Acrolein, a Highly Toxic Aldehyde Generated Under Oxidative Stress in Vivo, Aggravates the Mouse Liver Damage After Acetaminophen Overdose

Total Page:16

File Type:pdf, Size:1020Kb

Acrolein, a Highly Toxic Aldehyde Generated Under Oxidative Stress in Vivo, Aggravates the Mouse Liver Damage After Acetaminophen Overdose Biomedical Research (Tokyo) 35 (6) 389-395, 2014 Acrolein, a highly toxic aldehyde generated under oxidative stress in vivo, aggravates the mouse liver damage after acetaminophen overdose 1 1 2 1 1 Tomoya ARAI *, Ryo KOYAMA *, Makoto YUASA , Daisuke KITAMURA , and Ryushin MIZUTA 1 Research Institute for Biomedical Sciences, 2 Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan (Received 17 September 2014; and accepted 3 October 2014) ABSTRACT Although acetaminophen-induced liver injury in mice has been extensively studied as a model of human acute drug-induced hepatitis, the mechanism of liver injury remains unclear. Liver injury is believed to be initiated by metabolic conversion of acetaminophen to the highly reactive interme- diate N-acetyl p-benzoquinoneimine, and is aggravated by subsequent oxidative stress via reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). In this study, we found that a highly toxic unsaturated aldehyde acrolein, a byproduct of oxidative stress, has a major role in acetaminophen-induced liver injury. Acetaminophen administration in mice resulted in liver damage and increased acrolein-protein adduct formation. However, both of them were decreased by treatment with N-acetyl-L-cysteine (NAC) or sodium 2-mercaptoethane- sulfonate (MESNA), two known acrolein scavengers. The specificity of NAC and MESNA was confirmed in cell culture, because acrolein toxicity, but not 2H O2 or •OH toxicity, was inhibited by NAC and MESNA. These results suggest that acrolein may be more strongly correlated with acet- aminophen-induced liver injury than ROS, and that acrolein produced by acetaminophen-induced oxidative stress can spread from dying cells at the primary injury site, causing damage to the ad- jacent cells and aggravating liver injury. Acetaminophen-induced liver injury in mice has conversion to the reactive intermediate N-acetyl p- been used as a model of human acute drug-induced benzoquinoneimine (NAPQI) by cytochrome P-450 hepatitis and an in vivo model of necrosis (5, 6). (14). NAPQI covalently binds essential hepatocellu- Acetaminophen is a widely prescribed analgesic lar proteins, and is eliminated by glutathione. As the drug, and is also sold in numerous preparations as a primary endogenous non-protein sulfhydryl, gluta- single compound or in combination with other med- thione is a major scavenger of free radicals. High ications. Although it is generally safe, an overdose doses of acetaminophen deplete glutathione, thereby of acetaminophen can cause severe liver failure with increasing the formation of reactive oxygen species significant mortality. Despite substantial efforts in (ROS), such as hydrogen peroxide (H2O2) and the the past, the mechanism of acetaminophen-induced hydroxyl radical (•OH). ROS and NAPQI are free liver injury remains unclear. Acetaminophen-induced to bind critical cellular proteins, which may result in liver injury is thought to be initiated by its metabolic the reduction of antioxidant enzymes, enhancement of lipid peroxidation, and induction of hepatic ne- crosis (14). Address correspondence to: Dr. Ryushin Mizuta, Re- search Institute for Biomedical Sciences, Tokyo Univer- Acrolein (CH2=CHCHO), a highly reactive α, sity of Science, 2669 Yamazaki, Noda, Chiba 278-0022, β-unsaturated aldehyde, is a common pollutant found Japan Tel: +81-4-7121-4072, Fax: +81-4-7121-4079 E-mail: [email protected] *These authors contributed equally to this work. 390 T. Arai et al. in the environment. Notably, endogenous acrolein is the Tokyo University of Science. generated during oxidative stress (10). Acrolein