<<

ASSESSMENT OF ANCIENT LAND USE IN ABANDONED SNETLEMENTS

AND FIELDS — A STUDY OF PREHISTORIC AND MEDIEVAL LAND

USE AND ITS INFLUENCE UPON SOIL PROPERTIES ON HOLNE MOOR

DARTMOOR, by

Nicholas Guy Aubrey Stephen Allott Ralph

Volume 2 of 2 Thesis submitted for the Ph.D degree References Department of Prehistory and Archaeology Appendices University of Sheffield Tables Figures September 1982 Table of Contents — Volume 2 Page

REFERENCES 430

Note on abbreviations and forms of citation 431

APPENDICES 471 List of contents 472 Appendix 1 Soil and vegetation mapping and sampling 473 Appendix 2 Laboratory preparation and physical analysis 479 Appendix 3 Chemical analysis 488 Appendix 4 Calculation and expression of results 498 Appendix 5 Replication and error 503

TABLES for chapter 5 525

FIGURES 570 Note on conventions 571 430

REFERENCES 431

REFERENCES- - note on abbreviation and forms of citation

In general references are presented according to modern scientific convention, and the abbreviations used follow British Standard 4148 (BS 4148, The Abbreviation of Titles of Periodicals. Part 2, Word-abbreviation List. British Standards Institution 1975). Exceptionally, non-standard abbreviation has been employed for the six frequently cited periodicals listed below: Lat_luIttra, Ancient Monuments Laboratory Reports, Department of the Environment. flILLE.ap. Stn. Rep. Rothamsted Experimental Station Reports, Lewes Agricultural Trust.

J.S.S. Journal of Soil Science.

P.P.S. Proceedings of the Prehistoric Society.

T.D.A. Transactions of the Devonshire Association for the Advancement of Science.

P.D.A.S. Proceedings of the Devon Archaeological Society. (Note that the proceedings of the Jubilee Conference of the Society held in 1978 were published under the title 'Prehistoric Dartmoor in its context' but formed volume 37 of the regular P.D.A.S.; the latter citation has been used in this list). Note also that where more than one part of a multi-author pub- lication has been cited, an abbreviated form of citation has been adopted to save unnecessary repetition. Thus:

Barber J. 1970 Early men. In Gill C. (ed.) :55-75 indicates that an article by Barber appears on pp. 55-75 of a publication edited by Gill, and that the latter is separately listed. Thus:

Gill C. (ed.) 1970 Dartmoor: a New Study. David & Charles. Although in the thesis text, the formulation 'eta]) has been used where more than two authors contributed to a work, in the list of references this formulation is restricted to the relatively rare instances in which more than three authors are credited. 432

Adams J.A., 1975 Some properties of a chrono-toposequence of Campbell A.S. & soils from granite in New Zealand. 1. Profile Cutler E.J.B. weights and general composition. Geoderma 13:23-40 Adams J.A., 1973 Plumbogummite minerals in a strongly Howarth D.T. & weathered New Zealand soil. Campbell A.S. J.S.S. 24:224-231 Adams J.A. & 1975 Some properties of a chrono-toposequence of Walker T.W. soils from granite in New Zealand. 2. Forms and amounts of phosphorus. Geoderma 13:41-51

Allen S.E. 1964 Chemical aspects of heather burning. 14Appl. Ecol. 1:347-367 Allen S.E. 1968 The plant nutrient content of rainwater. et al J.L.E.co1.4. 56:497-504 Allen S.E. 1969 The distribution of mineral nutrients in soil Evans C.C. & after heather burning. Grimshaw H.M. Oikos 20:16-25 Applebaum S. 1954 The agriculture of the British early iron age as exemplified at Figheldean Down, Wiltshire. pl.r.sga. 20:103-114 Applebaum S. 1958 Agriculture in Roman Britain. Agti.9.3.1.11atLatlx 6:66-86 ApSimon A.M. & 1972 The excavation of bronze age and iron age Greenfield R. settlements at Trevisker Round, St Eval, Cornwall Lallas,3:302-381 Archer M. 1972 Pasture management. Br. Racehorse (December):609-611 Archer M. 1973 Variations in potash levels in pastures grazed by horses: a preliminary communication. Equine Vet._ J. 5:45-46 Arnold G.W. & 1978 LtholozL.o.r2ree-:l3jLaet_aninDormas.3tls..Anil Duazinski M.L. Elsevier. Arrhenius 0. 1931 Die Bodenanalyse im Dienst der ArchRologie. Z. Pf1anzenernrDin. BodenkA„ B10:427-439 Arrhenius 0. 1938 Besondere Anwendungen der Bodenanalyse. Tsgssiszene_m=l A9-10:82-87

Arrhenius 0. 1955 The Iron age settlements on Gotland and the nature of the soil. In Izitl.Pranigergisat zei±.odsedsleasntszt,s,. (eds.) Stenberger M. & Klindt-Jensen 0. :1053-1064 Munksgard. 433

Arrhenius 0. 1963 Investigation of soil from old Indian sites. Ethnos 2-4:122-136

Avery B.W. 1973 Soil classification in the soil survey of England and . J.S.S. 24:324-338

Avery B.W. & 1974 Soil Surve • Tech. Monogr. Bascomb C.L. No. Soil Survey of England & Wales.

Baker A.R.H. & 1973 Systems Butlin R.A. (eds.) Cambridge Univ. Press.

Bakker J.A. 1977 Hoogkanspel-Watertoren: towards a reconstruc- et al tion of ecology and archaeology of an agrarian settlement of 1000 BC. In Ex Horreo IPP 1251- .)a7. .6.,_ ( eds.) Brandt R.W. & Groenman-van Wateringe W:188-225. A.E. van Giffen Inst. Frae-en-Proto-histoire

Bakkevig S. 1980 Phosphate analysis in archaeology - problems and recent progress. Norw. Archaeol. Rev. 13:75-100

Bakkevig S. 1981 Results obtained in the field by the use of phosphate spot test in Norway, and the cost and utility compared to other methods. astarchs:eom,, 5:81-88 (Actes Symp. Int. Archaeom., 1980 Volume 2) Ball D.F. 1964 Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J.S.S. 15:84-92

Ball D.F. 1975 Processes of soil degradation: a pedological point of view. In Evans J.G., Limbrey S. & Cleere H. (eds.):20-27

Ball D.E. 1978 Physiography, geology and soils of the grass- land site at Llyn L1ydaw. In Heal 0.W. & Perkins D.E. (eds.):297-303 Ball D.P. 1969 Soils of Snowdon. Mew G. & Field Stud. 3:69-107 Macphee W.S.G.

Ball D.E. & 1968 Variability of soil chemical properties in Williams W.M. two uncultivated brown earths. J.s.q, 19:379-399

Ball D.E. & 1971 Further studies on variability of soil chemical Williams W.M. properties: efficiency of sampling programmes on an uncultivated brown earth. J.S.S. 22:60-68 Barber J. 1970 Early men. In Gill C. (ed.):55-75

Barker P. & 1971 A pre-Norman field system at Hen Doren, Lawson J. Montgomery. MedievIlAzelma. 15:58-72 434

Barlow F. (ed.) 1969 Exeter and its Region. Exeter Univ.

Barnett V. & 1978 Outliers in Statistical Data, Lewis T. John Wiley

Barrow N.J. 1961 Phosphorus in soil organic matter. Soils & Pert. 24:169-173 Barrow N.J. 1967 Some aspects of the effects of grazing on the nutrition of pastures. J. Aust. Inst. Agric. Sat 33:254-262

Barrow N.J. & 1962 Partition of excreted nitrogen, sulphur and Lambourne phosphorus between the faeces and urine of sheep being fed pasture. Aust. J„Agric. Res. 13:461-471 Bascomb C.L. 1968 Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J.S.S. 19:251-268 Bayley J. 1975 Pollen. In Miles H.:60-67

Beavis J. 1981 The Determination and Com rieon of Amino Acid Composition of Two Buried Soils and Related Surface Soils from Holne Dartmoor. M.Sc. (oil Chemistry) Thesis, Reading Univ.

Beckett P.H.T. & 1971 Soil variability: a review. Webster R. Soils & Fert. 34:1-15 Beckett S. 1981 Pollen analysis of the peat deposits. In Smith K. et al:245-266 Beckwith R.S. & 1963 Rapid method for the estimation of total Little I.P. phosphorus in soils. J. Sci.Food Laric. 14:15-19 Beresford G. 1979 Three deserted medieval settlements on Dart- moor: A report on the late E. Marie Minter's excavations. Medieval Archaeols. 23:98-158 Beresford M.V. 1948 Ridge and furrow and the open fields. Econ. Hist Rams. 1:34-45

Beresford M.V. 1957 History on the Ground. Methuen

Berlin G.H. 1977 Identification of a Sinagua agricultural field LA by aerial thermography, soil chemistry, pollen/Plant analysis and archaeology. Am. Antigl. 42:588-600 Berry R.A. 1917 Bracken utilization and eradication. Bull. West of Agric. Coll. 80:179- 193 435

Berry R.A. 1918 Bracken as a source of potash. Robinson G.W. & J. Board Agric. 25:1-11 Russell E.J. Beruldsen E.T. & 1934 Irrigated pastures; influence of grazing. Morgan A. L....Laic. Victoria 32:440-445 Beruldsen E.T. & 1938 Irrigated pastures: influence of grazing. Morgan A. J. Agric. Victoria 36:60-67 Bidwell 0.W. & 1965 Man as a factor of soil formation. Hole F.D. Soil Sci. 99:65-72 Birkeland P. 1974 /2211212a. Weathering and Geomorpholoc-ical Research, Oxford Univ. Press Boggle R. & 1958 Studies of the root development of plants in Knight A.H. the field using radioactive tracers. 1. Communities growing in a mineral soil. J. Ecol. 46:621-628 Bolton J. & 1966 Distribution of fertilizer residues in a Coulter J. forest manuring experiment on a sandy podzol at Wareham, Dorset. Rep. For. Res.I.:90-92

Bonney, D.J. 1971 Former farms and fields at ChaLlacombe, Manator, Dartmoor. In Izektr_EksayAjzi_ Greograp4. (eds.) Gregory K.J. & Ravenbill

Exeter Univ.

Booker F. 1970 Industry. In Gill C. (ed.):100-138 Boon G.C. 1950 A Roman field system at Charterhouse-npon- Mendip. Proc. Univ. Bristol Speleol. Soc. 6:201-204 Bornemissa E. & 1967 Comparison of three methods for determining Igue K. organic phosphorus in Costa Rican soils. Soil Sci. 103:347-353 Boswell C.C. & 1976 The use of a fluorescent pigment to record Smith A. the distribution by cattle of traces of faeces from dung pats. IA-PEA_an112.ACnr_ 30:135-136 Bowen H.C. 1961 Ancient Fields. Br. Assoc. Adv. Sol.

Bowen H.C. 1978 'Celtic' fields and 'ranch! boundaries in Wessex. In Limbrey S. & Evans J.G. (eds.): 115-122 Bowen H.C. & 1962 The archaeology of Fyfield and Overton Downs, Fowler P.J. Wilts. (Interim rep.) Wiltshire_Arshwl. Mu, 58:98-115 436

Bowen B.C. & 1978 Early:Land Allotment in the British Isles. Fowler P.J. (eds.) il_SL....mtzolrRet:_c_en Work. Br. Arehaeol. Rep. 48

Boyd J.M. 1964 The Soay sheep of the island of Hirta, St et al Kilda. A study of a feral population. Proc. Zool Soc. London 142:129-163

Bradley R. 1978a Prehistoric field systems in Britain and northwest Europe - a review of some recent work. World Archaeol, 9:265-280

Bradley R. 1978b The Prehistoric Settlement of Britain. Routledge & Kagan Paul

Braman A. & 1923 The Dartmoor Granite: its mineralogy, structure Harwood B.F. and petrology. 210.12111m. & J. Mineral Soc. 20:39-53 Brasher S. & 1978 The grazing intensity and productivity of Perkins D.F. sheep in the grassland ecosystem. In Heal 0.W. & Perkins D.F. (eds.):354-374 Briggs C.S. 1978 Early observations on early fields. In Bowen H.C. & Fowler P.J. (eds.):145

Briggs D.J. 1978 Edaphic effects of poaching by cattle. North ounaL.8._ndsclas Discuss. Group Proct 11-751:g2 Briggs D.J. (unpublished) Maps and information supplied by Dr. D.J. Briggs, Department of Geography, Sheffield Univ.

Bromfield S.M. 1961 Sheep faeces in relation to the phosphorus cycle under pastures. kete_L_Aiajaakz12:111-123 Bromfield S.M. 1967 An examination of the use of Ammonium fluoride as a selective extractant for aluminium- bound phosphate in partially phosphated systems. _..MtIt'..a.es 5:225-234 Bromfield S.M. 1970 The inadequacy of corrections for resorption of phosphate during the extraction of alumidbm- bound phosphate. Soil Sci 109:388-90

Brongers J.A. 1976 Air Photography and Celtic Field Research in the . 2 vols. Ned. Oudheiden 6 Brown A.P. 1977 Late Devensian and Flandrian vegetational history of Bodmin Moor, Cornwall. Phil. Trans,. B 276:251-320

437

Brunner J. 1973 Stand on Zanzibar. Arrow

Brunsden D. & 1970 The physical environment of Dartmoor. In Gerrard J. Gill. C. (ed.):21-52

Campbell L.B. & 1975 Organic and inorganic P content, movement Racz G.J. and mineralization of P in soil beneath a feedlot. Can. J. Soil S. 55:457-466 Campbell R.C. 1974 Statistics for Biolo its. (2nd edition) Cambridge Univ. Press

Castle M.E. 1950 Some observation on the behaviour of dairy Foot A.S. & cattle with particular reference to grazing. Halley R.J. J. Dairy Res. 17:215-30

Castle M.& & 1953 The grazing behaviour of dairy cattle at the Halley R.J. National Institute for Research in Dairying. Br, J. Amin._ Bghav. 1:139-143

Chang S.C. & 1957 Fractionation of soil phosphorous. Jackson M.L • Soil Sci 84:133-144

Chapman S.B. 1967 Nutrient budgets for a dry heath ecosystem in the south of England. 21,2so.go 55:677-689 Chapman S.B. 1970 The nutrient content of the soil and root system of a dry heath ecosystem. J. Ecol. 58:445-452

Chapman S.B. 1979 Some interrelationships between soil and root respiration in lowland Calluna heathland in southern England. J. Ecol. 67:1-20

Chapman S.B. 1975a Net aerial production by __Ca. 1._i_un_a_muilarat on Hibble J. & a lowland heath in Britain. Rafarel C.R. J. Ecol. 63:233-258

Chapman S.B. 1975b Litter accumulation under Calluna vulgaris Hibble J. & on a lowland heath in Britain. Rafarel C.R. J. Ecol. 63:259-271 Chapman S.B. & 1978 The productivity of a Calluna heathland in Webb N.R. southern England. In Heal 0.W. & Perkins D.F.

