Mucosal Immunity Learning Goal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Induces Homing of Antigen-Specific and Non Chemokine-Adjuvanted
Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non −Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae This information is current as of September 25, 2021. Yoann Aldon, Sven Kratochvil, Robin J. Shattock and Paul F. McKay J Immunol published online 8 January 2020 http://www.jimmunol.org/content/early/2020/01/07/jimmun ol.1901184 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/01/07/jimmunol.190118 Material 4.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 8, 2020, doi:10.4049/jimmunol.1901184 The Journal of Immunology Chemokine-Adjuvanted Plasmid DNA Induces Homing of Antigen-Specific and Non–Antigen-Specific B and T Cells to the Intestinal and Genital Mucosae Yoann Aldon, Sven Kratochvil, Robin J. -
Differentiation and Bone Resorption Role of CX3CL1/Fractalkine In
Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption Keiichi Koizumi, Yurika Saitoh, Takayuki Minami, Nobuhiro Takeno, Koichi Tsuneyama, Tatsuro Miyahara, This information is current as Takashi Nakayama, Hiroaki Sakurai, Yasuo Takano, Miyuki of September 29, 2021. Nishimura, Toshio Imai, Osamu Yoshie and Ikuo Saiki J Immunol published online 18 November 2009 http://www.jimmunol.org/content/early/2009/11/18/jimmuno l.0803627.citation Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 29, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2009, doi:10.4049/jimmunol.0803627 The Journal of Immunology Role of CX3CL1/Fractalkine in Osteoclast Differentiation and Bone Resorption1 Keiichi Koizumi,2* Yurika Saitoh,* Takayuki Minami,* Nobuhiro Takeno,* Koichi Tsuneyama,†‡ Tatsuro Miyahara,§ Takashi Nakayama,¶ Hiroaki Sakurai,*† Yasuo Takano,‡ Miyuki Nishimura,ʈ Toshio Imai,ʈ Osamu Yoshie,¶ and Ikuo Saiki*† The recruitment of osteoclast precursors toward osteoblasts and subsequent cell-cell interactions are critical for osteoclast dif- ferentiation. -
Ccl9 Induced by Tgf-Β Signaling in Myeloid Cells Enhances Tumor Cell Survival in the Premetastatic Lung
CCL9 INDUCED BY TGF-β SIGNALING IN MYELOID CELLS ENHANCES TUMOR CELL SURVIVAL IN THE PREMETASTATIC LUNG by Hangyi Yan A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2015 ABSTRACT The majority of cancer patients die from metastasis. To achieve metastasis, tumor cells must first survive and then proliferate to form colonies. Compelling data have shown the indispensable participation of host microenvironment for metastasis. Bone marrow derived myeloid cells sculpt a tumor-promoting microenvironment in the premetastatic organs prior to tumor cell arrival. However, the molecular mechanisms for this “seed and soil” hypothesis are unclear. Here we report that CCL9 was significantly produced and secreted by Gr-1+CD11b+ cells when co-cultured with tumor cells, and in the premetastatic lung. CCL9 knockdown (KD) in myeloid cells decreased metastasis, and this process signaled through its sole receptor CCR1. Overexpression of CCR1 lost the metastasis-promoting function in the context of CCL9 KD. CCL9 enhanced tumor cell survival in the premetastatic organs. The underlying molecular mechanisms included activation of cell survival factors phosphorylated AKT and BCL-2, as well as inhibition of Poly (ADP-ribose) polymerase (PARP)-dependent apoptosis pathway. Additionally, CCL9/CCR1 had autocrine effects, which enhanced CCL9 secretion and the survival of Gr-1+CD11b+ cells. We found that CCL9 was a key effector of myeloid transforming growth factor β (TGF-β) pathway that promotes metastasis. Decreased metastasis in mice with myeloid specific TGF-β receptor II deletion (Tgfbr2MyeKO) correlated with lower CCL9 expression in TGF-β deficient myeloid cells. -
Human B Cells Expression in Terminally Differentiating Induces