can be formed in various tissues via lipid peroxidation Acetaminophen-induced liver necrosis. Mice were (19), polyamine oxidation (16) and via metabolism fasted 14 ~ 16 h before acetaminophen injection but of drugs, such as the anticancer drug cyclophospha- were allowed access to water. Acetaminophen was mide (7). Acrolein is primarily metabolized via rap- suspended in 50% Mili-Q water and 50% propylene id reaction with the sulfhydryl groups of glutathione. glycol and was intraperitoneally (ip) injected into Thus, acrolein contributes directly to cellular oxida- mice (600 mg/kg body weight). NAC (1000 mg/kg) tive stress via loss of glutathione (7). Acrolein can and MESNA (1000 mg/kg) were injected ip immedi- form Michael-type addition adducts with cellular ately after acetaminophen injection. Mice were sacri- components, particularly proteins and DNA, result- ficed at 12 h after acetaminophen injection to collect ing in cell toxicity. Elevated levels of acrolein and serum and tissues. Serum alanine aminotransferase acrolein-adducts have been found in ex vivo biologi- (ALT) levels were determined with an automated cal samples from patients, including the plasma of analyzer (Hitachi 7140; Hitachi Instruments Service patients with renal failure (13) and the brains of pa- Co., Tokyo, Japan). A piece of the liver from each tients with neurologic disorders (21). Acrolein can mouse was fixed with formalin and embedded in easily move across cell membranes and tissues due paraffin for hematoxylin-eosin (H&E) staining or to its solubility in water and alcohol; thus, high con- immunohistochemistry. Other pieces of the liver centrations of acrolein produced by lipid peroxida- were frozen in liquid nitrogen and were stocked in a tion or polyamine oxidation can spread from dying −80°C freezer. cells at the primary site of injury, resulting in dam- age and/or death in adjacent cells (10). Extraction of total RNA and reverse transcription Sodium 2-mercaptoethanesulfonate (MESNA), a polymerase chain reaction. Total RNA was extract- thiol compound, has been shown to scavenge acrole- ed from the removed liver tissues using TRIzol in both experimentally and clinically. MESNA inter- (Sigma-Aldrich, St. Louis, USA) according to the acts with acrolein and forms an inactivate compound, manufacturer’s instructions. Ten micrograms of total which is detectable using mass spectrometry (18). RNA were reverse-transcribed into cDNA using Su- As mentioned before, acrolein is metabolized from perscript with oligo (dT) primer (Invitrogen, Carls- the anticancer drug cyclophosphamide, and is known bad, USA). For examining the expression of heme to cause hemorrhagic cystitis. To prevent this side oxigenase-1 (Ho-1) gene and glyceraldehyde 3-phos- effect during cancer chemotherapy, MESNA has phate dehydrogenase (Gapdh) gene, quantitative been routinely given to patients, and has successive- polymerase chain reaction (q-PCR) was conducted ly decreased the incidence of hemorrhagic cystitis using THUNDERBIRD SYBR qPCR Mix (Toyobo, (18). Another thiol compound N-acetyl-L-cysteine Osaka, Japan) and the following primers according (NAC) is known as a glutathione pro-drug that is to the manufacturer’s instructions. Ho-1 Forward: approved for clinical use and is routinely used to 5’-TGGGTCCTCACTCTCAGCTT-3’, Ho-1 Reverse: treat acetaminophen-induced liver injury (11). Re- 5’-GTCGTGGTCAGAACATGG-3’, Gapdh Forward: cently, it was also shown that NAC directly inter- 5’-GGAGAAACCTGCCAAGTATGA-3’, Gapdh Re- acts with acrolein and forms an inactive compounds verse: 5’-CCCTGTTGCTGTAGCCGTATT-3’. (22). Here we show that acrolein-adducts are produced Histopathology. Excised liver was fixed in 10% for- in the livers of acetaminophen-treated mice, and that malin and embedded in paraffin. Four micron serial MESNA and NAC ameliorate acetaminophen-mediat- sections were used for H&E and TdT-mediated ed liver injury by neutralizing