(eds.) :247-262

Chater N. & 1980 Changes in organic phosphorus contents of Mattingly G.E.G. soils from long-continued experiments at Rothamsted and Saxmundham. Rot, ExP.StndlguL,1979, 2:41-61

Christensen W. 1935 Jordens forforsyreindhold som indikator for tidligere Kultur og behyggelse; en studio af Ermitageslettens historie. Dan. Geol. Unders. 2:57 438

Christensen W. 1940 Fosfatanalysen i arkaeologiens Ejeneste. ti...... Fox- .dot_g_IL_Itid 13:129-155

Clark H.M. 1960 Selion size and soil type. AMLe t_HAs 8:91-98 Clark J.G.D. 1952 Prehistoric Eurote: The Economic Basis Methuen Clayden B. 1964 Soils of the Middlelelo.‘ialict of Devon Bull. No. 1. Soil Survey of Great Britain, England & Wales

Clayden B. 1970 The micromorphology of ochreous B horizons of sesquioxidie Brown Earths developed in upland Britain. In Micromormhological techniques and (eds.-) Osmond D.A. & Bullock P. Tech. Monogr. No. 2 Soil Survey of England & Wales

Clayden B. 1971 Soils of the Exeter District (Sheets 325, 339) Mem. Soil Survey of Great Britain, England & Wales Clayden B. & 1964 The soils of the Dartmoor Granite. In Manley D.J.R. Simmons I.G. (ed.):117-140 Collery L. 1974 Observations of equine animals under farm and feral conditions. Vet, 3. 6:170-173

Collis J.R.(forthcoming) Fi1t1ASitteas and Boundaries on Sba and at Wotter Dartmoor. (unpublished ms

Commonwealth 1965 The human factor in soil formation (omitting Agricultural erosion). Bureaux 222114211114-Allre-aPils Aqn912.2121.12Et.1 No. 770 (1964-1)956 Commonwealth 1971 Methods for fractionating soil phosphorus and Agricultural methods of determining soil organic phosphorus. Bureaux Commonw. Bur. Soils Annot, Bibliogr. No. 1410

Conesa Ad), 1969 Etudes des formes de phosphore du sol par la methode Chang et Jakson. Sci Sol, 1:15-21 Conry N.J. 1970 Man's Role in Soil Profile Modification and Formation in . Pb.D thesis, Dublin Univ. Conry N.J. 1972a The reclamation of mountain soils and attendant profile and land use changes. I. Proc. R. Dublin 3oq B 3:137-157 439

Conry M.J. 1972b Pedological evidence of man's role in soil profile modification in Ireland. Geoderma 8:139-146

Conry M.J. 1972 Some brown podzolic soils in the west and et al south-west of Ireland. Proc. R. Ir. Acad, B 72:359-402

Cook S.F. & 1965 Studies on the Chemical Analzsis of Archaeo- Heizer R.F. logical Sik Univ. California Press

Cooke G.W. 1976 A review of the effects of agriculture on the chemical composition and quality of surface and underground waters. In Ministry of Agriculture, Fisheries and Food (1976): 5-57 Cooke G.W. & 1970 Losses of nitrogen and phosphorus from Williams R.J.B. agricultural land. Water Treat. 19:253-'276

Cooke G.W. & 1973 Significance of man-made sources of phosphorus: Williams R.J.B. fertilizers and farming. Water Rps. 7:19-33

Cornwall I.W. 1958 Solls_tortheArht. Phoenix House. Coulson C.B. 1960a Polyphenols in plant, humus and soil. Davies R.I. & 1. Polyphenols of leaves, litter and super- Lewis D.A. ficial humus from mull and *or sites. J.S S 11:20-29

Coulson C.B. 1960b Polyphenols in plant, humus and soil. Davies R.I. & 2. Reduction and transport by polyphenols of Lewis D.A. iron in model soil columns. J.S.S. 11:30-44

Craddock P. 1980 Appendix 6. The soil phosphate survey at the Newark Rd SUbsite, Fengate. In Pryor F.: 213-217

Crampton C.B. 1962 Analysis of pollen in shallow peaty gleyed soils of south Wales. Welsh Sql.§-1211aVaaal-212922Ea. 3:53-72 Crampton C.B. 1963 The development and morphology of iron-pan podzols in mid and south Wales. J.S.S. 14:282-302

Crampton C.B. 1965a Vegetation, aspect and time as factors of giving in podzols of south Wales. J.S.S. 16:210-229

Crampton C.B. 1965b An indurated horizon in soils of south Wales. J.S.S. 16:230-241 440

Crampton C.B. 1966 An interpretation of the pollen and soils in cross-ridge dykes of Glamorgan. Bull. Board Celtic Stud, 21:376-390

Crampton C.B. 1967 The evolution of soils on the hills of south Wales, and factors affecting the distribution, and their past, present and potential use. Welsh Soils Discuss, Group Rep., 8:52-69

Crawford O.G.S. 1923 Air survey and archaeology. Geogr. 3.61:342-366 Crawford O.G.S. & 1928 Wessex from the Air. Keiller A. Oxford Univ. Press

Crisp D.T. 1966 Input and output of minerals from an area of Pennine moorland; the importance of precipi- tation, drainage, peat erosion and animals. J. Appl. Ecol, 3:327-348

Crocker R.L. 1952 Soil genesis and the pedogenic factors. Q. Rev. Biol. 27:139-168

Crofton H.D. 1952 The ecology of immature phases of tricho- strongyle rematodes. 4. Larvae populations on lowland pastures. Parasitol. 42:77-84

Crofton H.D. 1954 The ecology of immature phases of tricho- strongyle parasites. 5. The estimation of pasture infestation. Parasitol. 44:313-324

Crofton H.D. 1958 Nematode parasite populations in sheep on lowland farms. 6. Sheep behaviour and nematode infections. Parasitol. 48:251-260

Crompton, E. 1952 Some morphological features associated with poor soil drainage. J.S.S. 3:277-289

Crompton E. 1953 Grow the soil to grow the grass. Agric. 60:301-308

Crompton E. 1956 The environmental and pedological relation- ships of peaty gleyed podzols. Trans. 6th Int. Con r. Soil Sci. E5:155-161

Curtis R.O. & 1964 Estimating bulk density from organic matter Post B.W. content in some Vermont forest soils. Soil Sci. Soc. Am. Proc. 28:285-286 Curwen E. & 1923 Sussex lynchets and their associated field- Curwen E.G. ways. Sussex Archaeol. Collect. 64:1-65

Curwen E.G. 1927 Prehistoric agriculture in Britain. Antiq. 1:261-289 Curwen E.C. 1932 Ancient cultivations. Antiq. 6:389-406 441

Curwen E.G. 1938a Early agriculture in Antia. 12:135-153

Curwen E.C. 19381) Air Photography and Economic History: the Evolution of the Corn Field. Pamphlet No. 2. Econ. Hist. Soc.

Curwen E.G. 1938c The early development of agriculture in Britain. P.P.S.. 4:27-51

Curwen E.C. 1939 The plough and the origin of strip lynchets. Antie 13:45-52

Czerwinski Z & 1974 Analysis of a sheep pasture ecosystem in the Tatur A Pieniny mountains (The Carpathians). 6. The effect of penning-up sheep on some chemical properties of the soil. Ekol. Pol. 22:535-546

Dalal R.C. 1977 Soil organic phosphorus. Adv. Agron, 29:83-117

Damman A.W.H. 1965 Thin Iron Pans: their Occurrence and the Condition Leading to their Development. Inf. Rep. N -X-2 Can. Dep. For.

Dauncey K.D.M. 1952 Phosphate content of soils on archaeological sites. Adv. Sci.9:33-36

Davies E.B. 1962 Extent of return of nutrient elements by dairy Hogg D.E. & cattle: possible leaching losses. Hopewell g.G. Trans. Int. Soc. Soil Sci. Jt. Meet. Commun. 4& 5:715-720

Davies R.I. 1970 The podzol process. Welsh Soils Discuss. Group Rep. 11:133-142

Davies R.I. 1964a Polyphenols in plant, humus End soil. Coulson, C.B. & 4. Stabilization of gelEtin by polyphenol Lewis D.A. tanning. J.S.S 15:299-309

Davies R.I. 1964b Polyphenols in plant, humus and soil. Coulson C.B. & 5. Factors leading to increase in biosyntleds Lewis D.A. of polyphenol in leaves and their relationship to mull and mor format loss. J S S 15-310-318

Deign L.A. 1949 Fixation of soil phosphorus. Adv. Agri. 1:391-411

Dean R.E. & 1974 Effects of fences and corrals on grazing Rice R.W. behaviour. Am. Soc. Anim.Sci, ('roc. West..,SectA)

SHEFFIELD]

UNIVERSITY

I L PR4RY 442

Dearing J. 1977 Gorse, man and land use change on Dartmoor: a preliminary investigation. 11111.1s. 109:135-152

Dearman W.R. 1964 Dartmoor: its geological setting. In Simmons I.G. (ed.):1-29

Denford G.T. 1975 Economy and location of bronze age 'arable' settlements on Dartmoor. Bull. Inst. Archaeol. Univ. London 12:175-196

Dennell R.W. 1979 Prehistoric diet and nutrition: some food for thought. World Archaeol. 11:121-135

Devon County 1980 Archaeology of the Devon Landscape Council

Dick W.A. & 1977 An alkaline oxidation method for determination Tabatabai M.A. of total phosphorus in soils. Soil Sci. Soc. Am. J. 41:511-514

Dimbleby G.W. 1952 The historical status of moorland in north- east Yorkshire. Newily:121. 51:349-354

Dimbleby G.W. 1962 The development of Pri,gsh Heat,blancts_pild their Soils. Oxford For. Mem. 23. Clarendon Press

Dimbleby G.W. 1965 Post-glacial changes in soil profiles. Proc P Soc B161:355-362

Dimbleby G.W. 1975 Summary and general conclusion. In Evans J.G., Limbrey S. & Cleeve H. (eds.):127-129

Dimbleby G.W. & 1974 Pollen and land snail analysis of calcareous Evans J.G. soils. J. Archaeol. Sci. 1:117-134

Dirven J.G.P. 1973 Botanische Zusammensetzung von PferdeweidPn. Vries D.M.De Z. Acker Pflenzenbau 137:123-130

Dodgshon R.A. 1980 112_2rialluLpritish Fieldfystems. An Interpretation. Academic Press

Donald A.D. 1968 Population studies on the infective stage of some nematode parasites of sheep. 3. The distribution of strongyloid egg output in flocks of sheep. Parasitol. 58:951-960 Donald A.D. & 1969 Population studies on the infective stage Leslie R.T. of some nematode parasites of sheep. 2. The distribution of faecal deposits on fields grazed by sheep. Perasitol. 59:141-157 443

Dormaar J.F. & 1964 Losses inherent in ignition procedures for Webster G.R. deternining total organic phosphorus. Can. J. Soil Sci. 44:1-6 Draycott A.P. 1977 Changes in Broom's Barn Farm Soils, 1960-75. et al E2L!...... W-2-2.--11---11e.1.-P-92....6 2:33-52 Drees L.R. & 1973 Elemental variability within a sampling unit. Wilding L.P. Soil Sci. Soc., Am, Proc. 37:82-87

Prewett P.L. 1972 The excavation of two round barrows and associated fieldwork on Ashey Down, Isle of Wight, 1969. Proc.._flampshire Field ClUb and Archaeol. Soc 27:33-567

During C. & 1962 Observations on the effect of grazing animals Radcliffe J.E. on Steepland soils. Trans._Intt_gost_poil Scil... JI..x_Meet. Commun. 4 k5:685-690 Eadie J. 1967 The nutrition of grazing hill sheep; utilisation of hill pastures. Hill Fargni-9271ZTUJtAll, il964_71 ) 4:

Eidt R.C. 1977 Detection and examination of Anthrosols by phosphate analysis. Science (New York) 197:1327-1337

Elliott R.J. 1953 The Effects of Burninkonkather Moors of the South Pennines. Ph.D. Thesis, Sheffield Univ.

Emmett D.D. 1979 Stone rows: the traditional view reconsidered. P.D.A.S. 37:94-114

Eugan G. 1964 The excavation of a stone alignment and circle at Cholwichtown, Lee Moor, Devonshire, England. jursz 30:25-38

Evans C.C. & 1971 Nutrient losses in smoke produced during Allen S.E. heather burning. slikol 22:149-154 Evans J.G. 1971 Appendix 2. The pre-enclosure environment. In The excavation of a late neolithic enclosure at Marden, Wiltshire. by Wainwright G.J.: 228-233 J..„ 51:177-239

Evans J.G. 1975 The Effect of Fran on the Landsca e s the Limbrey S. & Highland Zone. Cleeve H. (Eds.) Coyne. Br, Archaeol. Res. Rep. U. Eyre S.R. 1955 The curving plough-strip and its historical implications. rjc. 3:80-94 444

Fairhurst H. & 1970 A hut circle settlement at Kilphedir, Taylor D.B. -1 Sutherland. Proc. Soc. Antic. Scotland 103:65-99

Farbregd 0. 1977 Archaeological field work and evidence. In The Hoset Project: an inter-disciplinary study of a marginal settlement. (eds.) Salvesen. H. et al:119-126. Norw. Archaeol, Rev. 10:107-154 Feachem R. 1973 Ancient agriculture in the highland of Britain. PiP_4,_ 39:332-353 Ferguson W.S. & 1944 The chemical composition of bracken Armitage E.R. Pteridium 112_1411mm. 1714-Unci. Cambridge 34:165-171

Field A.G. 1974 Effects of age and state of incisor Sykes A.R. & dentition on faecal output of dung matter Gunn R.G. and on faecal and orinary output of nitrogen and minerals, of sheep grazing bill pastures. J. AATic,_Sci. Camicylda 83:151-160

Finberg H.P .R. 1951 Tavistock Abbe-Jyjj.§±ajzjatha,Sszajamt Economic History...A:Devon. Cambridge University Press. Fisher P. ND No title; manuscript of article submitted ( 1980 to ILIM.b.SMILaRls. Fiskell J.G.A. & 1964 Forms of phosphate in Lakeland Fine Sand Spencer W.F. after six years of heavy phosphate and lime applications. Soil Sci. 97:320-327

Fitzpatrick E.A. 1956 An indurated soil horizon formed by permafrost. J.S.S. 7:248-254

Fleming A. 1971 Bronze age agriculture on the marginal lands of north-east Yorkshire. Aalc.Hist. Rev. 19:1.24

Fleming A. 1977a Early settlement and the landscape in West Yorkshire. In Problems in Economic and Social ArchaeofiliTeWTTIWeang G. de G., 157i5W6ith I.H. & Wilson K.E.:359-373 Duckworth

Fleming A. 1977b The Dartmoor reeves. gairA-LECIMILL 55:250-252 Fleming A. 1978a Dartmoor reaves: a nineteenth-century fiasco. Antio,. 52:16-20

Fleming A. 1978b The prehistoric landscape of Dartmoor. Part 1. South Dartmoor. P.P.S., 44:97-123 445

Fleming A. 1979a Dartmoor reaves: boundary patterns and behaviour patterns in the second millennium be, P.D.A.S. 37:115-131

Fleming A. 1979b The Dartmoor /leave Project. Curr, Archaeol. 67:234-237

Fleming A. 1980a Dartmoor: the evolution of a prehistoric landscape. Devon Hit. 21:25-32

Fleming A. 1980b Prehistoric settlers on Dartmoor. In Archaeology of the Devon Landscape:32-42 Devon County Council

Fleming A. & 1973 A late prehistoric reave system near Cholwich Collis J. Town, Dartmoor. P.D.A.11. 31:1-21

Fleming A. & (in Medieval settlement and land use on Holne Ralph N. press) Moor: the landscape evidence. Medieval Archaeol. 26 Floate M.J.S. 1962 Leclogenic Relationships Concerning Forms of Soil Phosphorus and Soil Organic Matter. Ph.D. Thesis, Durham Univ. Floate M.J.S. 1965 Distribution of organic matter and phosphorus fractions in a topographic sequence of soils in southern British Columbia. Can. J. Soil Sslt 45:323-329 Floate M.J.S. 1970 Plant nutrient cycling in bill land. HillFatiomir 5: 15-33

Floate M.J.S. 1971 The significance in hill pasture improvement of the re-circulation of plant nutrients in sheep excreta and of increased pasture utilization. Proc 4th Gen, Meet, Eur. Grassi, Fed.:61-68

Floate M.J.S. 1973 Improvement of dominantdominant hill pasture 11-111 by grazing control and fertilizer treatment and its economic assessment. Potassium Inst, Ltd, Colloo, Proc. 3:1-7

Fowler P.J. 1966 Fyfield and Overton Downs. Wiltshire Archaeo/, Mag., 61:102-104

Fowler P.J. 1967 The archaeology of yfield and Overton Downs, Wiltshire. Wiltshire Archaeol, Mag.!. 62:16-33

Fowler P. • . 1971 Early prehistoric agriculture in western Europe: some archaeological evidence. In Economy and Settlement in Neolithic and EarLr Bronze Aye Britain and Europe (ed.) Simpson 15717.A.:153-182 Leicester Univ. Press 446

Fowler P.J. & 1967 Plough marks, lynchets and early fields. Evans J.G. ALIEF. 41:289-301

Fowler P.J. & 1962 Arable fields of the pre-Norman period at Thomas A.C. Gwithian. Cornish Archaeol. 1:61-84

Fox A. 1954a Celtic fields and farms on Dartmoor, in the light of recent excavations at Kes Tor. P.P.S. 20:87-102

Fox A. 1954b Excavations at Kes Tor: an early iron age site, near Chagford, Devon. 111. 3AL 86:21-62

Fox A. 1955 Huts and enclosures on Grippers Hill, Avon Valley, Dartmoor. mAL 87:55-62

Fox A. 1964 South West Thames & Hudson

Fox A. 1973 soi_rth2tEitawra (2nd Revised Edition David & Charles

Fox H.S.A. 1971 A Study of the Field Systems of Devon and Cornwall Ph.D. Thesis, Cambridge Univ.

