoptosis through activation of PARP and the caspase-3- mediated apoptotic pathway and through inactivation of the NF-κB-mediated survival pathway. Several genes were changed by CXCL16 expression, but we focused on IRF8, which is a regulator of apoptosis and the metastatic phenotype. We confirmed CXCL16 expression in SL4-CXCL16 cells and the correlation between CXCL16 and IRF8. Silencing of IRF8 significantly decreased TNF-α-induced apoptosis. Liver metastasis of SL4-CXCL16 cells was also inhibited by TNF-α-induced apoptosis through the induction of M1 macrophages, which released TNF-α.