acrolein toxicity, which dUTP Nick-End Labeling (TUNEL) staining. For suggests that acrolein plays a critical role in the the TUNEL assay, the DeadEnd Fluorometric pathogenesis of acetaminophen-induced liver injury. TUNEL System (Promega, Madison, USA) was used according to the manufacturer’s protocol. For immunohistochemical analysis to detect acrolein, MATERIAL AND METHODS deparaffinized sections were immersed in 0.3% 2H O2 Animal treatment. C57BL/6 mice were purchased in methanol to eliminate endogenous peroxidase ac- from Sankyo-Lab Service (Tsukuba, Japan). All ex- tivity, followed by rinsing with a phosphate buffered perimental procedures using mice were approved by saline (PBS). Acrolein readily reacts with lysine res- the Institutional Animal Care and Use Committee at idues of proteins to form Nε-(3-formyl-3,4-de- Acrolein-induced liver damage 391 hydropiperidino)lysine (FDP-lysine) (19). Sections NAC that is a glutathione pro-drug and is routinely were then incubated with mouse anti-FDP-lysine an- used to treat acetaminophen-induced liver injury tibody (NOF CORPORATION, Tokyo, Japan) and, (11). Histopathological analysis was conducted to following rinsing with PBS, sections were incubated directly examine hepatic injury (Fig. 1A–D). H&E with peroxidase-conjugated anti-mouse immuno- staining of acetaminophen-treated liver sections re- globulin (Histofine Simple Stain Mouse stain kit) vealed hepatocyte necrosis in the area surrounding (Nichirei Co., Tokyo, Japan). Peroxidase activity on the central veins (Fig. 1B, top, arrows). DNA dam- the sections was developed with 3,3’-diaminobenzi- age in the liver sections was assessed by TUNEL. dine tetrahydrochloride (Nichirei Co.) as the sub- The TUNEL assay was initially developed to deter- strate and then the sections were counterstained with mine apoptosis, but recently we reported that even metyleneblue. The samples were
Recommended publications
  • The Decomposition Kinetics of Peracetic Acid and Hydrogen Peroxide in Municipal Wastewaters
    Disinfection Forum No 10, October 2015 The Decomposition Kinetics of Peracetic Acid and Hydrogen Peroxide in Municipal Wastewaters INTRODUCTION Efficient control of microbial populations in municipal wastewater using peracetic acid (PAA) requires an understanding of the PAA decomposition kinetics. This knowledge is critical to ensure the proper dosing of PAA needed to achieve an adequate concentration within the contact time of the disinfection chamber. In addition, the impact of PAA on the environment, post-discharge into the receiving water body, also is dependent upon the longevity of the PAA in the environment, before decomposing to acetic acid, oxygen and water. As a result, the decomposition kinetics of PAA may have a significant impact on aquatic and environmental toxicity. PAA is not manufactured as a pure compound. The solution exists as an equilibrium mixture of PAA, hydrogen peroxide, acetic acid, and water: ↔ + + Acetic Acid Hydrogen Peroxide Peracetic Acid Water PeroxyChem’s VigorOx® WWT II Wastewater Disinfection Technology contains 15% peracetic acid by weight and 23% hydrogen peroxide as delivered. Although hydrogen peroxide is present in the formulation, peracetic acid is considered to be the active component for disinfection1 in wastewater. There have been several published studies investigating the decomposition kinetics of PAA in different water matrices, including municipal wastewater2-7. Yuan7 states that PAA may be consumed in the following three competitive reactions: 1. Spontaneous decomposition 2 CH3CO3H à 2 CH3CO2H + O2 Eq (1) 2. Hydrolysis CH3CO3H + H2O à CH3CO2H + H2O2 Eq (2) 3. Transition metal catalyzed decomposition + CH3CO3H + M à CH3CO2H + O2 + other products Eq (3) At neutral pH’s, both peracetic acid and hydrogen peroxide can be rapidly consumed by these reactions7 (hydrogen peroxide will decompose to water and oxygen via 2H2O2 à 2H2O + O2).