Fox H.S.A. 1973 Outfield cultivation in Devon and Cornwall: a reinterpretation. In Husbandry and Marketing in the South.::_kkj..4z. 2_1_500..:=2_300 (ed.) Havinden M.:19 Exeter Univ.

Fox H.S.A. 1975 The chronology of enclosure and economic development in medieval Devon. Escial_Histev_IL 28:181-202

Fox R.L • & 1971 Adsorption and leaching of P in acid organic Kamprath E.J. soils and high organic matter sand. Soil Sci, Soc. Am. Proc. 35:154-156

Francis-Smith K. 1977 Behaviour patterns of horses grazing in paddocks. (Abstract) Appl. Anim. Ethol. 3:292

Franzmeier D.P • & 1963a A chronosequence of podzols in northern Whiteside E.P. Michigan. 1. Ecology and description of pedons. MichiaanAgric. Exp. Stn. Q. Bull. 46:1-20 Franzmeier D.P. & 19631, A chronosequence of podzols in Northern Whiteside E.P. Michigan. 2. Physical and chemical properties. NidlUgan..2.4xisiA_EzDA_ata&Q..11111. 46:21-36 447

Franzmeier D.P. 1963 A chronosequence of podzols in northern Whiteside E.P. & Michigan. 3. Mineralogy, Micromorlhology Mortland M.M. and net changes occurring during soil formation. Michimn A.W.A,Ficp.... Stu. Q. Huai, 46:37-57 Fraser A.F. 1975 The behavior of livestock under intensive conditions of husbandry. ApQl. Anim. Ethol. 1:111-112

Frissel M.J. (ed.) 1978 CYcltIg-g YineXALERVIAnAjalkiMigaiaTA1 L22..2.7Stems Elsevier

Frissel Y.J. & 1978 The nutrient balances; summarising graphs Kolenbrander G.J. and tables. In Frissel Y.J. (ed.):277-297 Fussell G.E. 1955 Crop nutrition in Tudor and early Stuart England. Agric. Hist. Rev. 3:95-106 Gallagher P .A. & 1963 An evaluation of errors associated with soil Herlihy M. testing. ii titi,a19..Laq. 2:149-167 Gardiner M.J. & 1966 Comparison of soil material buried since Walsh T. Neolithic times with those of the present day. Proc. R. Ir. Acad, C 65:29-35 Garner H.V. & 1969 The Broadbalk yields. Dyke G.V. Rot. Ex.p.._gtn....Rep_. _19.68 2:26-49 Garwood E.A. 1977 Comparison and Soil Conditions Tyson K.C. & During. 20 Years of Grazed Grass and Arable Clement C.R. cmalaa. Tech. Rep. No. 21 Grassl. Res. Inst. Hurley Game E. 1970 Field patterns in Widecombe Parish and the Forest of Dartmoor. T.D.A. 102 :49-69 Gawne E & 1968 Parallel reaves on Dartmoor. Somers Cocks J.V. T.D.A. 100:2 77-291 Geist V. 1971 Mountain _Sleeps_kkoVy_In_Pehaviour and Evolution Univ. Chicago Press Gerasimov I.P. 1971 Nature and originality of paleosols. In Yaalon D.H. (ed.):15-27 Giffen A.E. van 1928 Prehistoric fields in Holland. Antic. 2:85-87 Gilbertson R.D. 1980 Letter to the author dated 1st October 1980. Gill C. (ed.) 1970 Dartmoor: a New Stupi. David & Charles 448

Gillingham A.G. & 1973 Pasture production and transfer of fertility During C. witlin a long-estallished hill pasture. New Zealand J. E1T. uric. 1:227,232

Gimingham C.H. 1972 Ecolopy of Heathlands. Chapman & Hall

Glentworth R. 1947 Distribution of the total and acetic acid- soluble phosphate in soil profiles having naturally free and impeded drainage. Nature (London) 159:441-442

Glentworth R. & 1949 The association or hydrologic sequence in Dion H.G. certain soils of the podzolic zone of north- east Scotland. J.S.S. 1:5-49

Goodall V.C. 1951 The day and night grazing system. Proc. 17th Conf. New Zealand Grassl. Assoc.; -94

Gore A.J.P. 1968 The supply of six elements by rain to an upland peat area. J. Ecol. 56 :483r495

Goudie A. 1977 Environmental Change Clarendon Press

Gover J.E.H. 1931- The Pluce Names of Devon. 2 vols. Mawer A. & 1932 Cambridge Univ. Press Stenton F.M.

Gradwell M.W. 1966 Soil moisture deficiencies in puddled pastures. New Zealand J._AKric. Res. 9:127-136

Gradwell M.W. 1968 Compaction of pasture topsoils under winter grazing. Trans. 9th Int. Copu_. Soil Sci. 3:429-435

Grant S.A. & 1973 Factors affecting the role of heather Milne J.A. (lillmaalgiula L. Hull) in grazing systems. Potassium Inst. Ltd. Colloq.„ Proc. 3:41-46

Gray H.L. 1915 maw' Field Systems Harvard Univ. Press

Greeves T.A.P . 1978 Wheal Cumpston tin mine, Home, Devon. T.D.A. 110:161-171

Greeves T.A.P . 1980 An outline archaeological and historical survey of tin mining in Devon, England, 1500 - 192 0. In ICOBTEC Int. hapr j ettr, Geschichte des Bergbeus und Mittenwesens Freiber.R. 1527-eas.) Wachtler E. & Engewald G.:73-89 Greeves T.A.P. 1981 Letter to Andrew Fleming dated 22nd March 1981. 449

Griffiths J.G. 1966 The identification of topographic shelter in hill areas and its use by grazing sheep. 1512EIJILInt. Conar. Anim. Prod.:67-68

Griffiths J.G. 1970 A note on patterns of behaviour and grazing in hill sheep. Arim. Prod. 12:521-524

Groenman-van 1972 Hecken in WesteuropNischen Frbhneolithikum. Waateringe W. Ber. RI ksdienst Oudheid Kurdi Bodemomderz 20-21:295-299

Groenman-van 1978 The impact of neolithic man on the landscape Waateringe in the Netherlands. In Limbrey S. & Evans J.G. (eds.):135-146

Hafez E.S.E. (ed.) 1962 The Behaviour of Domestic Animals 1.4711Are, Tindall & Cox

Hafez E.S.E. (ed.) 1968 Adaptation Domestic Animals Lea &Febiger

Hafez E.S.E. & 1962 The behaviour of cattle. In Hafez E.S.F. Schein M.W. (ed.):247-296

Hafez E.S.E. 1962 The behaviour of horses. In Hafez E.S.E. Williams M. & (ed.) :370-396 Wierzkowski

Hakamata T. & 1978 Evaluation of cattle excreta on pasture Hiroshima T. fertility. 1. The excretal dispersion models and their applicable conditions. Grassi.. Sci. 24:162-171 Hall D. 1981 The origins of open-field agriculture - the archaeological fieldwork evidence. In The 2114.111A-91-N91-r--910-1-Lri-cvtur , (ed:7-- Rowley, T.:22-3 Groom Helm

Hammer C.U. 1980 Greenland ice sheet evidence of post-glacial Clausen H.B. & volcanism and its climatic impact. Dansgaard Nature (London) 228:230-235

Hamond F.W. 1979 Settlement, economy and environment on P re- historic Dartmoor. 1,2Lk,taL37:146-175

Hancock J. 1950 Studies in monozygotic cattle twins. 4. Uniformity trials: grazing behaviour. New Zealand J. Set. Technol. A 32:22-59

Hanley, J.A. 1937 The need for lime and phosphate in grassland improvement. 4th Int. Grassl, Conf.:288-297

Hannapel R.J. 1964 Phosphorus movement in a calcareous soil. Fuller W.H. & 2. Soil microbial activity and organic phos- Fox R.H. phorus movement. SoikAsir.. 97:421-427 450

Harrison A.F. 1978 Phosphorus cycles of forest and upland grassland ecosystems and some effects of management practices. In Phosphorus in the Environment: its Chemistry and Biochemista /74aTT.I- Porter R. & Fitzsimmons D.W.:175-199 Ciba Found. 57 Harrison A.F. 1979 Variation in four phosphorus properties in woodland soils. Soil. Biol. Biochem. 11:393,403 Harrison A.F. & 1979 Seasonal variation of phosphatase activity Pearce T. in woodland soils. Soil Biol. Biochem. 11:405-410 Harrod T.R. 1974 Loess in Devon. Catt J.A. & Proc. Ussher Soc. 2:554-564 Weir A.H. Harrod T.R. 1976 Soils in Devon II. Sheet SX 65 (Ivybridge). Hogan D.V. & Soil Survey Rec. Yo. 39. Soil Survey of Staines S.J. England & Wales.

Harvey U. & 1953 Dartmoor. Leger-Gordon D.St. tSErri ir Hatt G. 1931 Prehistoric fields in Jylland (Jutland). Acta Archaeol. 2:117-15U Havinden M. & 1970 Farming. In Gill C. (ed.):139 -181 Wilkinson F.

Heal O.W. & 1976 IBP studies on montane grasslands and moorlands. Perkins D.F. Phil. Trans. R. S. B 274:295-314 Heal O.W. & 1978 Production Ecology of British Moors and Perkins D.F. (eds.) Montane Grasslands Springer-Verlag Heal O.W. & 1978 Introduction and site description. In Heal Smith R.A.H. 0.W. & Perkins D.F. (eds.):3-16 Hadley W.P. 1931 Ancient cultivations at Housteads, Northum- berland. Antirl. 5:351-354 Heizer R.F. 1960 Soil investigations in the service of archaeology - discussion. In The Application of Quantitative Methods n A cha o leizer R.F. &Cook S.F.:2 4-300 Viking Fund Publications in Anthropology

Hemingway R.G. 1955 Soil sampling errors and advisory analyses. J. Agrip_ISACatila 46:1-8 Hemingway R.G. 1961 The mineral composition of farmyard manure. Emp. J. Eamsjalc. 29:14-18. 451

Hemwall J.B. 1957 The fixation of phosphorus by soils. it_t_AZI2n.. 9:95-112 Henkens Chat. 1978 Agro-ecosystem in the Netherlands, Part II. In Frissel M.J. (ed.):79-106

Herron M.M. 1981 Climatic signal of ice melt features in Herron S.L. & southern Greenland. Langway Jr. C.C. Nature (London) 293:389-391

Hewlett G. 1973 Reconstructing a historical landscape from field and documentary evidence. Agric. Hist. Rev. 21:94-110

Hewson R. & 1979 Home range and movements of Scottish Black- Wilson C.J. face sheep in Lochaber, north-west Scotland. J. Appl. Ecol. 16:743-751

Higgs E.S. (ed.) 1972 Papers in Economic PrehiEtorE Cambridge Univ. Press

Hilder E.J. 1964 The distribution of plant nutrients by sheep at pasture. Proc. Aust, Soc. Anim. Prod. 5:241-248

Hilder E.J. .1966a Rate of turnover of elements in soils: the effects of stocking rate. Wool Technol. Sheer_Aultd. 13:11-16

Hilder E.J. 1966b Distribution of excreta by sheep at pasture. 11z6,101LIAtAjgrassl. Congr. Sect, 4 No. 39:977-981

Hilder E.J. & 1963 The redistribution of plant nutrients through Mottershead B.E. free grazing sheep. Aunt. J Sci. 26:88-89

H.M.S.O. 1976 Dartmoor. National Park Guide No. 1, (6th Impression). Hodgson J.M. 1976oilSurveFieldlis S_yook.DescribiLLiand 1§Rally,1911profiles. Tech. Monogr. No. 5, Soil Survey of England & Wales.

Hogan D. 1977 Soils in Devon III. Sheet SX 47 (Tavistock). Soil SurveyRec. No. 44. Soil Survey of England & Wales.

Hogan D.V. (ed.) 1978 Pro e and Excursion Guide for the Autumn mee14420,9 Br. Soc. Soil Sci.

Holleyman G.A. 1935 The Celtic field systems in South Britain: a survey of the Brighton district. Anti. 9:443,454

Holleyman G.A • & 1935 Late bronze age lynchet-settlements on Curwen E.C. Plumpton Plain, Sussex LILA, 1:16-38 452

Hood A.E.M. 1977 High nitrogen fertilizer applications on grassland: leaching studies. klqItS2ils piss.Gi_mI.oRe. 18:25-45

Hornung M.F. 1970 The physical background. In Perkins D.F. & Ward S.D. (eds.):17-35

Hoskins W.G. 1954 Devon Collins

Hoskins W.G. 1967 Fieldwork in Faber & Faber

Hoskins W.G. 1971 adamn (Paperback Edition) Pan

Hoskins W.G. 1973 2.42.aish Lepd_seares Br. Broadcasting Corp.

Hoskins W.G. & 1952 Devonshire Studies Finberg H.P Jonathan Cape

Howard P.J.A. 1966 The carbon-organic matter factor in various soil types Oikos 15:229-236

Hughes F. & 1911 The concentration of phosphoric acid in the Aladjem R. soil in the neighbourhood of old centres of population. Ririe. J. Egypt 1:81-83

Hunter J.G. 1953 The composition of bracken; some major - and trace . element constituents. 1.1-§91-s-l&LAWat 4:10-20 Hunter R.F. 1962 Hill sheep and their pasture: a study of sheep grazing in south-east Scotland. 112_210d, 50:651-680

Hunter R.F. 1964 Home range behaviour in hill sheep. In Grazing in Terrestrial and Marine Environ- ments ed. Crisp D.J.:155-171 Blackwell

Hunter R.F. & 1963 The effect of method of rearing on the social Davies G.E. behaviour of Scottish Blackface hoggets. Anim. Prod. 5:183-194

Hunter R,F. & 1963 The behaviour of individual, related and Milner C. groups of South Country Cheviot hill sheep. hra....,ingelazt 11:507-513

I.G.S. 1977 Institute of Geological Sciences, Sheet 7§J Dartmoor Forest, (Drift Edition). Director-General of the Ordnance Survey for the Director, Institute of Geological Sciences. Ingram M.J. 1978 Historical climatology. Underhill D.J. & Nature (London) 276:329-334 Wigley T.M.L. 453

Jarvis M.C. & 1976 Profile distribution of organic carbon, iron, Duncan H.J. aluminium and manganese in soils under bracken and heather. Plant & Soil 44:129-140

Jarvis M.O. & 1977 Profile distribution of sesquioxides under Duncan H.J. bracken, heather and other vegetation. Welsh Soils Discuss. Group Rep. 18:2 -24 Jakuhczyk H. 1974 Analysis of a sheep pasture ecosystem in the Pieniny Mts (The Carpathians). 8. Development of microflora in dung and in soil of a spring sheep fold. Ekol. Pol.:559=568

Jeffrey D.W. 1970 A note on the use of ignition loss as a means for the approximate estimation of soil bulk density. J. Ecol. 58:297-299

Jenkinson D.S. 1971 The accumulation of organic matter in soil left uncultivated.