1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells This information is current as Aiko-Konno Shirakawa, Daisuke Nagakubo, Kunio of September 28, 2021. Hieshima, Takashi Nakayama, Zhe Jin and Osamu Yoshie J Immunol 2008; 180:2786-2795; ; doi: 10.4049/jimmunol.180.5.2786 http://www.jimmunol.org/content/180/5/2786 Downloaded from References This article cites 55 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/180/5/2786.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology 1,25-Dihydroxyvitamin D3 Induces CCR10 Expression in Terminally Differentiating Human B Cells1 Aiko-Konno Shirakawa,2 Daisuke Nagakubo,2 Kunio Hieshima, Takashi Nakayama, Zhe Jin, and Osamu Yoshie3 In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA. -
Antimicrobial Activity As a Chemokine with Broad-Spectrum CCL28 Has
CCL28 Has Dual Roles in Mucosal Immunity as a Chemokine with Broad-Spectrum Antimicrobial Activity This information is current as Kunio Hieshima, Haruo Ohtani, Michiko Shibano, Dai of September 26, 2021. Izawa, Takashi Nakayama, Yuri Kawasaki, Fumio Shiba, Mitsuru Shiota, Fuminori Katou, Takuya Saito and Osamu Yoshie J Immunol 2003; 170:1452-1461; ; doi: 10.4049/jimmunol.170.3.1452 Downloaded from http://www.jimmunol.org/content/170/3/1452 References This article cites 36 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/170/3/1452.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL28 Has Dual Roles in Mucosal Immunity as a Chemokine with Broad-Spectrum Antimicrobial Activity1 Kunio Hieshima,* Haruo Ohtani,2‡ Michiko Shibano,* Dai Izawa,* Takashi Nakayama,* Yuri Kawasaki,* Fumio Shiba,* Mitsuru Shiota,† Fuminori Katou,§ Takuya Saito,¶ and Osamu Yoshie3* CCL28 is a CC chemokine signaling via CCR10 and CCR3 that is selectively expressed in certain mucosal tissues such as exocrine glands, trachea, and colon. -
The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. -
The Chemokine System in Innate Immunity
Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function. -
Immune Evasion by Murine Melanoma Mediated Through CC Chemokine
Immune Evasion by Murine Melanoma Mediated through CC Chemokine Receptor-10 Takashi Murakami,1 Adela R. Cardones,1 Steven E. Finkelstein,2 Nicholas P. Restifo,2 Brenda A. Klaunberg,5 Frank O. Nestle,4 S. Sianna Castillo,3 Phillip A. Dennis,3 and Sam T. Hwang1 1Dermatology, 2Surgery, and 3Cancer Therapeutics Branches, CCR, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892 4National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892 5Department of Dermatology, University of Zürich Hospital, CH-8091 Zürich, Switzerland Abstract Human melanoma cells frequently express CC chemokine receptor (CCR)10, a receptor whose ligand (CCL27) is constitutively produced by keratinocytes. Compared with B16 murine melanoma, cells rendered more immunogenic via overexpression of luciferase, B16 cells that overexpressed both luciferase and CCR10 resisted host immune responses and readily formed tumors. In vitro, exposure of tumor cells to CCL27 led to rapid activation of Akt, resistance to cell death induced by melanoma antigen-specific cytotoxic T cells, and phosphatidylinositol-3- kinase (PI3K)–dependent protection from apoptosis induced by Fas cross-linking. In vivo, cutaneous injection of neutralizing antibodies to endogenous CCL27 blocked growth of CCR10-expressing melanoma cells. We propose that CCR10 engagement by locally produced CCL27 allows melanoma cells to escape host immune antitumor killing mechanisms (possibly through activation of PI3K/Akt), thereby providing a means for tumor progression. Key words: metastasis • chemokine receptor • cancer • cell signaling Introduction Malignant melanoma is a potentially fatal skin cancer that is In this paper, we explore the role of chemokine recep- increasing in incidence (1). The ability of tumor cells to tors in the context of tumor escape from immune cell avoid immune surveillance is likely to be central to the clearance mechanisms. -
Chloride Channels Regulate Differentiation and Barrier Functions