    [Show full text]
  • Pre-Validation of an Acute Inhalation Toxicity Assay Using the Epiairway in Vitro Human Airway Model
    Pre-Validation of an Acute Inhalation Toxicity Assay Using the EpiAirway In Vitro Human Airway Model George R. Jackson, Jr., Michelle Debatis, Anna G. Maione, Patrick J. Hayden Exposure to potentially dangerous chemicals can occur through inhalation. UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 2 Regulatory systems for classifying the acute inhalation toxicity of chemicals ≤ 0.05 mg/l > 0.05 ≤ 0.5 mg/l > 0.5 ≤ 2 mg/l > 2 mg/l Respirator Use Required 3 Regulatory systems for classifying the acute inhalation toxicity of chemicals 4 OECD 403/436 is the currently accepted test method for determining acute inhalation toxicity OECD Test Guidelines 403/436: In vivo rat LD50 test (dose at which 50% of the animals die) 4 hour exposure 14 Days Examination: - Death -Signs of toxicity -Necropsy should be performed (not always reported) Nose/Head only (preferred) Whole body Repeat stepwise with additional concentrations as necessary 5 Our goal is to develop & validate an in vitro test for acute inhalation toxicity UNDERSTANDING HUMAN BIOLOGY IN DIMENSIONS3 6 The EpiAirway Model EpiAirway is an in vitro 3D organotypic model of human tracheal/bronchial tissue. - Constructed from primary cells - Highly reproducible - Differentiated epithelium at the air-liquid interface - Beating cilia - Mucus secretion - Barrier function - Physiologically relevant & predictive of the human outcome Air Cilia Differentiated epithelium Microporous membrane Media 7 EpiAirwayTM acute inhalation toxicity test method Prepare 4-point dose Apply chemical to Incubate for 3 hours Examination: curve of chemical in the apical surface - Tissue viability (MTT) dH2O or corn oil Advantages of using the in vitro EpiAirway test: 1.
    [Show full text]
  • University of Groningen Discovery of a Eugenol Oxidase From
    University of Groningen Discovery of a eugenol oxidase from Rhodococcus sp strain RHA1 Jin, J.F.; Mazon, H.; van den Heuvel, R.H.H.; Janssen, D.B.; Fraaije, M.W. Published in: Febs Journal DOI: 10.1111/j.1742-4658.2007.05767.x IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Jin, J. F., Mazon, H., van den Heuvel, R. H. H., Janssen, D. B., & Fraaije, M. W. (2007). Discovery of a eugenol oxidase from Rhodococcus sp strain RHA1. Febs Journal, 274(9), 2311 - 2321. https://doi.org/10.1111/j.1742-4658.2007.05767.x Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 23-09-2021 Discovery of a eugenol oxidase from Rhodococcus sp.
    [Show full text]
  • Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH3–H2O2/Air Mixtures
    energies Article Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH3–H2O2/Air Mixtures Ahmed T. Khalil 1,2, Dimitris M. Manias 3, Efstathios-Al. Tingas 4, Dimitrios C. Kyritsis 1,2,* and Dimitris A. Goussis 1,2 1 Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; [email protected] (A.T.K.); [email protected] (D.A.G.) 2 Research and Innovation Center on CO2 and H2 (RICH), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE 3 Department of Mechanics, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, 157 73 Athens, Greece; [email protected] 4 Perth College, University of the Highlands and Islands, (UHI), Perth PH1 2NX, UK; [email protected] * Correspondence: [email protected] Received: 8 September 2019; Accepted: 7 October 2019; Published: 21 November 2019 Abstract: The dynamics of a homogeneous adiabatic autoignition of an ammonia/air mixture at constant volume was studied, using the algorithmic tools of Computational Singular Perturbation. Since ammonia combustion is characterized by both unrealistically long ignition delays and elevated NOx emissions, the time frame of action of the modes that are responsible for ignition was analyzed by calculating the developing time scales throughout the process and by studying their possible relation to NOx emissions. The reactions that support or oppose the explosive time scale were identified, along with the variables that are related the most to the dynamics that drive the system to an explosion.
    [Show full text]
  • 1997-11-12 Acrolein As Federal Hazardous Air Pollutant
    ACROLEIN Acrolein is a federal hazardous air pollutant and was identified as a toxic air contaminant in April 1993 under AB 2728. CAS Registry Number: 107-02-8 H2C=CHCHO Molecular Formula: C3H4O Acrolein is a colorless or yellowish, flammable liquid with an unpleasant, extremely pungent odor. It is soluble in petroleum ether, water, and alcohol and miscible with hydrocarbons, acetone, and benzene (Sax, 1989). Acrolein polymerizes (especially in the presence of light, alkali, or strong acid) forming disacryl, a plastic solid (Merck, 1989). Physical Properties of Acrolein Synonyms: acraldehyde; allyl aldehyde; acrylic aldehyde; Biocide; 2-propenal Molecular Weight: 56.06 Boiling Point: 52.5 oC Melting Point: -88.0 oC Flash Point: -18 oC (< 0 oF) (open cup) Vapor Density: 1.94 (air = 1) Vapor Pressure: 210 mm Hg at 20 oC Density/Specific Gravity: 0.8389 at 20/4 oC Log Octanol/Water Partition Coefficient: -0.09 Water Solubility: 208,000 mg/L at 20 oC Henry's Law Constant: 4.4 x 10-6 atm-m3/mole Conversion Factor: 1 ppm = 2.29 mg/m3 (Howard, 1990; HSDB, 1991; Merck, 1989; U.S. EPA, 1994a) SOURCES AND EMISSIONS A. Sources Acrolein is emitted from sources where it is manufactured and used as an intermediate for glycerine, methionine, glutaraldehyde, and other organic chemicals. It is also found in tobacco smoke, forest fire emissions, and gasoline and diesel exhaust. Acrolein is also a photooxidation product of various hydrocarbons including 1,3-butadiene (Howard, 1990). Toxic Air Contaminant Identification List Summaries - ARB/SSD/SES September 1997 23 Acrolein The primary stationary sources that have reported emissions of acrolein in California are paper mills, and abrasive, asbestos, miscellaneous non-metallic mineral, and wood products (ARB, 1997b).