Jenkinson D.S. 1977 The nitrogen economy of the Broadbalk experiments. 1. Nitrogen balance in the experiments. L9L.jt J Str 2 :103-109

Jenkinson D.S. & 1977 Soil organic matter in the Hoosfield Johnston A.E. Continuous Barley experiment. Rot. Exp. Stn. Rep. 3976 2:87-101

Jenkinson D.S. & 1977 The turnover of soil organic matter in some Rayner J.H. of the Rothamsted Classical experiments. Soil Sci. 123:298-305

Jenny H. 1941 Factors of Soil Formation McGraw-Hall

Jenny H. 1958 Role of the plant factor in the pedogenic functions. Ecol. 39:5-16

Jenny H. 1961a Derivation of state factor equations of soils and ecosystems. Soil Sci Soc Am Proc 25:385-388

Jenny H. 1961b Comparison of soil nitrogen and carbon in tropical and temperate regions. Les.1.13.9.1 e s_aAic.Ex.Stn_. 765: 5-31

Johns E.M. 1957 The surveying and mapping of vegetation of some Dartmoor pastures. Geocr,,_Stud. 4:129-137

Johnston A.E. 1969a Plant nutrients in Broadbalk Soils. ktt..1.102:_ptn.Re.18_p___Y__ 2 :93,115 454

Johnston A.E. 1969b The plant nutrients in crops grown on Broadbalk. Rot. Exp. Stn. Rep. 1968 2:50-62

Johnston A.E. 1973 The effects of ley and arable cropping systems on the amounts of soil organic matter in the Rothamsted and Woburn ley- arable experiments. 1221,Exp. Stn t_Rep. 1972 2:131-159

Johnston A.E. 1976 Additions and removals of nitrogen and phosphorus in long-term experiments at Rot-. hamsted and Woburn and the effect of the residues on total soil nitrogen and phos- phorus. In Ministry of Agriculture, Fisheries & Food (1976):111-144

Johnston A.E. & 1977 Yields on the Exhaustion land and changes in Poulton P.R. the N.P./C content of the soils due to cropping and manuring, 1952-1975. 12-.9.1...-Ea..-atu....EgRa....2.9.2.6. 2:53-35 Johnston A.E. 1981 The soils of the Rothamsted Farm. Poulton P.R. & The carbon and nitrogen content of the soils McEwen J. and the effect of changes in crop rotation and manuring on soil pH, P, K, Mg. 11.9.t.22x.alts_,Reat_a_.80 2:5-20 Kaila A. 1950 On the dependance of the amourtof organic phosphorus on the carbon content in soil. Trans. 5 1:191-192 Kaila A. 1962 Determination of total organic phosphorus in samples of mineral soils. Maataloust. Aikak. 34:187-196

Kaila A. 1963 Phosphorus conditions at v riouz depths in some mineral soils. Maataloust ‘ Aika.k. 35:67-79

Katznelson, J. 1977 Phosphorus in the soil-plant-animal ecosystem. Oeco1ag5a_26:325-334

Keeley H.C.M. 1976 Interim report on environmental work at Shaugh Moor, Devon. 24.10A.MPAm.. Taal& 110.• 2151 Keeley H.C.M. 1978 Central Unit excavation, Shaugh Moor Devon. The Cairn field site. Interim soil report. Anc. Mon. Lab, Rep. 2545

Keeley H.C.M. & 1979 The soils of Shaugh Moor, Devon. McPhail R.I. Anctqcn• Lab,J. 2925 Keeley H.C.M. & 1981 A soil survey of part of Shaugh Moor, Devon. McPhail R.I. In Smith K. 4Lti.I.I1:240-245 455

Kent M. & 1980 The vegetation of a Dartmoor catchment. Wathern P . Vegettio 43:163-172

Kenworthy J.B. 1964 A Study of the Change in Pl-nt nd Soil Nutrients Associated with MoorburninR_and Grazing. Ph.D. Thesis, St. Andres Univ.

Keogh R.G. 1973 plthomLces Chey.ta_rum Spore distribution and sheep grazing patterns in relation to urine patch and inter-excreta sites within rye grass dominant pastures. New Zeal _Agris. is 16:353-355

Khin A. & 1960 Modification in Chang and Jackson' o procedure Leeper G.W. for fracti)nating soil phosphorus. AgrxMoi. 4:246-254

Larsen J.E. 1958 Studies on the leaching of applied labelled Langston R. & phosphorus in organic soils Warren G.F. Soil_SciSoct. Am t_Proc. 22;558-560

Larsen S. 1967 Soil Phosphorus. 112m4....kgren. 19:151-210

Limbrey S. 1975 Soil Science and Archaeoloim. Academic Press.

Limbrey S. & 1978 The Effect of Man on the Landscape: the Evans J.E. (eds.) lard Zone Counc. Br, Archaeol, Res. Rep, 21

Lindquist S. 1974 The development of the agrarian landscape on Gotland during the Early iron age. Norw. Archae,a1,. Rey,. 7:6-32

Loach K. 1966 Relations between soil nutrients and vege- tation in wet heaths. 1. Soil nutrient content and moisture conditions. J. Ecol. 54:597-608

Loach K. 1968 Relations between soil nutrients and vege- tation in wet heaths. 2. Nutrient uptake by the major species in the field and in controlled conditions. J. Ecol. 56:117-127 Logan T.J. & 1973 Effects of phosphorus application rate, soil IcClean E.O. properties and leaching mode on 32p movement in soil columns. f211..W.A.,..aag.„ku_..erasx. 37:371-374 Lynch J.J. & 1976 The effect of gramineous windbreaks on Alexander G. behaviour sand lamb mortality among shorn and unshorn Merino sheep during lambing. Appl. Anim. Ethol. 2:305-325 456

Lynch J.J. & 1977 Sheltering behaviour of lambing Merino sheep Alexander G. in relation to grass hedges and artificial windbreaks. Aust. jtAgric t Res. 28:691-701

Lynch J.J. 1980 Sheltering behaviour and lamb mortality Mottershead B. E. & amongst shorn Merino ewes lambing in Alexander G. paddocks with a restricted area of shelter or no shelter. 11111tInlaLEtho1. 6:163-174

McBride G. 1967 Ecological aspects of the behaviour of et al domestic animals. Proc. Ecoll. Soc. Aunt. 2:133-165

MacDiarmid B.N. & 1972 The cattle dung patch. 3. Distribution and Watkin B.R. rate of decay of dung patches and their influence on grazing behaviour. J.Br.Grassl. Soc. 27:48-54

McDonnell P.M. & 1957 The phosphate status of Irish soils with Walsh T. particular reference to farming systems. J.S.S.. 8:97-112

McKercher R.B. & 1968 Observations on the accuracy of an ignition Anderson G. and an extraction method for measuring organic phosphorus in some Canadian soils. Soil S.A. 105:198-200

MacLusky D.S. 1960 Some estimates of the areas of pasture fouled by the excreta of dairy cows. J. Br_,. Grassl t Soct 15:181-188

McNab J.W. 1965 British strip lynchets. Antio 39:279-290

Macphail R.I. 1980a Soil report on the double reave at Shaugh Moor, DartmoortDevon. Alls.t, Mon, Laitt 'Rep. 3033

Macphail R.I. 1980b Addendum to soil report No. 3033 on the double reave at Shaugh Moor, Dartmoor, Devon. Anc k MO212. W2,1611Q11.3187 Macphail R.I. 1981 Soil report on the Saddle sborough Reave at Shaugh Moor, Dartmoor, Devon. Anc. Mon. Lab. Rep. 3484

Madanov P.V. 1968 Buried soils under bronze age Kurgans on Voykia L.M. & the Russian pla in. Balyanin M.I. Sov Soil Sci. 2:171-178

Maltby E. & 1976 Soil organic matter and peat accumulation on Crabtree K. Exmoor: a contemporary and palaeoenvironmental interpretation. Trans. Inst. Br. Geoes. N.S.1:259-278

Manley G. 1972 Climate ancl_thg jzittala Iceng, (5th impression) Collins. 457

Marsh R. & 1970 Fouling of pastures by dung (a review Campling R.C. article) Herbssalltstr. 40:123-130

Marten G.C. & 1964 Selective grazing induced by animal excreta. Donker J.D. 1. Evidence of occurrence and significant remedy. J. Dairy Sci. 47:773-776

Mattingly G.E.G. 1970 Total phosphorus contents of soils by perchloric acid digestion and sodium carbonate fusion. 1A_Agric, Sci. Cam=ftgft 74:79-82 Mattingly G.E.G. & 1967 Progress in the chemistry of fertilizer Talibudeen 0. and soil phosphorus. In Topics in Phosphorus Chemistm 4 (eds.) Grayson M. & Griffith J.E.: Interscience Mattingly G.E.G. & 1962 A note on the chemical analysis of a soil Williams R.J.B. buried since Roman times. J.S.S. 13:254-259 Mattson S. 1950a Phosphate relationships of soil and plant. Barkoff E. & 4. Forms of P in the hydrologic series of Williams E.G. the Dala brown earth and Unden podzol. Ann. &Amis....Coll. Swed. 17:121-129 Mattson S. 1950b Phosphate relationshilsof soil and plant. Williams E.G. & 3. Forms of P in the BeInnalt limed and Barkoff E. unlimed podzol series. Ann. Re_ Agric. Coll. Swed. 17:107-120

Mattson S. 1950c Phosphate relationships of soil and plant. et al 5. Forms of P in the Lanna soil. Ann. Aarie•-0012,1wea. 17:130-140 Mausbach N.J. 1980 Variability of measured properties in morphologically matched pedons. Soil Sci. Soc. km...1. 44:358-363

Megaw J.V.S. 1961 The bronze age settlement at Gwithian, Thomas A.C. & Cornwall. Wailes B. Pr„ocWest djuut 2:200-215

Mehta N.C. 1954 Determination of organic phosphorus in soils. et al 1. Extraction method. Soil Sci. Soc. Am. Proc. 18:443-449

Mercer R.J. 1970 The excavation of a bronze age hut circle settlement, Stannon Down, St Breward, Cornwall. Cornish Archaeol. 9:17-46

Mercer R.J. 1978 The linking of prehistoric settlement to its farming landscape in south-western Britain. In Bowen H.C. & Fowler P.J. (eds.):163-170 458

Merryfield D.L. & 1974 Prehistoric human activity and blanket peat Moore P.O. initiation on Exmoor. Nature (London) 250:439-441 Metson A.J. 1979 Methods for the determination of soil Blakemore L.C. & organic carbon: a review, and application to Rhoades D.A. New Zealand soils. New Zealand J. Sci. 22:205-228 Metson A.J. & 1953- Effects of sheep dung and urine on a soil Hurst F.B. 1954 under pasture at Lincoln, Canterbury with particular reference to potassium and nitrogen equilibria. New Zealand J. Sci. Technol. k 35:327-359 Midgley A.R. 1941 Phosphate fixation in soils: a critical review. Soil Set, Soc.....Am_,..irqs. 5:24-30 Miles H. 1975 Barrows on the St Austell granite, Cornwall. Cornish Archaeol. 14:5-82 Mills A. 1949 A section of Celtic field terraces at Streetley Warren, Berkshire. Berkshire Archaeol J. 51:51-52 Milne J.A. 1976 Intake and digestion of hill-land vegetation et al by the red deer and the sheep. Nature (London) 263:763764 Ministry of 1967 Survey. of Fertilizer Practice 1966 (Prelim. Agriculture, Rep.) Fisheries & Natl. Agric. Advis. Serv. Food. Ministry of 1976 Agriculture aslaia:ter_aualitzi Tech. Bull. Agriculture, No. 32. Fisheries & H.M.S.O. Food Mitchell B.D. & 1958 The effect of various factors on soil formation Jarvis R.A. in south-west Scotland, with partimular reference to the influence of man. Amphim. 2:107-126 Moore P.D. 1975 The Influence of Prehistoric Land Use U on Peat Formation. Mimeogr. Pap. Discuss. Group Archaeol. Inst. Archaeol. London Univ. Muir J.W. 1952 The determinanee of total phosphorous in soil, with particular reference to the control of interference by soluble silica. Anal. 77:313-317

Munro J. 1961 Shelter for livestock: a survey in two hill areas in Scotland. Hill Farming_Rest.arglls. Rep. (1958-1126j1 2:83-91 459

Mtmro J. 1962 The use of natural shelter by hill sheep. Anim. Prod. 4:343-349

Murphy J. & 1962 A modified single solution method for the Riley 3.P, determination of phosphate in natural waters. Anal. Chim. tota 27:31-36

Neal O.R. 1944 Removal of nutrients from the soil by crops and erosion. J. Am. Soc. Agron. , 36:601-637

Neller J.R. 1946 Mobility of phosphates in sandy soils. Soil Sci. Soc. Am._ Proc. 11:227-230

Newbould P. 1974 The improvement of hill pastures for agri- culture. A review. Part 1. J. Br. Grassi. Soc. 29:241-247

Newbould P. 1975 The improvement of hill pastures for agri- culture. A review. Part 2. J. Br. Grassi. Soc. 30:41-44

Newbould P & 1978 Agro-ecosystems in the United Kingdom. In Floats M.J.S. Frissel M.J. (ed.):33-70

Nightingale M. 1953 Ploughing and field shape. Antic. 27:20-26

Norman M.J.T.& 1958 The local influence of cattle dung and urine Green J.O. upon the yield and botanical composition of permanent pasture. 24-11t,_14.1.13:39-45

Nunez M. 1975 Phosphorus determination of the graves of Kilteri in Vantaa, southern Finland. Eal.minasau_au_lanNuseo_:18-25 O'Brien B.J. & 1978 Movement and turnover of soil organic matter Stout J.D. as indicated by carbon isotape measurements. Soil Biol. Biochem. 10:309-317

Odberg F.O. & 1976 A study on eliminative and grazing behaviour Francis-Smith K. the use of the field by captive horses. Equine Vet. J. 8:147-149

8dberg F.O. & 1977 Studies an the formation of ungrazed Francis-Smith K. eliminative areas in fields used by horses. h221. Anim. Ethol. 3:27-34 Ddynsky W. 1936 Solubility and distribution of phosphorus in Alberta soils. Sci. Agric. 16:652-664

Orwin C.S. & 1938 TlielheOpen _LAI. 1st edition. Orwin C.S. Clarendon Press

Orwin C.S. & 1954 The Open Fields. 2nd edition. Orwin C.S. Clarendon Press 460

Ozanne P.G. 1962 Some nutritional problems characteristic of sandy soils. Trans Int_A_SocoilSciet Commun. 4 & 5:139-143

Ozanne P.G. 1961 The loss of phosphorus from sandy soils. Kirton D.J. & krak.....1,2.atts. es Shaw T.C.

Page W. (ed.) 1906 Victoria Histom_of the Counties of England Devonshire. Vol. 1. Constable

Parsons R.B. 1962 Indian mounds of northeast Iowa as soil genesis benchmarks. J. Iowa Archaeol, Soc. 12:1-70

Pennington W. 1974 The History of British Vegetation (2nd edition) The English Univ. Press

Peperzak P. 1959 Phosphorus fractions in manures. et al Soil qqi. 87:293-302

Perkins D.F. 1970 A note on the climate of Dartmoor. In Perkins D.F. & Ward S.D. (eds.):36-40

Perkins D.F. 1978 The distribution and transfer of energy and nutrients in the Agrostis-Festuea grassland ecosystem. In Heal 0.W. and Perkins D.F. (eds.) :375-396

Perkins D.F. 1970 A census of domestic livestock grazing on Crook I.G. & Dartmoor. In Perkins D.F. & Ward S.D. (eds.): Thomson A.G. 99-114

Perkins D.F. 1978 Primary production, mineral nutrients and et al litter decomposition in the grassland eco- system. In Heal 0.W. & Perkins D.F. (eds.): 304-331

Perkins D.F. & 1970 Rec_pL_-tontheDart ioorzEcological Surve. Ward S.D. (eds.) Natural Environmental Research Council and the Nature Conservancy.

Perrin R.M.S. 1974 Distribution of late Pleistocene aeolian Davies H. & deposits in eastern and southern England. Fysh M.D. Nature London. 248:320-324 Perrin H.M.S. 1964 Dating of humus podzols by residual radio- Willis E.H. & carbon activity. Hodge C.A.H. Nature, London. 202:165-166

Petersen R.G. 1956 The distribution of excreta by freely grazing Lucas H.L • & cattle and its effect on pasture fertility. Woodhouse W.W. 1. Excretal distribution. Agron. J. 48:440-444

Powell T.L. 1967 A note on the relationships between components of weather on the location of defaecation in out-wintered cattle. Anim. Prod. 7:138-143 461

Prabhs.karan 1971 Parent material-soil relationship in trace Nair K.P. 8c elements - A quantitative estimation. Cotterie A. Geoderma 5:81-97

Price D.G. & 1976 On the significance of soil profiles at Tinsley H. Trowlesworthy Warren and Wigford Down. T.D.A. 108:147-157

Proudfoot V.B. 1958 Problems of soil history. Podzol development at Goodland and Torr Towlands, Co. Antrim, Northern Ireland, J.S.S. 9:186-198

Proudfoot V.B. 1969 Appendix: soil report, Cholwichtown stone row. In Simmons I.G.:217-219

Proudfoot V.B. 1976 The analysis and interpretation of soil phos- phorus in archaeological contexts. In Geoarchaeoloa. Earth Science and the Past (eds.) Davidson D.A. & Shackley M.L.: 93,-113. Duckworth

Provan D .M .J. 1971 Soil phosphate analysis as a tool in archaeology. Nom. Archaeol. Rev. 4:37-50

Provan 1973 The soils of an iron age farm site - Bjellandshmae, S W Norway. NoriArt Archaeol, Rev, 6:30-41

Pryor F. 1976 Fen-edge land management in the bronze age: an interim report on excavations at Fengate, Peterborough 1971-75. In Settlement and Econo the Tbard and Second Mial,ennia B.C. eds.) Burgess C. & Miket R.:29-50 Br. Archaeol. Rep. 33

Pryor F. 1978 Excavation at Fengate, Peterborough, England: the Second Report. Archaeol. Monogr. 5. Royal Ontario Museum.