RESEARCH ARTICLE Chloride channels regulate differentiation and barrier functions of the mammalian airway Mu He1†*, Bing Wu2†, Wenlei Ye1, Daniel D Le2, Adriane W Sinclair3,4, Valeria Padovano5, Yuzhang Chen6, Ke-Xin Li1, Rene Sit2, Michelle Tan2, Michael J Caplan5, Norma Neff2, Yuh Nung Jan1,7,8, Spyros Darmanis2*, Lily Yeh Jan1,7,8* 1Department of Physiology, University of California, San Francisco, San Francisco, United States; 2Chan Zuckerberg Biohub, San Francisco, United States; 3Department of Urology, University of California, San Francisco, San Francisco, United States; 4Division of Pediatric Urology, University of California, San Francisco, Benioff Children’s Hospital, San Francisco, United States; 5Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Heaven, United States; 6Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, United States; 7Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; 8Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States *For correspondence: Abstract The conducting airway forms a protective mucosal barrier and is the primary target of [email protected] (MH); [email protected] airway disorders. The molecular events required for the formation and function of the airway (SD); mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway [email protected] (LYJ) diseases, -
CCL28 a Mucosal Chemokine That Has a Protective Role in the MALT
UC Irvine UC Irvine Electronic Theses and Dissertations Title Functional Characterization of IL-40 a novel B cell cytokine and Physiological implications of CCL28 ablation Permalink https://escholarship.org/uc/item/2m7018vx Author Vazquez, Monica Ivonne Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Functional Characterization of IL-40 a novel B cell cytokine and Physiological Implications of CCL28 ablation DISSERTATION Submitted in Partial Satisfaction of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In Biomedical Sciences By Monica Ivonne Vazquez Dissertation Committee: Professor Albert Zlotnik, Chair Professor Kenneth J. Longmuir Professor Craig M. Walsh 2015 Portions of Chapter 1 © 2015 Elselvier Ltd. All other chapters © 2015 Monica Ivonne Vazquez DEDICATION TO My husband Brian Vazquez And son Isaiah Vazquez They have been part of my entire life as a student from my undergraduate years to my graduate career. They both provided a much needed sense of balance and always brought me back to what matters the most: Family. My little girl, Penelope, who always brings a smile to face and has given me the strength to continue. Getsemani, expected April 7, 2015, who I cannot wait to meet. Thank you for your unending love and support. ii TABLE OF CONTENTS Page LIST OF FIGURES iv-vi LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE ix-x LIST OF ABBREVIATIONS xi-xiv ABSTRACT OF THE DISSERTATION xv-xvi Chapter -
CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer's Patch Cd11b+ Dendritic Cells
CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer's Patch CD11b+ Dendritic Cells This information is current as Xinyan Zhao, Ayuko Sato, Charles S. Dela Cruz, Melissa of October 1, 2021. Linehan, Andreas Luegering, Torsten Kucharzik, Aiko-Konno Shirakawa, Gabriel Marquez, Joshua M. Farber, Ifor Williams and Akiko Iwasaki J Immunol 2003; 171:2797-2803; ; doi: 10.4049/jimmunol.171.6.2797 http://www.jimmunol.org/content/171/6/2797 Downloaded from References This article cites 32 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/171/6/2797.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts Errata An erratum has been published regarding this article. Please see next page or: /content/172/11/7220.2.full.pdf The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL9 Is Secreted by the Follicle-Associated Epithelium and Recruits Dome Region Peyer’s Patch CD11b؉ Dendritic Cells1 Xinyan Zhao,2* Ayuko Sato,* Charles S. -
Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1
pathogens Article Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1 Acacia F. Dishman 1,2,†, Jie He 3,†, Brian F. Volkman 1,* and Anna R. Huppler 3,* 1 Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 2 Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA 3 Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] * Correspondence: [email protected] (B.F.V.); [email protected] (A.R.H.) † These authors contributed equally. Abstract: Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α–β monomer) and an alternate fold (an all-β dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate Citation: Dishman, A.F.; He, J.; the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associ- Volkman, B.F.; Huppler, A.R.