    [Show full text]
  • Interaction of Ozone and Hydrogen Peroxide in Water Implications For
    UC Irvine Faculty Publications Title Interaction of ozone and hydrogen peroxide in water: Implications for analysis of H 2 O 2 in air Permalink https://escholarship.org/uc/item/7j7454z7 Journal Geophysical Research Letters, 9(3) ISSN 00948276 Authors Zika, R. G Saltzman, E. S Publication Date 1982-03-01 DOI 10.1029/GL009i003p00231 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California GEOPHYSICLARESEARCH LETTERS, VOL. 9, NO. 3, PAGES231-234 , MARCH1982 INTERACTION OF OZONE AND HYDROGEN PEROXIDE IN WATER: IMPLICATIONSFORANALYSIS oFH20 2 IN AIR R.G. Zika and E.S. Saltzman Division of Marine and Atmospheric Chemistry, University of Miami, Miami, Florida 331#9 Abstract. We have attempted to measure gaseous Analytical Methods H202 in air usingan aqueoustrapping method. With continuousbubbling, H 20 2 levels in the traps reacheda a. Hydrogen Peroxide. Hydrogen peroxide in aqueous plateau, indicating that a state of dynamic equilibrium solution was measured using a modified fluorescence involving H202 destrbction was established. We decay technique [Perschke and Broda, 1976; Zika and attribute this behavior to the interaction of ozone and its Zelmer, 1982]. The method involved the addition of a decompositionproducts (OH, O[) withH 20 2 inacld:•ous known amot•at of scopoletin (6-methyl-7-hydroxyl-i,2- solution. This hypothesis was investigated by replacing benzopyrone)to a pH 7.0 phosphatebuffered. sample. the air stream with a mixture of N2, 02 and 0 3. The The sample was prepared bY diluting an aliquot of the results Of this experiment show that H O was both reaction solution to 20 mls with low contaminant producedand destroyedin the traps.
    [Show full text]
  • Filter Chart
    Filter Chart Chemical Filter Chemical Filter Chemical Filter Abate FFP1 tert-Butyl acetate A1 Copper fume FFP1 Acetaldehyde A1 Butyl acrylate A1 Dusts & mist (as Cu) FFP1 Acetic acid E1 n-Butyl alcohol A1 Cotton dust, raw FFP1 Acetic anhydride B1 sec-Butyl alcohol R A1 Crag herbicide FFP1 Acetonitrile A1 Butylamine B1 Cresol, all isomers FFP1 Acetylene dichloride A1 tert-Butyl chromate (as Cro3) FFP1 Cumene FFP1 Acetylene tetrabromide A1 n-Butyl glycidyl ether(BGE) A1 Cyanamide A1 P1 Acetylsalicylic acid FFP2 n-Butyl lactate A1 Cyanogen B1 Acrolein A1 o-sec Butyl phenol A1 Acrylamide A1 P2 p-tert Butyltoluene A1 Cyanogen chloride (CK) B1 Acrylonitrile A1 Cadmium, dust & salts (as Cd) FFP1 Cyclohexane A1 Aldrin A1 P2 Cadmium oxide fume (as Cd) FFP1 Cyclohexnol A1 Allyl alcohol A1 Calcium cyanamide FFP1 Cyclohexanone A1 Allyl chloride A1 Calcium hydroxide FFP1 Cyclohexene Allyl glycidyl ether (AGE) A1 Calcium oxide FFP1 A1 Allyl propyl disulfide B1 Camphor, synthetic A1 Cyclohexylamine A1 Aluminium metal and oxide FFP2 Caprolactam Dust FFP1 Cyclonite B1 Aluminium pyro powders FFP2 Vapor A1 1.3 Cyclopentadiene A1 Aluminium welding fumes A1 P2 Captafol(DifolatanR) FFP1 2.4-D (2.4-Dichlorophenoxy acetic acid) FFP1 Aluminium soluble salts FFP2 Captan FFP1 Aluminium, alkyls A1 R Carbary (Seven ) FFP1 D.D.T. (Dichlorodiphenyl A1 P1 4-Aminodiphenyl FFP1 Carbofuran (FuradanR) FFP1 trichloroethane) A1 P1 2- Aminoethanol A1 Carbon black FFP1 DDVP Decaborane B1 P1 2- Aminopyridine K1 Carbon dusulfide B1 DemetonR B1 P1 Ammonia A1 Carbon tetrabromide
    [Show full text]
  • Acrolein Hazards to Fish, Wildlife, and Invertebrates: a Synoptic Review