Pryor F. 1980 Excavation at Fengate, Peterborough, England. The third report. Monogr. 1, Northampton- shire Archaeol. Soc., and Archaeol. Monogr. 6, Royal Ontario Museum.

Radcliffe J.E. 1968 Soil conditions on tracked hillside pastures. New zq!.1-at ll_ItilaKL9LaftE . 11:359-370

Rahtz P. 1962 Excavations at Shearplace Hill, Sydling St Nicholas, Dorset, England. P.P.S. 28:289-328

Ralegh 1952 Prehistoric settlements on Dartmoor and the Radford C.A. Cornish Moors. P.P.S. 18:55-84

Rawes M. 1971 Aspects of the ecology of the northern Pennines. 1. The influence of agriculture. Moorhoune Occas, Paj. 1:1-15 462

Rawes M. & 1978 The blanket bog as part of a Pennine Heal 0.W. moorland. In Heal 0.W. & Pen ins D.F. (eds.) :224-243

Rawes M. & 1966 Further studies on sheep grazing in the Welch D. northern Pennines. J. Br, Gr-Issl. Soc. 21:56-61

Rawson R.R. 1953 The open field in Flintshire r Devonshire and Cornwall. Econ, Hiatrjity„ 2nd series 6:51-54

Reed J.F. & 1946 Some factors affecting the accuracy of soil Rigney J.A. sampling. Soil Sci. Soc. Am. Proc. 10:257-259

Reed J.F. & 1947 Soil sampling from fields of uniform and Rigney J.A. non-uniform appearance and soil types. J. Am. Soc. Agron. 39:26-40

Reinhardt V. 1978 Resting habits of zebu cattle in a nocturnal Mutiso F.M. & enclosure. Reinhardt A. Aug, Anim. Ethol. 4:261-271

Rennie P .J. 1956 A semi-micro routine procedure for the partial fractionation of soil phosphorus. 2::_fsit_Eaaitilatis . 7:227-232 Reynolds S.G. 1975 Soil property varip bility in slope studies; suggested sampling schemes and typical required sample sizes. Z. Geomorphol. 19:191-208

Rhodes P .P. 1950 The Celtic field systems on the Berkshire Downs. Oxoniensia 15:1-28

Richards I.R. & 1976 The spatial distribution of excreta under Wolton K.M. intensive cattle grazing. 3. Br, Grassi, Soc. 31:89-92

Richardson H.L. 1938 The nitrogen cycle in gressland soils: with especial reference to the Rothamsted Park Grass experiment. jr_kri_s_ri_Sc r.,_CambrirLe 28:73-121 Robertson R.A. & 1965 Quantities of plant nutrients in heather Davies G.E. ecosystems. .2:2..)12p1,_Es21. 2:211-219

Robinson G.W. & 1927 Losses of added phosphate by leaching from Jones 3.0. north Welsh soils. Sci., ,, Cambridge 17:94-103

Robinson M. 1978a The problem of hedges enclosing Bomar and earlier fields. In Bowen H.C. & Fowler P.J. (eds .) :155-158 463

Robinson M. 1978b A comparison between the effects of man on the environment of the first gravel terrace and floodplain of the Upper Thames Valley during the iron age and Roman periods. In Limbrey S. & Evans J.G. (eds.) :35-43 Rolston D.E. 1975 Infiltration of organic phosphate compounds Rauschkolb R.S. & in soil. Hoffman D.L. Soil .Sci. Soc. Am....Proc.39:1089-1094

Romans J.C.C. 1962 The origin of the indurated 137 horizon of podzolic soils in north-oast 'Scotland. J.S.S 13:141-147

Romans J.C.C. & 1970- Appendix 2 Kilphedir - hut-circle excavation Durno S.E. 1971 site. In Fairhurst H. & Taylor D.B.:95-99 Romans J.C.C. & 1975 Soils and archaeology in Scotland. In Robertson L. Evans J.G., Limbrey S. & Cleeve H. (eds.) Roper D.C. 1976 Lateral displacement of artifacts due to ploughing. Am. Antia. 41:372-375 Roscoe B. 1960 The distribution and condition of soil phos- phates under old permanent pasture. Plant & Soil 12:17-29 Roy B.B. & 1951 The phosphate reserves in some old permanent Thomas B. pasture plots. Emp..2 1. E.m...Agric. 19:175-184 Rudeforth C.C. 1963 Leaching and podzolization. Welsh Soils Discuss. Group...Rep. 4:17-26 Runge E.C.A. & 1966 Influence of natural drainage on the distri- Riecken F.F. bution and forms of phosphorus in some Iowa prairie soils. Soil Sci. Soc. Am. Proc. 30:624-630 Russell E.W. 1973 Soil Condltkons an.d1.1,a_riLgrmith (10th edition) Longman Ryden J.C. 1973 Phosphorus in runoff and streams. Syers J.K. & Advt. Agron. 25:1-45 Harris R.F. Rymer L. 1976 The history and ethnobotany of bracken. Linti„Sog. 73:151-176 Saini G.R. 1966 Organic matter as a measure of bulk density of soil. Nature (London) 210:1295-1296

Salmon A. J. 1980 An InvestigxtiOJI-1.11M.AS.P.s.C.t3—Qt_attla TraUltIgUl.clieadjAEL.SM.A.Satu.S.-1.3.41-5.y.S.te419, in Portland Dorset. Undergraduate Dissertation, Department of Geography, Sheffield Univ. 4,64

Salter R.M. & 1939 Farm manure. Schollenberger C.J. Ohio Agric. Exp. Stn. Bull. 605

Saunders W.M.H. & 1955 Observations on the determination of total Williams E.G. organic phosphorus in soils. J.S.S. 6:254-267 Sayer J.A. 1970 The ecology of bracken invasion on Dartmoor. In Perkins D.F. & Ward S.D. (eds.)115-120

Sears P.D. 1950 Soil fertility and pasture growth. J Br. Grassl t Soc. 5:267-280 Sears P.D. 1951 The technique of pasture measurement. New Zealand J. Sci. Technol. A33:1-29 Sears P.D. 1953- Pasture growth and soil fertility. 1954 5. The effects of nitrogenous fertilizers and of 'day and night' grazing. New Zealand J. Sci. Technol. Suppl. 1 A 35: 68-77

Sears P.D. 1948 The effect of sheep droppings on yield, Goodall V.C. & botanical composition, and chemical composition Newbold R.P. of pasture. 2. Results for the years 1942-4 and final summary of the trial. New Zealand A30:231-250 Sears P .D. & 1953 The effect of sheep droppings on yield, Thurston W.A. botanical composition and chemical composition of pasture. 3. Results of field trials at Lincoln, Canterbury for the years 1944-7. New Zealand J. Sci. Technol. A34:445-459

Shackley M.L. 1975 Archaeolmical Sediments: A Survey of Analatkzalpethods. Butte rworths.

Shipley B.M. & 1961- Appendix 1. The soils of the Dalnaglar Romans J.C.C. 1962 circular enclosures, Glenshee, Perthshire. In The excavation of two circular enclosures at Dalnaglar, Perthshire by Stewart M.E.C.: 146-153. Proc. Soc. Ant. Scotland 95:134-158 Shorter A.H. 1938 Ancient fields in Manaton Parish, Dartmoor. Antic. 12:183-189

Shorter A.H. 1969 Southwest England. Ravenhill W.L.D. & Nelson Gregory K.J.

Silvester R.J. 1979 The relationship of first millennium settlement to the upland areas of the south- west. P.D 37:176-190

Simmons I.G. 1961 The Stallmoor Down stone row: a note. T.D.A 93:65-66 465

Simmons I.G. 1962 An outline of the vegetation history of Dartmoor. T.D.A, 92:555-574

Simmons I.G. 1963 The blanket bog of Dartmoor. T.D.A 93:180-196

Simmons I.G. (ed.) 1964a Dartmoor Essays Devonshire Assoc. Adv. Sci,

Simmons I.G. 1964b An ecological history of Dartmoor. In Simmons I.G. (ed.):191-215

Simmons I.G. 1964c Polkndiagrams from Dartmoor. New laixtol. 63:165-180

Simmons I.G. 1964d Appendix: Soil pollen analysis. In Eogan G: 34-38

Simmons I.G. 1969 Environment and early man on Dartmoor, Devon, England. 35:203-219

Simmons I.G. 1981 The mesolithic. In Simmons I.G. & Tooley Dimbleby G.W. & M.J. (eds.):82-124 Grigson C.

Simmons I.G. & 1981 The Environment in British Prehistory. Tooley M.J. (eds.) Duckworth.

Simonson R.W. 1970 Loss of nutrient elements during soil formation. In Nutrient Mobility in Soils: Accumulation and Losses red.TEnglestad 0.P.: 21-15. Soil Sci. Soc. Am. Spec. Publ. 4.

Smeck N.E. 1973 Phosphorus: an indicator of pedogenetic weathering processes. splassi. 115:199-206

Smeck N.E. & 1971 Phosphorus availability and redistribution Runge E.C.A. in relation to profile development in an Illinois landscape segment. Soil Sci. Soc. Am. Proc. 35:952-959

Smith A.G. 1981 The neolithic. In Simmons I.G. & Tooley M.J. (eds.):125-209

Smith A.N. 1969 Fractionation of inorganic phosphorus in soils. The Chang and Jackson fractionation procedure: its limitation and uses. D. 17:10-19

Smith K. 1981 The Shaugh Moor Project: Third report — et al settlement and environmental investigations. P.P.S. 47:205-273

Somers Cocks J.V. 1970a Saxon and early medieval times. In Gill. C. (ed.) :76-99 466

Somers Cocks J.V. 1970b The Dartmoor Bibliography. Non-fiction. Dartmoor Preservation Assoc.

Somers Cocks J.V. 1974 The Dartmoor Bibliography. Non-fiction. Supplement No. 1. Dartmoor Preservation Assoc.

Spedding C.R.W. 1971 Grasslandlcolla Clarendon Press

Spencer W.F. 1957 Distribution and availability of phosphates added to a Lakeland Fine Sand. Soil Sci, Soc„Am. Proc. 21:141-144

Spoorar G.M. & 1967 Worthl s Dartmoor Russell F.S. (eds.) David & Charles

Squires V.R. 1974 Grazing distribution and activity patterns of Merino sheep on a satbush community in south-east Australia. Appl. Anim. Ethol. 1:17-30

Squires V.R. 1975 Social behaviour in domestic livestock: the basis for improved animal husbandry. Appl. Anim. Ethol. 1:177-184

Staines S.J. 1972 Soils and Vegetation on Dartmoor: Distribution and History. M.Sc. Thesis, Bristol Univ.

Staines S.J. 1975 Soils. In Miles H.:66-67

Staines S.J. 1976 Soils in Cornwall I. Sheet SX 18 (Camelford) Soil Survey Rec. No. 34. Soil Survey of England & Wales.

Staines S.J. 1979 Environmental change on Dartmoor. P.D.A.S. 37:21-47

Stephenson R.E. & 1931 Phosphate penetration in field soils. Chapman H.D. J. Am. Soc. Agron. 23:759-770

Stevens P.R. & 1970 The chronosequence concept and soil formation. Walker T.W. Q. Rev. Biol. 45:553-350

Stewart V.L. 1961 A perma-frost horizon in the soils of Cardiganshire. Welsh Soils Discuss, Group Rep. 2:19-22

Tamm C.O. & 1967 Some remarks on soil organic matter turn- Holmen H. over in Swedish podzol profiles. Meddre norske Skogsfors Ves. 23:67-88

Tapley-Soper H. 1936 Parochiales Bridfordii. A Devonshire village in olden times. TD L 68 .• 331-350

Taylor C.C. 1966 Strip lynchets. Antig. 40:277-283 467

Taylor C.C. 1974 Fieldwork in Medieval Archaeology Batsford

Taylor C.C. 1975 Fields in the English Landscape Dent

Taylor E.L. 1954 Grazing behavior and helminthic disease. Br. J. Anim. Behav. 2:61-62

Taylor J.A. 1975 The role of climatic factors in environ- mental and cultural changes in prehistoric times. In Evans J.G., Limbrey S. & Cleeve H. (eds.): 6-19

Taylor J.A. & 1972 Climatic peat - a misnomer? Smith R.T. Proc. 4th Int. Peat_Cong.1-4:471-484

Thomas A.S. 1960 Chalk, heather and man. Agric. Hist. Rev. 8:57-65

Thomas J.F.H. 1949 The Grazing Animal. Faber & Faber

Tinsley H.M. 1981 The bronze age. In Simmons I.G. & Tooley M.J. (eds.):210-249

Tribe D.E. 1950 The behaviour of the grazing animal: a critical review of present knowledge. J. Br, Grassi Soc. 5:209-223

Trudgill S.T. 1977 Soil and Vegetation Systems Clarendon Press

Tubbs C.R. & 1965 Early agriculture in the New Forest. Dimbleby G.W. Adv. Sci. 22 (96):88-97

Tubbs C.R. & 1964 The distribution of gorse (Ulex europaeus L.) Jones E.L. in the New Forest in relation to former land use. Pap. & Proc. Hampshire Field Club & Archaeol. Soc. 23:1-10

Turner J. 1964 The anthropogenic factor in vegetational history. 1. Tregaron and Whixhall mosses. New Phytol. 63:73-90

Turner J. 1965 A contribution to the history of forest clearance. Proc. R. Soc. B 161:343-354

Turner J. 1981 The iron age. In Simmons I.G. & Tooley M.J. (eds.):250-281

Tyler S.J. 1972 The behaviour and social organisation of the New Forest ponies. Anim. Behav, Monogr. 5:87-196 468

Ure A.M. 1979 The total trace element content of some et al Scottish soils by Spark Source mass spectrometry. Geoderma. 22:1-23

Valentine K.W.G. 1976 Quaternary buried paleosols: a critical Dalrymple J.B. review. Quaternary Res. 6:209-222

Vancouver C. 1813 General view of the agriculture of the County of Devon, with observations on the means of its improvement. Sherwood, Neely & Jones

Vita—Finzo, C. & 1970 Prehistoric economy in the Mount Carmel Higgs E.S. area: site catchment analysis. P .P S. 36:1-37

Vreeken W.J. 1975 Principal kinds of chronosequences and their significance in soil history. J.S.S. 26:378-394

Wainwright G.J. 1979 The Shaugh Moor Project: first report. Fleming A. & P.P.S. 45:1-34 Smith K.

Wainwright G.J. & 1979 The South Dartmoor project. Smith K. P.D.A.S. 37:132-135

Wainwright G.J. & 1980 The Shaugh Moor Project: second report — the Smith K. enclosure. P.P.S. 46:65-122

Waksman S.A. 1936 Humus: Origin. Chemical Composition and Im ortance in Nature BalljAre.

Walker T.W. 1965 The significance of phosphorus in pedogenesis. In jiietal Fed...912Am (eds.) Hallsworth E.G. & Crawford D.V.:295-316. Butterworth.

Walker T.W. & 1958 Studies on soil organic matter. 1. Influence Adams A.F.R. of phosphorus content of parent materials on accumulation of carbon, nitrogen, sulphur and organic phosphorus in grassland soils. Soil Sci. 85:307-318

Walker T.W. & 1976 The fate of phosphorus during pedogenesis. Syers J.K. Geoderma. 15:1-19

Ward S.D. 1972 The vegetation of Dartmoor. Jones A.D. & Field Stud. 3:505-534 Manton M.

Wardrop J.C. 1953 Studies in the behaviour of dairy cows at pasture. Br. J. Anim Behav. 1:23-31 469

Warren R.G. & 1964 The Park Grass experiment. J ohnston A.E. Rot. Exa_Stalliep. 1963:240-262

Warren R.G. & 1967 Hoosfield Continuous Barley. Johnston A.E. Rot. Exp. Stn. Rep. 1966:320-338

Watanabe F.S. & 1965 Test of an oscorbic acid method for deter- Olsen S.R. mining phosphorus in water and NaHCO, extracts from soil. J Soil Sci. Soc. Am. Proc. 29:677-678

Waters R.S. 1964 The Pleistocene legacy to the geomorphology of Dartmoor. In Simmons I.G. (ed.):73-96

Watkin B.R. & 1978 The effects of grazing animals on pastures. Clements R.J. In Plant Relations in Pastures (ed.) Wilson J.R.:273-289 Commonw. Sci. Ind. Res. Organ.

White E. 1960 The distribution and subsequent disappearance of sheep dung on Pennine moorland. J. Anim. Ecol. 29:243-250

White E.M. 1978 Cautionary note on soil phosphate data interpretation for archaeology. Am. Antia. 43:507-508

Whittaker E. 1960 Ecological Effects of Moor Burning. Ph.D. Thesis, Aberdeen Univ.

Whittington G. 1976 A field system at Dinder in Somerset. Somerset.. Archaeol. Nat. Hist. 120:39-44

Wild A. 1950 The retention of phosphate by soil: a review. J.S.S. 1:221-238

Williams C.H. 1960 Carbon, nitrogen, sulphur and phosphorus in Williams E.G. & some Scottish soils. Scott N.M. J.S.S. 11:334-346

Williams E.G. 1952 Evaluating the phosphorus status of soils. Trans. Int. Soc. Soil Sci. Commun. 2 & 4 1:31-47

Williams E.G. 1959 Influences of parent material and drainage conditions on soil phosphorus relationships. harachim. 3:279-309

Williams E.G. & a Distribution of phosphorus in profiles and Saunders W.M.H. particle-size fractions of some Scottish soils. J.S S 7:90-108

Williams E.G. & 1956b Influence of drainage conditions on fluoride- Saunders W.M.H. soluble phosphorus in some Scottish soils. Soll-Zai . B:797-803 470

Williams J.D.H. 1970 A comparison of methods for the determination et al of soil organic phosphorus. 19.11_1c1. 110:13-18

Williams R.J.B. 1976 The chemical composition of rain, land drainage, and borehole water from Rothamsted, Broom's Barn, Saxmundham and Woburn Experi- mental Stations. In Ministry of Agriculture, Fisheries & Food (1976):174-200

Yaalon D.H. (ed.) 1971 Paleopedology: Origin, Nature and Dating of Paleosols. Israel University Press & Int. Soc. Soil Sci.

Yaalon D.H. 1975 Conceptual models in pedogenesis; can soil— forming functions be solved? Geoderma. 14:189-205

Yaalon D.H. & 1966 Framework for man—made soil changes — an Yaron B. outline of metapedogenesis. Soil Sci. 102:272-277

Yates E.M. 1965 Dark age and medieval settlement on the edge of wastes and forests. Field Stud. 2:133-153 471

APPENDICES 472

APPENDICES - list of contents

Appendix 1 Soil and vegetation mapping and sampling Mapping and sarpling locations and their identification codes 473 Information recorded at marring and sampling locations 475 Soil sampling procedures 477

Appendix 2 Laboratory preparation and physical analysis 47 Amounts of soil taken for laboratory analysis, drying, weighing, sieving, sub-sampling of fine earth, grinding 479 Exceitions to standard procedures 486

Appendix 3 Chemical analysis 488 Extraction of Pao and Pa 4E8 Determination of P in solution 4°8 Contamination 4 0 Experimental extractions 490 Determination of pH 496

Appendix 4 Calculation and expression of results 408 Measured variables 498 Formulae for calculated variables 499 Total phosphorus 501

Appendix 5 Replication and error 503 Replication - of absorbance measurements 503 - of the final solutions used in colorimetric analysis 504 - of analytical sub-samples 505 - of ground fine earth sub-samples 507 - of fine earth sub-samples 508 - of bulk samples 509 - of profiles 511 Sources of variability in observed sample values 513 Replicate analysis of oven-dry ground fine earth samples after two years storage 515 Assessment of the effects of changes in field sampling procedures 517 Assessment of the effects of drying procedures 519 Adjustment of Pa and Po values for profil s in zone C 523 473

Appendix 1 Soil and vegetation mapping and sampling

Mapping and sampling locations and their identification codes

1) Mapping grid (see Fig. 3.8) - Location letter (B-L, excluding I) and number (1-14) defined by position on grid. Small pits at 80 locations. 2) Subsidiary mapping soil pits (see Fig. 3.8) - No location codes. 120 locations.

Soil sampling locations -19.17. - Pilot sample

3) Zone A (see Fig. 3.9) Large pits - GSP 4-9 Small pits - SP 10-30 4) Zone B (see Fig. 5.111) - Small pits - PP 1-19 5) Zone C (see Fig. 5.1) Large pits - GSP 2-3 Small pits - SP 1-8 6) Stone Row (see Fig. 3.8) Large pit - GSP 1(= SRW 125) Small pit - SP 9 (=SRW 109); see (11) below. 7) Archaeological sites (profiles in or adjacent to excavations) (see Fig. 3.5; see also (18) below). Large pits - Site C - HM77C 1-4 (bank-lynchet) - Site F - H177F 11, 5, 6 (palaeosol)

Soil sampling locations - 19-Z8 - Main sample

8) Zone A (see Fig. 3.9) Small pits Zone is divided into 14 sub-zones most of which correspond to land units delimited by land boundaries (prehistoric and medieval); these are lettered A to R, excludLnoI, 0 and P. Profiles within each sub-zone are numbered 1, 2 . . . n; thus Al, A2. . • An and Ml, M2. . . Mn. In addition profiles located close to fie d edges were sampled (in groups of three, closely-spaced pits set ca. 0.75 - 1.0 m from the boundary edge) - ED1-21. 9) Zone B - Transect sampling (see Fig. 5.111) Small pits Transect across droveway - Outer Soutll Field - PTS series - Droveway - PTD series - North Field - PTN series 474

10) Zone C (see Fig. 5.1) Large pits (excavation of boundary) - HM78 C and B (palaeosol) Small pits - SP 31-37 11) Stone Row - Transect sampling (see Fig. 3.8) Small pits Transect across Row - ST series Transect along Row - SRW and SHE series 12) Prehistoric House in zone A, sub-zone (=field) D (see Fig. 3.9) - Small pits North-south Transect - PHA series, East-west Transect - PHB series 13) Stoke Farm (field) - Bench Tor (moor) (see Fig. 5.87) Large pits - GSP 10 (moor), GSP 11 (field) Small pits - SP 50-53 (moor), SP 46-49 (field) 14) Rowbrook Farm (field) - Vag Hill (Moor) (see Fig. 5.88) Medium pits - RF 1-4 (fields) RV 1-6 (moor)

Soil sampling locations -1271

15) Zone A (see Fig. 3.9) Small pits Profiles in corners of fields use sub-zone lettering plus additional letter C (=corner) and new number series. Thus profiles in corners of sub-zone (=field) L are coded: LC 1, LC 2, LC 3 etc. Pits were dug ca. 1.5 - 2.0 m along the diagonal from the apex of the corner. 16) Zone B - Transect sampling - B horizons (see No. 9 above) 17) Zone C - Replicate and additional samples (see No. 10 above) HM79 B (palaeosol) IN79 Q

Special sampling

18) Some 300 samples were taken from the Ah/E and B horizons on archaeological site F in zone A; the excavator's grid reference system was used as a sample code (see Fig. 5.51). Most samples were recovered in 1977; a few additional samples were taken in 1979. 19) Animal faeces samples were taken from Holne Moor and within and near Rowbrook Farm in 1979. Rowbrook Farm - XRF Vag Hill - XRV (see No. 14 above) Holne Moor, zones A and B - XH1 series zone C - XMA series Suffix indicates animal :-C = Cow; S = Sheep; H = Horse 475

In this and subsequent appendices, groups of pits are referred to by a number corresponding to their number in this list or by their code number where this is necessary. Thus (5) refers to the investi- gations in zone C in 1977 and (10) refers to the additional sampling in this area in 1978.

Information recorded at mapping and sampling locations

SMALL PITS 1977 - see (1) (3) (5) (6) Medium pits 1978 — see (14)

Site Slope angle, slope form, aspect, micro—relief, vegetation, proximity to cultural landscape features.

Soil Horizons present, horizon thickness, nature of horizon boundaries. Mottles and speckles (ferruginous micro—mottles and concretions) present, their size, abundance, contrast and the nature of their boundaries. Munsell colour of horizons and mottles (colour assessed on wet soil away from direct sunlight). Organic matter distribution, abundance, character. Particle size distribution and abundance of clay, silt, sand. Stone size and abundance. Depth of auger penetration.

LARGE PITS in all years — see (3) (5) (6) (7) (10) (13)

All variables listed above plus: Stone shape and lithology". Cutan distribution, abundance, composition, distinctiveness. Ped size, development, shape. Macropore size and abundance. Root size, abundance, type. Presence of nodules, concretions, fissures, channels, burrows, soil fauna. Carbonate (HC1) and Manganese (H 202 ) tests. 476

SMALL PITS 1978, 1979

(4) and (10) Details of site recorded on maps for groups of profiles; variables as for small pits 1977 above. Details of soil: Horizons present, horizon thickness, nature of horizon boundaries. Mottles and speckles present, their abundance and type (organic, gley, ferruginous). Presence of burrows, channels, fissures. Any unusual features (e.g. exceptionally high or low stone content, indications of profile disturbance, etc.). (8) and (15) Details of site as for small pits 1977, recorded intermittently for groups of profiles in close proximity, except that vegetation and nearby cultural features were noted for each profile location and the major patterns of vegetation were mapped in this zone (A). Details of soil: as for (4) and (10) above plus Munsell colour of B horizon soil and mottles. Fuller records of zone A were made in 1977 - see (3) (9) and (16) No details of site. Details of soil: Thickness of L, Oh, Ah/E; Presence of E, Eg, Bir; Depth to surface of B horizon only. Fuller records of zone B were made in earlier sampling — see (4) above. (13) No details of site. Details of soil for SP 50-53: Thickness of L I Oh, Ah/E; presence of E l Eg, Bir; nature of boundaries. No details of soil for SP 46-49 (cultivated field). Fuller records of these sites were recorded at large pits in each area — see GSP 10, GSP 11. (11) Details as for (9) and (16) above. Fuller records at the Stone Row were recorded in 1977 - see (6). (12 ) Details of site: vegetation in house and its surrounds noted. Details of soil: thickness of L, Oh, Ah/E; abnormalities of horizons and/or stone content. (18) Informal field notes recorded the appearance of the soil on this archaeological site; fuller records of site and soil were recorded in 1977 - see (7) site F. 477

With the exceptions of measurements of horizon thickness and depth of auger penetration, all site and soil properties recorded at all profiles represent estimates based either on the assistance pro. vided by charts (e.g. Munsell Soil Colour Strips (colour), Soil Survey Field Handbook (abundance and size of stones, mottles, macro— pores, peds, roots, etc. — Hodgson 1976)) or the unaided observations of the author (e.g. hand texturing estimates of silt, clay and sand content, estimates of slope angle and form, vegetation abundance, etc.). Laboratory estimates of particle size, LOI and stone content provided some 'control' over these estimates. All the procedures and termin- ology used above follow Hodgson (1976).

Soil sampling procedures

1222

(3) (5) (6) Standard sampling procedures as described in the text (see 3.3.1). Bulk samples from all horizons; volume samples from Oh horizons (most), from Ah/E horizons (all) and from B horizons (few); micromorphological samples (selected profiles only). (7) Sampling as for (3) (5) (6) plus soil pollen samples and large stone content samples. (4) Sampling as for (3) (5) (6) but bulk samples only.

2_3z8

(8) Standard sampling procedures as described in the text (see 3.3.1). Volume plus some bulk samples from all Ah/E horizons; Volume and/or bulk samples from Oh and B horizons. (9) Sampling as for (8) but volume samples taken from all Oh as well as Ah/E horizons. No B horizon samples taken — see (16) below. 478

(10) Sampling as for (8) plus soil pollen samples and stone content samples from H478 B and O. (11) Sampling as for (8) but volume samples taken from all Oh as well as Ah/E horizons. B horizon samples recovered by augering in base of pit after removal of Ah/E; these samples were taken from a standard depth of 20-40 cm below the mineral soil surface. (12) Small bulk samples (ca. 0.1-0.2 kg wet weight) taken from Oh and Ah/E horizons only. (13) Sampling of small pits as for (11) but volume samples also taken from Ap horizons; GSP 10 and 11 sampled as (8) plus large stone content samples. (14) Sampling as for (8) but volume samples taken from all upper soil horizons (i.e. Ah/Ap, Oh/Ah, Ah, Ah/E); soil pits were of intermediate size (0.5 m X 0.5 m X 0.7 m (depth)).

1979

(15) Sampling as for (8). (16) B horizon samples recovered by augering in base of new soil pits immediately adjacent to the pits sampled in 1978 - see (9) above; these samples were taken from the first 20 cm of the B horizon. (17) Sampling as for (8). (18) Small bulk samples (ca. 0.1-0.2 kg) of AWE horizon taken from trowelled surface during excavations; estimated to sample the middle of the Ah/E horizon. B horizon samples recovered by augering or from very small pits or from trowelled surface of B horizon at a late stage of the excavation; estimated to sample first 18 cm of B horizon. 479

Appendix 2 Laboratory preparation and physical analysis

Amounts of soil taken for laboratory analysis

In general either complete volume samples (= 182 cm 3 undisturbed soil volume, which had a 'disturbed' soil volume of ca. 250 ml, a wet weight of ca. 200 - 300 g and an oven-dry (OD) weight of —ca. 150 - 200 g) or sub-samples of similar 'disturbed' volume (i.e. l beakerful l sub-samples from bulk samples) were taken, but in several instances smaller samples were used (see below).

.1U-41.1 11E Three days air-drying in polythene bags in the laboratory (at ca. 20° C) was followed by oven-drying for 24 h at 105° C and cooling in dessi- cators for at least 2 h.

Weitling Wet weight of soil and OD weights of soil and stones were determined to 0.00 g. (see Tables A2.1 - A2.5)

Sieving The fine earth and stones were separated by crushing soil through a brass sieve (2 mm mesh) with a rubber pestle. Stones were transferred to a 'nest' of sieves containing 4 mm and 8 mm meshes (and in some instances 2.8, 5.6, 16 and 32 mm meshes).

Sub-sampling of fine earth The residual fine earth fraction of ca. 100-200 g was sub-sampled by riffle box division until a 15 - 25 g sub-sample was available.

Grinding The fine earth sub-samples were ground with a porcelain mortar and pestle until all passed through a 250 micron mesh sieve. The mortar and pestle were cleaned after each sample and acid-washed periodically (and always before starting to grind a fresh batch of samples of different type (i.e. from a different horizon)).

480

Table A2 .1 Weight of stones in Oh horizon samples

A B 0.D.Sample Stones LOI B x 100 ( g) (g) A (%)

ZONE 29.19 0.00 0.00 87.29 A 45.58 0.29 0.64 72.46 44.25 0.65 1.47 71.97 68.44 (1) 0.41 0.60 71.90 71.05 (1) 1.48 2.08 67.18 45.38 0.10 0.22 66.13 Range: 0.00-2.08

52.00 0.17 0.33 61.21 95.74 (1) 1.00 1.04 59.98 63.92 (1) 0.82 1.28 58.36 59.62 1.75 2.94 52.46 92.14 (1) 4.42 4.80 49.88 69.51 1.69 2.43 49.77 Range: 0.33-4.80

56.70 0.72 1.27 47.88

44.20 0.50 1.13 45.94

39.70 0.20 0.50 45.65

54.86 1.99 3.63 42.65 Range: 0.50-3.63

36.50 0.60 1.64 36.83 78.98 1.87 2.37 36.03 87.19 5.42 6.22 34.18 50.80 2.80 5.51 31.29 123.47 (1) 4.17 3.38 28.78 Range: 1.64-6.22

75.15 (2) 8.77 11.67 21.32

vAG HILL 159.01 (1)(2) 26.32 16.55 21.28

VAG HILL 171.08 (1)(2) 29.81 17.42 18.87 481

Table A2.1 (cont.)