    Biological Report 23 Contaminant Hazard Reviews June 1994 Report 28 Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review By Ronald Eisler U.S. Department of the Interior National Biological Survey Patuxent Environmental Science Center Washington, D.C. 20240 Abstract Sources and Uses General Sources Uses Environmental Chemistry General Chemical Properties Persistence Metabolism Lethal and Sublethal Effects General Terrestrial Plants and Invertebrates Aquatic Organisms Birds Mammals Recommendations Acknowledgments Cited Literature TABLES Number 1 Chemical and other properties of acrolein 2 Acrolein effects on representative aquatic organisms 3 Acrolein effects on birds 4 Acrolein effects on selected mammals 5 Proposed acrolein criteria for the protection of living resources and human health FIGURE Proposed scheme for in vitro mammalian metabolism of acrolein and allyl alcohol, a precursor of acrolein Suggested citation: Eisler, R. 1994. Acrolein hazards to fish, wildlife, and invertebrates: a synoptic review. U. S. National Biological Survey Biological Report 23. 2 Acrolein Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review by Ronald Eisler U.S. Department of the Interior National Biological Survey Patuxent Environmental Science Center Washington, D.C. 20240 Abstract. Acrolein (CH2=CHCHO) is the simplest member of the unsaturated aldehydes and enters the environment from incomplete combustion of fossil fuels, industrial discharges, herbicides, chemical control agents of fouling organisms, and normal metabolic processes of animals. Acrolein is volatile, flammable, and explosive. Biochemical and toxic effects of acrolein are caused by its reaction with sulfhydryl compounds to form a stable thiol ether. Acrolein metabolites under certain conditions are reportedly mutagenic, teratogenic, or carcinogenic. Acrolein degrades quickly in soils and in plant tissues; in water the half-time persistence is usually less than 50 h and in the atmosphere, less than 3 h.
    [Show full text]
  • Acrolein Is Absorbed; Have Been Identified for Acrolein
    TM The ToxGuide is developed to be used as a pocket guide. Tear off at perforation and fold along lines. Toxicokinetics and Biomarkers/Environmental Sources of Exposure Normal Human Levels Levels ToxGuideTM General Populations Toxicokinetics Biomarkers Exposure may occur through inhalation, Based on animal data, approximately No biomarkers of exposure or effect for ingestion, and dermal contact. 80–90% of inhaled acrolein is absorbed; have been identified for acrolein. Environmental tobacco smoke (ETS) is most in the upper respiratory tract. the primary source of exposure for many In vitro studies suggest that acrolein will Environmental Levels individuals. form conjugates with glutathione. Air Acrolein Widespread exposure occurs due to the Following oral exposure in animals, formation of acrolein during the heating approximately 30% of the initial dose is Acrolein levels in outdoor air averaged from 0.5 to 3.186 ppb. of fats. expired as carbon dioxide and 50-60% is CH2=CH-CHO The general population may also be excreted in the urine. Acrolein in indoor air ranged from <0.02 to 12 ppb in residential homes. exposed to high concentrations from CAS# 107-02-8 vehicle exhaust (for example, parking Normal Human Levels Sediment and Soil October 2007 garages and/or heavy traffic). No data available No data are available on actual Acrolein is also present in certain foods measurements of acrolein in soil. such as raw cocoa beans, chocolate Water U.S. Department of Health and liquor, fried potatoes and onions, raw and Acrolein has not been found as a Human Services cooked turkey, heated animal fats and contaminant of drinking water.