A 0.D.Sample Stones LOI ( g) (g) B x 100 (%) A ZONE 16.50 0.36 1.55 74.38 75.80 (1) 0.24 0.32 57.23 79. 18 (1) 0.18 0.23 48.89 91.48 (1) 2.20 2.40 45.06 31.97 0.08 0.25 44.81 29.74 0.58 1.95 36.42 69.90 1.09 1.56 32.82 38.06 1.64 4.31 31.46 Range: 0.23-4.31

Busied Oh -h 1979 34.99 0.19 0.54 26.10 Samples 40.88 1.63 3.99 26.04

1978 99.59 3.54 3.55 23.03 Samples 51.21 1.36 2.66 21.61

Peaty Ditch Sediment 111.54 7.64 6.85 21.78

(1) Volume samples taken in the field (2) Treated as mineral soils 482

Table, A2,2 Moisture inmasulples after 4 montls stora4e (1) Samples from the stone row Oh 71.90 Ah/E 35.59(2) 56.19 37.02 51.88 37.43 55.97 38.89 52.34 41.64 60.71 38.26 55.42 38.08 61.47 42.41 58.19 43.40 61.48 29.49 61.65 49.12 71.19 49.39 64.26 50.01 64.06 48.56 54.35 37.99 54.22 40.90 63.07 43.17 55.80 40.15 64.77 39.46 61.06 33.06 66.36 40.82 51.74 31.59 59.49 25.58 62.95 42.93 74.45 41.95

•••••••--- n 25 25 0 IC 6o.6o 39.88 SD 6.20 6.03 CV 10.23 15.12

(1) Figures show volume of water in samples expressed as a percent&ge of the volume of the undisturbed soil sample. (2) Pairs of figures represent samples drawn from the same Trofile. 483

(1) Ilia).11LA2,3 Moisture in soil samples after 4 months storaLe Samples from Zone A (except where otherwise indicated)

Oh AVE

35.91 34.94 (2) 52.25 25.05 54.97 27.83 63.07 40.83 63.52 31.50 46.18 27.40 24.62 c 68.45 46.67 34.49 Zone 67.04 47.06 31.72 30.84 ( 61.15 41.69 39.46 30.92 Bench 62.07 31.77 30.08 26.62 21.48 Tor 28.71 32.89 29.32 36.09 37.51 40.07 30.06 43.46 26.66 42.91 32.76 24.08 32.69 21.91 24.11 20.00 31.64 22.97 26.43 33.16 24.47 26.24 32.31 23.81 32.75 26.72 27.24 26.17

n 10 13 16 3 15 ; 57.46 34.80 32.57 32.95 25.98 SD 10.22 7.28 5.95 6.42 3.87 cv 17.79 20.92 18.28 19.49 14.88

(1) Figures show volume of water in samples expressed as a percentage of the volume of the undisturbed soil sample. (2) Samples on the same line represent samples from the same profile. 484

:fabae.A2,4 Moisture in soil samples after 4 rontls_stoxage

Ahl Ah 2 Rowbrook 26.44 24.64 Farm 24.95 26.05 30.95 25.59 32.96 24.83

Zone 32.39 33.84 40.67 34.51 29.30 35.68

Stoke 35.22 29.59 Farm 30.91 33.50 29.25 35.25

n 12 8 R 31.82 29.34 SD 4.23 4.70 CV 13.29 16.01

1) Figures show volume of water in samples expressed as a percentage of the volume of the undisturbed soil sample. 2) Pairs of figures represent samples drawn from the same profile. 485

_a_e_AL5Tal Supinely of moksture content in soil samplps after 4 months (1) 2I2ERE.t

7 SD CV

Ahl 12 31.82 4.23 13.29 Ah 8 29.34 4.70 16.01 2 Oh 25 6o.6o 6.20 10.23 Oh 10 57.46 10.22 17.79

Ah/E 25 39.88 6.03 15.12 Ah/E 13 34.80 7.28 20.92 16 32.57 18.28 B1 5.95 B 32.95 6.42 19.49 2 3 B 15 25.98 3.87 14.88 3

1) Figures show volume of water in samples expressed as a percentage of the volume in the undisturbed soil samples. 486

Exceptions to the above standardsropedures

The groups of samples listed below received identical treatment to other samples except with respect to the specific differences listed; in most of these cases the difference is limited to a smaller size of sample taken for analysis and is a consequence of the field recovery technique.

Oh samples — all sample groups

The stone component of Oh samples was only weighed in a limited number of cases. Very few stones occurred in samples with LOI greater tlan 30% and the stone component was taken into account only on a few samples with LOI of 25% or less (see 3.3.2 and Table A2.1).

(3) (5) (6) (7) - volume samples

All volume samples were oven—dried to an unchanging weight; since these samples had not been allowed to air—dry prior to oven—drying, this took up to 48 h for the wettest samples. None of these volume samples were used for chemical analyses.

(3) (5) (8) (10) (15) — stone content of B horizons

In zone A and C, stone content of B horizons has mainly been estimated from the stones present in undisturbed volume samples; most of these samples were taken during the 1978 sampling. In addition some values were obtained from equivalent volume, I beakerful l samples (see 3.3.2) but, although the fine earth in these sub—samples from bulk samples was always separated from the stone component, the latter was not always weighed.

(10) — B horizon samples

All the sub—samples taken from the non—volume (bulk) field samples had OD soil weights of ca. 100 g, leaving ca. 60-80 g fine earth for sub— sampling and analysis. 487

(11) - B horizon samples

These auger-recovered samples had OD soil weights of ca. 4C-70 g, le ving 30-60 g fine earth for sub-sampling and analysis.

(12) - Oh and Ah/E samples

These small bulk samples had OD soil weights of 25-50 g (Oh) and 50 - 75 g (Ah/E); the stones were separated as usual but were not weighed.

(13) - B horizon samples from the small pits

These auger-recovered samples had OD soil weights of ca. 70 g, leaving ca. 50 g fine earth for sub-sampling and analysis.

(14) - B horizon samples

Sub-samples with OD soil weights of ca. 70-100 g were taken from the bulk samples, leaving ca. 40-70 g fine earth for subsampling and analysis.

(16) - B horizon samples

These auger-recovered samples had OD soil weights of ca. 40-80 g, leaving 30-60 g fine earth for sub-sampling and analysis.

(18) - Ah/E and B horizon samples

These small bulk samples had OD fine earth weights of ca. 65 g: the stones were separated as usual but not weighed.

(19) - Animal faeces samples

After field recovery, these samples were kept in sealed polythene bags for 14 days (at temperatures of ca. 15-20° C) before being placed in a o freezer for 7 days (at a temperature of -25 C). They were then oven- dried (48 h at 105° C) and ground to pass a 500 micron mesh sieve. Wet sample weights ranged from 42 to 193 g; OD sample weights ranged from 12 to 47 g. Loss of weight on drying ranged from 13 to 595% of the OD weight of samples. 488

Appendix 3 Chemical analysis

For chemical analyses, all weights of soil samples and chemicals were determined to 0.0000 g and all volume measurements were made using 'A I class volumetric glassware, which like all other glassware was regularly soaked in an acid bath. Only Analar grade materiels were used throughout the work. Several different phosphorus extraction procedures were used during the study; the principal methods, used on all samples (Pao and Pa determinations) are described immediately below. Procedures used experimentally are outlined later.

Extraction of Pao and Pa Pao A 2.0000 g sub—sample of ground fine earth was weighed into a 25 ml porcelain crucible; this sample was heated to 575° C in a muffle furnace, a temperature that was reached 40 min after the sample had 0 been placed in the cold furnace and was maintained (+— 5 C) until its removal 1 h 20 min later (total time in furnace = 2 h). After cooling for at least 1 h in a dessicator, the sample was reweighed to determine weight loss—on—ignition and transferred to a 250 ml polypropylene wide—necked bottle. Pa A duplicate 2.0000 g sub—sample of ground fine earth was weighed into a polystyrene weighing boat and then transferred to a 250 ml polypropylene wide—necked bottle. Pao and Pa 100 ml of 2N was added to the sub—samples in the polypropylene H2SO4 bottles which were then sealed and shaken on a reciprocal shaker for 6 h. The solutions were then filtered (Whatman 44 filter) and stored overnight in glass flasks.

Determination of P in solution P in solution w as determined by the method of Murphy and Riley (1962 ) following precisely the procedural steps conveniently published by Watanabe and Olsen (1965). Absorbance was measured on a Cecil Instruments CE 272 Linear readout ultra—violet spectrophotometer set at 882 nm using 4.5 cm silica cells. A blank and 3 standards were run with each batch of 20 samples (either Pao or Pa samples in each batch). Initial tests were performed to check on the stability of the blue colour, the percentage recovery of added phosphorus, the effect of 489 coloured sample solutions (Pa only) on measured absorbance and the effect of allowing solutions to stand overnight before colorimetry. No significant change in absorbance occurred between 15 min and 24 h; recovery of added phosphorus was always satisfactory; colouration of solutions did not affect absorbance measured at 882 fin; and no significant differences were found between sample solutions analysed 2 h after extraction and those left to stand for 3 days. Only very slight changes could be detected after 3 months. Pao determinations The level of P in these sample solutions necessitated a 4 X dilution; 25 ml of the solution was therefore made up to 100 ml with distilled water and a 2 ml aliquot of this dilute solution was taken for colorimetry. The dilution obviated the need for any adjustment of aliquot acidity. Pa determinations The level of P in these sample solutions neither required nor, in some cases, allowed dilution. In consequence, it was necessary to adjust the acidity of Pa aliquots and 2N NaOH was used to neutralise them. Initial tests were made to determine an appropriate routine procedure and these showed that a satisfactory adjustment could be made by adding 2N NaOH in amounts equal to that of the sample aliquot, which itself varied in size from 1 to 5 mi (but usually 2 or 3 ml) depending on the level of P in the particular sample solution.

Standards Stock solution; 0.4393 g dry KH2PO4 was dissolved in distilled water and made up to 1 1; this solution contained 0.1 mg P Working solution: 20 ml of the stock solution was diluted in distilled water and made up to 1 1; this solution contained 0.002 mg P m1-3. 3 standards (containing 2, 5, and 10 ml of working solution) were analysed with each batch of twenty samples; in Pao batches a 2 ml aliquot of the diluted blank solution was added to all standards to ensure equality of acidity; in Pa batches an appropriate aliquot of the blank and the 2N NaOH solution used for sample neutralisation served the same purpose. The blank, standards and samples were all read (successively using the same cell) against a water reference and blank absorbance was subtracted from standards and samples before calculation of P in solution. The relationship between absorbance and the concen- tration of P in solution was determined for each standard (no deviance from linearity was detected) and the mean value was used to determine P in the sample solutions. 490

Contamination Blank absorbance rarely exceeded 0.0050 and on Pao batches was often less than 0.0020; Pa batches, to which NaOH had been added, typically showed higher blank values than Pao batches. Differences in cell absorbance account for much of the blank value and none of the ca. 00 batches processed had to be rejected due to suspected contamination. Since the polypropylene bottle employed for a blank was deliberately rotated such that blanks were shaken in bottles used for samrles in the previous batch, any carry—over should have been apparent but none was detected. Similar observations apply to all glassware.

The above routine procedures were used on all soil samples and samples of animal faeces (though in the latter cases substantially higher dilutions had to be employed) and such analyses provide the basic soil phosphorus and LOI data used in these studies. In certain cases additional or exceptional procedures were used. The LOI of all volume samples collected in 1977 — (3) (5) (6) (7) — was determined by igniting a ca. 5-10 g sub—sample of the fine earth from these samples for 16 h at 390° C. The chemical analyses of bulk samples from the same locations provided a second estimate of LOI for these sampling locations and the second estimate has been used in calculation of organic matter and Po — LOI relationships for these profiles. However, the mean of the two estimates of LOI, which in nearly all cases were very similar, was used in the assessment of the relationship between BD and LOI discussed in section 3.3.2. Similarly, some of the volume samples from B horizons recovered in 1978 were not used for chemical analyses and LOI was determined in these samples by ignition of fine earth for 3 h at _o 575 C. The data in Table A3.1 shows that such variations in procedure, which do not affect the reported chemical properties of the soils in any way, are also unlikely to have had any significant effect on the estimations of bulk density derived from the BD/LOI regression equations.

Experimental extractions

Alkaline oxidation — Na0Br The method of Dick and Tabatabai (1977) was tested on 20 samples representing all types of soils within the study area. The published procedures were followed precisely except that filtering (with a Whatman 44 filter) was substituted for the centrifuge step. In very brief outline, the method consists of adding 3 ml of sodium

401

rd g t1D O a) $-1 a) •,-.1 A-) C\I 0 0 M •-1 E-I CO \O .Z14 1:4 0 H grt‘ H Cil • • • cti 0 M (NI P. o 17-1 •r-i iT1 (NI 1 X -P I X I X I X

.1-1 Cx4 0 $-I '0 cd P 1). 0 •0 ON 04 •:ti N- Ln H 0 R ot-1 ' 1 0 \O \CIP CV H H r-1 3 WI L-\ .:7 oi cH -. -. • • • • • • • • a) O 2 1,(1 41 H (-191 1-1 H H H0 c7 in di di H r-I 1-1 H 74 1:11 :7-11 cd CC H PI H is() r--- a. r-I • • '-.00• •\ Ea ta re) 0 0 H Hid' `,411 H "C) •rl 0 CV a) -1-) 1-4 I4 I4 I X .0 cd Z 0 r.' O 0 +3 H tfl r..) n0 C\I H c0 Iv\ ON co ON ON 1.--- It1 N-- -P o N- (\I LC\ CO If\ \.0 \.0 r-- CI' n 0 H r-- 8 O o • • • • • • • • • . • • a) ndti NCdi \L 0000 El ci-i .----. C) di di di H H r-I r-I 1 rCI 0 CI-I a) $-4 C) 0 r0 Cf-i a) CV H H -0 CO If\ P H0 -P V ,t • • T.4 -IS 0 H -I-) I-1 1-11CV di H H 0 •• I--I H cu 'N ta 0 I4 14 1 X 4) 0 -i-) Cl) ,0 O --.... U) 0 •f-i 21 . P• ..-1 0 M CD Isrl •cti H CO tr.\ \O 0 LC\ .41 0 $`4-1 •clt a) F-10 E-I 0 CO Nel in LC r(1 VD CO C\.1 \O CO N - Oi ..8 H 0 •ri 0 • • • • • • • • • • 4, 0000 H H r-I co • ..-1 in 4 ' il 4 i—I H H H H H H .4-) tu)

a pq I cii 1 O -1-1 z E r 4 O H -I-) .,1 4_, pi., CO -P 0 •0 0 0. 0 .1-1 CI0• • Id $•4 0 Z 1/40 C\I 0 0 04-4 M H H H 0 0 VI 1E1 f-I a) I -P I X 14 I X 0 •0 Z cd c-D I-1 4-i -P O ;4 1 0 Z LI IN- -11 .41 co H \O '41 ctn tel cr 2 A 4_, • p., 0 0.1 0. a. H 0 H R rc) cNi co co ..-1 En E 0 • • • • • • • • • • • • r- rC$ O Q) O\ C\I H 0 0 0 0 H 000 5. „S re) 1.4 -P r() .0 cti ;IN H r-ir-I H r-I H t—IH C\1 ,E1 cc, _ .