    [Show full text]
  • Hydrogen Peroxide Cas #7722-84-1
    HYDROGEN PEROXIDE CAS #7722-84-1 Division of Toxicology ToxFAQsTM April 2002 This fact sheet answers the most frequently asked health questions (FAQs) about hydrogen peroxicde. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Hydrogen peroxide is a manufactured chemical, although small amounts of hydrogen peroxide gas may occur naturally in the air. Low exposure may occur from use at home; higher exposures may occur from industrial use. Exposure to hydrogen peroxide can cause irritation of the eyes, throat, respiratory airway, and skin. Drinking concentrated liquid can cause mild to severe gastrointestinal effects. This substance has been found in at least 18 of the 1,585 National Priorities List sites identified by the Environmental Protection Agency (EPA). What is hydrogen peroxide? ‘ If released to soil, hydrogen peroxide will be broken down Hydrogen peroxide is a colorless liquid at room temperature by reacting with other compounds. with a bitter taste. Small amounts of gaseous hydrogen peroxide occur naturally in the air. Hydrogen peroxide is ‘ Hydrogen peroxide does not accumulate in the food chain. unstable, decomposing readily to oxygen and water with release of heat. Although nonflammable, it is a powerful How might I be exposed to hydrogen peroxide? oxidizing agent that can cause spontaneous combustion when it comes in contact with organic material.
    [Show full text]
  • Toxicological Profile for Acrolein
    ACROLEIN 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about acrolein and the effects of exposure to it. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for long-term federal clean-up activities. Acrolein has been found in at least 32 of the 1,684 current or former NPL sites. Although the total number of NPL sites evaluated for this substance is not known, the possibility exists that the number of sites at which acrolein is found may increase in the future as more sites are evaluated. This information is important because these sites may be sources of exposure and exposure to this substance may harm you. When a substance is released either from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. Such a release does not always lead to exposure. You can be exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to acrolein, many factors will determine whether you will be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with it. You must also consider any other chemicals you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 1.1 WHAT IS ACROLEIN? Acrolein is a clear or yellow liquid with a burnt, sweet, pungent odor.
    [Show full text]
  • Production of Hydrogen Peroxide from Carbon Monoxide, Water and Oxygen Over Alumina-Supported Ni Catalysts
    _______________________________________________________________________________www.paper.edu.cn Journal of Molecular Catalysis A: Chemical 210 (2004) 157–163 Production of hydrogen peroxide from carbon monoxide, water and oxygen over alumina-supported Ni catalysts Zhong-Long Ma, Rong-Li Jia, Chang-Jun Liu∗ Key Laboratory of Green Synthesis and Transformation of Ministry of Education, School of Chemical Engineering and Technologies, Tianjin University, Tianjin 300072, PR China Received 23 April 2003; accepted 11 September 2003 Abstract Novel amorphous Ni–B catalysts supported on alumina have been developed for the production of hydrogen peroxide from carbon monoxide, water and oxygen. The experimental investigation confirmed that the promoter/Ni ratio and the preparation conditions have a significant effect on the activity and lifetime of the catalyst. Among all the catalysts tested, the Ni–La–B/␥-Al2O3 catalyst with a 1:15 atomic ratio of La/Ni, dried at 120 ◦C, shows the best activity and lifetime for the production of hydrogen peroxide. The deactivation of the alumina-supported Ni–B amorphous catalyst was also studied. According to the characterizations of the fresh and used catalysts by SEM, XRD and XPS, no sintering of the active component and crystallization of the amorphous species were observed. However, it is water poisoning that leads to the deactivation of the catalyst. The catalyst characterization demonstrated that the active component had changed (i.e., amorphous NiO to amorphous Ni(OH)2) and then salt was formed in the reaction conditions. Water promoted the deactivation because the surface transformation of the active Ni species was accelerated by forming Ni(OH)2 in the presence of water.
    [Show full text]