.11 •cT -ri 0 rd H II

a) 1-9 OW I X a) H P4 H W.--, ..---. u) H (\,1 E-1 Cl) 0 ., Pci ...... • ...... 492 hypobromite to a 200 mg soil (ground fine earth) sample in a 50 ml boiling flask, which is then placed on a sand bath at 275° C. Heating is continued for 30 min after the contents have evaporated to dryness. The results of this experiment are listed in Table A3.2 which also includes the results of analyses of the same samples using Na CO 2 3 fusion (Rothamsted standard procedures) and using the standard method of analysis described above. Despite its success with many other soil types, it is evident that the alkaline oxidation method cannot extract more than about 70% of the phosphorus in these samples; Dick and Tabatabai (1977: Table 2) also reported two soil types (Nos. 10 and 14) in which the method extracted substantially less than total phos- phorus (91.5 and 82.5% respectively), and, although the method is fast and relatively unhazardous, it clearly cannot be used as a substitute for fusion analyses without prior testing of its efficacy. Modified alkaline oxidation method The poor extraction of the standard Na0Br method with these highly organic samples was thought to be the result, in part, of the inability of the 3 ml of Na0Br to fully oxidise the organic soil fraction; in addition, it seemed possible that difficultly-soluble phosphates were being formed during the sand bath heating stage. In consequence, three samples (selected for the particularly low propor- tion of Pt that had been extracted by the standard method) were re- analysed using slightly modified procedures. The modifications tested were: 1) pre-ignition of the samples for 1 h at 400° C; 2) the use of 5N instead of 1N H SO for post-oxidation extraction; 3) the use of a 2 4 lower temperature (190° C) during oxidation (the samples were kept on the sand bath until all evaporation was complete; this took 1 to 1.5 h, thus about 15 to 30 min longer than the standard method). A full factorial set of analyses was not attempted but the results of these experiments (Table A3.3) show that pre-ignition of samples, particularly highly organic ones can improve the proportion of Pt extracted by alkaline oxidation, but that the employment of a lower temperature may be counter-productive and the use of stronger extracting acid unhelpful. Although a considerable improvement in the amount extracted from peat samples was achieved, the results on mineral soil samples were less satisfactory. Pre-ignition followed by the standard Na0Br procedure might well extract a slightly higher proportion of Pt than the standard acid extraction procedure used in these studie, but the difference would not allow a clear Pf fraction to be defined. 493

Table A3.2. Phosphorus extraction experiments: a comparison of total phosphorus (Na fusion) with the phosphorus extracted 2co3 by acid after oxidation with sodium hypobromite, and by acid after ignition.(1)

Pt P P ,.100 Pao Pao.100 Po Pa.100 LOI Pt Pt Pt Na2CO3 Na0Br 2NH SO 2 4 Pao— Fusion Oxidation Extraction Pa after Ignition

Surface Soils Oh 780 604 77 88 66 45.2 820 624 703 528 Oh 800 537 67 689 86 565 71 45.1 Oh 780 610 920 642 68-80 833 91-107 748 81-06 49.9 Oh 810 616 76 700 86 505 62 45.1

Ah 580 410 71 451 78 371 64 12.4 Ah 940 646 950 683 70 740 78 610 65 15.7 Sub—Surface Soils AhE 340 238 70 256 75 230 68 10.9 AhE 410 258 430 263 62 193 46 176 42 8.7 AhE 510 270 53 281 55 256 50 9..3 AhE 460 312 480 313 66 260 55 218 46 12.]

AB 620 372 413 400 62 423 67 365 59 10.6 AB 730 56o 77 563 77 467 64 10.4

B 620 1 640 408 65 468 74 422 67 8.5 441 Bl 450 490 371 76 325 69 296 63 7.6 580 437 75 445 77 367 63 9.1

(cont) 404

Table A3.21pojittal

Pt P Ft.100 Pao Pao.100 Po Pa.100 LOI NA CO Na0Br 2N11 SO Pao—Pt 2 3 2 4 Fusion Oxidation Extraction Pa after Ignition

B 580 426 73 353 61 199 34 6.5 600 404 B2 67 357 6o 261 44 6.4 B 480 70 67 264 2 318 322 55 6.5 355

Deux 550 331 60 271 49 147 27 5.2 Beim 450 292 480 302 64 215 46 95 21 3.9

7 (n=20) 611.5 424.3 69.4 442.2 72.3

—) (1) All phosphorus values are expressed as mg P kg Fe 405

Table A3,3 Phosphorus extraction experiments: a comparison of total phosphorus (Na CO fusion) with the phosphorus extracted 2 3 by acid after ignition, and by acid after ignition and oxidation with sodium hypobromite. (1)

Pt Pao P extracted by oxidation with Na0Br Na CO 2 NB_SO Samples ignited Samples not 2 3 4 for 1 hr at Fusion Extraction 4000 C. ignited After Oxidation at Oxidation at Ignition 275°C 190°C 275°C 190°C

Oh (2)739 Sample 1N 752 IN 537 2 732 2 723 800 689 2 737 (86.1%)(3) (92.1%) (67.1%)

Ah/E IN 348 IN 270 1N 204

Sample 2 345 217

510 281 R 347 X 211

(55.1%) (67.9%) (52.9%) (41.3%)

BCDX IN 331 1N 330 Sample .237 21 358 2 325

550 271 ; 366 7( 328 (49.3%) (66.5%) (60.2%) (59.5%)

—I 1) All phosphorus values are expressed as mgPkg Fe. 2 ) Figures underlined (i.e. IN or 5E) indicate normality of extracting acid. 3) Figures in brackets indicate the amount of P extracted expressed as a percentage of the total phosphorus extracted from a replicate sample. 496

Acid extraction with concentrated HC1

A modified version of the method of Beckuith and Little (1963) ) omitting the HC104 stage, was also tested on a small number of samples. In very brief outline, this method consisted of igniting ground fine 0 earth samples (250 mg) for 2 h at 575 C, followed by an extraction, which involved repetitive treatment with concentrated, boiling HC1 (10 ml conc. HC1 was added to the ignited samples in zirconium cruci- bles, which were then placed on a sand bath at 100 0 C and evaporated to near dryness; this was then repeated two more times with, on the last stage, complete evaporation to dryness. Phosphorus was then taken up in 1N and P in solution determined using the standard colorimetric H2SO4 procedure described above. 100 mg of magnesium acetate was added to one set of sub-samples prior to ignition (as suggested by Beckwith and Little 1963:17) but a second set without such addition showed effec- tively identical results (see Table A3.4). To check whether inter- fering ions might have led to underestimation of P in solution, a recovery test was performed; the results (also shown in Table A3.4) suggest that no such interference was present. The results of this experiment were disappointing; little if any more P had been extracted by boiling Ha then by cold, dilute H SO except perhaps with the BCux samples. Certainly, the method did 2 4' not offer any significant improvement over the Pao - Pa system of extraction. Determination of pH Both in the field and in the laboratory, pH was determined on a soil - water mixture using a combination glass/reference electrode. In the field, a heaped 5 ml spoonful of soil in field condition was added to 25 ml of distilled water and pH was determined on a Walden Precision Apparatus C 6 portable pH meter after 2 min during which the soil - water mixture was periodically stirred. In the laboratory 10 g of OD fine earth (ungroumd) was added to 25 ml of distilled water and pH was determined in a similar fashion but in this case using a C10 laboratory pH meter. Although not comparable with each otIsr, the field (see Table 3.32) and laboratory determined values (see Figs. 5.3 5.28, 5.89 ) 5.104 and 5.140) for pH form highly consistent series in themselves. 497

Table A3,1 Phoslohorus extraction experiments, a comparison of total phosphorus (Na2CO3 fusion) with the phosphorus extracted by concentrated hydrochloric acid and dilute sulphuric acid after ignition of samples.

P t Pao

Fusion Extraction Extraction Extraction Na after ignition after ignition after ignition 2 CO3 Conc. HCL. 1000 Conc. HCL. 1000 2N H SO 2 4 Without magnesium With magnesium acetate acetate

Oh 860 794 (92%) (2) 806 (94%) 743 (86ct) Sample

AhE 355 203 (57%) 198 (56%) 186 (52%) Sample

520 360 (69%) 353 (68%) 391 (75%) Sample

Beux 520 329 (63%) 336 ( 65%) 289 (56%) Sample 563.75 421.50 (74.8%) 423.25 (75.1%) 402.25 (71.4%)

Recovery Check Without Magnesium Acetate - Sample Sample plus P Increase in x P Standards Recovery Absorbance Absorbance Absorbance Absorbance .2390 .3500 .1110 ) .0631 . 1820 .1171 ), .11365 .1151 98.7 .1080 .2220 .1140 ) .1030 .2155 .1125 ) With Magnesium Acetate .2355 .3465 .1110 ) .0645 .1803 .1158 )) .1)445 .1149 99.6 .1100 .2265 .1165 ) .1010 .2155 .1145

overall 7 .11405 .115 99.2

(1) All phosphorus values are expressed as mg P kg-lFe. (2) Figures in brackets indicate the amount of P extracted expressed as a percentage of the total phosphorus extracted from a replicate sample. 4P8

Appendix 4 Calculation and expression of results

MEASURED VARIABLES

Soil bulk density

OD wt of volume soil sample (g) = Soil bulk density (BD) (g cm-3 ) Volume of undisturbed soil sample / ( em3)

BD was also estimated from LOI values using the regression equations listed in Table 3.5. ppparent bulk densityloffiatearth (Wt of fine earth per unit volume of soil)

OD wt of volume soil sample (g) OD wt of all stones in volume soil sample (g)

Volume of undisturbed soil sample / ( cm3)

= Apparent bulk density of fine earth (BD—Fe) (g cm-3)

or, where BD has been estimated from LOI,

OD wt of soil sample (g) OD wt of stones in sample (g) X estimated ••••• • • I. • • BD (g cm-3) OD Wt of soil sample (g)

= Apparent bulk density of fine earth (BD—Fe) (g cm 3)

/Volume of undisturbed soil samples = 182.137 cm3

Loss —on —10ition

OD wt of fine earth before ignition minus OD wt of fine earth after ignition expressed as a percentage of OD wt of fine earth before ignition = LOI (%) 499

Phosphorus — Pao and Pa (for Pt, see below).

P in solution (mg ml X extractant volume (m1) X Dilution factor X 10,000

10 X Aliquot volume (ml) X OD wt of fine earth sample (g)

= P (mg kg

P in solution determined from absorbance values by reference to standard solutions.

FORMULAE FOR CALCULATED VARIABLES

Wt of P in the Fe of a unit volume of soil

P (Pg cm '3) = P (mg Ig—iFe) X BD—Fe (g cm-3 ) ( within a horizon)

7 P (g m-2 ) in all horizons P (Pg cm 3) X 100 (within a profile)

2EThickness (cm) of all horizons

Wt of P in the Fe of a horizon or profile of given thickness

P (jgg cm-3 ) X thickness of the horizon (cm) P (g M72 ) = (within a horizon) 100

—2 P (g m ) = :EP (g m-2 ) in all horizons (within a profile)

Wt of.„12±212IgAyt of Fe in a profile of given thickness

-2 P (g m ) in all horizons P (mg kelFe) --- x1000

:F.Fe (kg m-2 ) in all horizons

Wt of Itztr. unit wt of ignited Fe in a horizon or profile

P (mg kg—iFe) -1 P (mg kg IFe) X 100 (within a horizon)

100 — LOI (%)

500

P (g in ) in all horizons P ( mg kg-lIFe) X 1000 (within a profile) IFe (kg in -) in all horizons

Calculated phosphorus fractions

Po = Pao - Pa Pf = Pao - Pt Pi = Pt - Po

Wt of Po_perunitjrztolle lost on ignition

Po (mg kg-iFe) , Po (mg kg L 0I) - X 100 (within a horizon) LOI (%)

Po ( g m-2 ) in all horizons

Po (mg kg-1LOI) = X 1000 (within a profile)

lg. LOI (kg mm12 ) in all horizons

Wt of Fe lost on ignition of ainit volume of soil

LOI (mg cm-3) = LOI (%) X BD-Fe (g cm-3) no (within a horizon)

Wt of Fe lost on ignition

LOI (mg 01ii".3 ) X Thickness of the horizon (cm) LOI (kg m-2 ) = (within a horizon) 100

LOI (kg m-2 ) = 11" LOI (kg pr2 ) in all horizons (within a profile)

Wt of soil in a horizon

Soil (kg m-2 ) = BD (g clir3) X Thickness of the horizon (cm ) X 10

Wt of Fe in a horizon

Fe (kg m-2 ) = BD-Fe (g c4(3) X Thickness of the horizon (cm) X 10

501

-2 _o IFe (kg in -) = Fe (kg m ) - LOI (kg in -)

Wt of stones in a horizon

Stones (kg m-2 ) = Soil (kg m-2 ) - Fe (kg m-2)

Wt of soil, Fe, ignited Fe and stones in a_profile

In each case, profile weight is the sum of the weight in all the horizons.

Apparent density of Fe in a_profile

Fe (kg m-2 ) in all horizons BD-Fe (g cm-3 ) = : 'Thickness (cm) X 10

Wt of Fe lost on ignition per unit wt of Fe in a profile

LOI (kg m-2 ) in a profile

LOI (%) x100 Fe (kg m-2 ) in a profile

TOTAL PHOSPHOTILL-2Et

With 6 exceptions, all Pt values used in these studies are those determined by Na CO fusion analyses at Rothamsted Experimental Station. 2 3 The Pt values for the exceptional samples have been estimated from their Pao values using the regression equations presented in Chapter 3 (section 3.3.2, Table 3.10). This procedure was adopted in order that the description of phosphorus within the palaeosols discussed in section 5.2.1 could include a complete balance sheet of Pt despite the fact that some samples from these profiles could not be submitted to Rothamsted. 502

Table A4.1 Pt values estimated from the regression of Pao on Pt (All values in mg kg—iFe)

Measured Pt value Predicts Pao Pt value Sample and horizon Pao value of: value of: adopted

Oh (and Oh—Ah) samples (uses regression equation 2 in Table 3.10)

1. HM 78/79 B, bOh—Ah Bulk density sample 479 564 479 564 2. HM77F 6 (1) 494 579 494 579 3. Hm77F 5 (1) 797 887 797 887 BCux samples (uses regression equation 6 in Table 3.10)

4. HM 78/79 B (11) 238 476 238 476 5. Hm77F (9u) 297 534 297 but note (9L) 296 and measured Pt = 535

6. Hm77F 5 (9u) 287 525 287 52_2_ but note (9L) 289 and measured Pt = 520 503

Appendix 5 Replication and error

Replication experiments designed to determine the level of uncertainty in the results of chemical analysis were not pursued systematically through all stages of the process of analysis. A full investigation of uncertainty should include repetitive sampling and analysis of: (1) A unit of land - replicate profiles; (2) A soil profile - replicate bulK samples of horizons; (3) A bulk sample - replicate fine earth sub-samples; (4) A fine earth sub-sample - replicate ground fine earth sub-samples; (5) A ground fine earth sub-sample - replicate analytical sub-samples processed within a single batch and in separate batches; (6) An extractant solution - replicate aliquots taken for the final solution used in colorimetric analysis; (7) A final solution - replicate aliquots taken for absorbance measurements. Some information as to the uncertainty existing at each of these stages of processing or 'levels' of analysis is available and is presented here in reverse order.

Replication of absorbance measurements (7) - Table Aa.1

Differences (D) in the absorbance of two aliquots taken for colorimetric determination from the same final solution; second reading taken 1.5 to 2 h after the initial reading.

.0877 .0831 .0820 .0807 .0800 Absorbance 1 .0850 .0832 .0810 .0792 .0798 Absorbance 2

n••n••."..N•"..

.0027 .0001 .0010 .0015 .0002 D

Mean Difference in absorbance = .0011 504

Replication of the final solutions used in colorimetric analysis (6) Table A5

Differences in the absorbance of two aliquots taken for colorimetric determination from replicate final solutions prepared from the same extractant solution; second set of colorimetric determinations made 10 days after initial readings.

.0961 .0950 .0605 .1040 .1952 .1444 Absorbance 1 .0953 .0954 .0585 .1039 .1920 .1440 Absorbance 2

.0008 .0004 .0020 .0001 .0032 .0004 D

Mean difference in absorbance = .0012

The relationship between the absorbance value and the amount of P in a soil sample varies as a function of the degree of dilution. In most Pao determinations, an absorbance difference of .0012 would be equivalent —I to a difference in soil phosphorus of about 4 mg kg Fe: in most Pa determinations, the same absorbance difference would be equivalent to between 0.5 and 1 mg kg-1Fe. 505

Replication of analytical sub-samples - Tables A5.3 and A5.4.

Differences in the values of Pao, Pa (mg kg-iFe) and LOI (Z) determined by extraction and analysis (withinasingle batch) of replicate analytical sub-samples drawn from a single ground fine earth sub-sample.

Profile Batch 34 Batch 32 Batch 34 and Horizon Pao D Pa D LOI D

HM 77F 330.39 24.86 8.905 5 (2) 334.58 4.19 24.64 0.22 8.855 0.050 HM 77F 234.99 24.94 7.785 6 (2) 238.49 3.50 25.24 0.30 7.730 0.055 HM 77F 196.55 18.88 5.205 6 (3) 199.18 2.63 18.88 0.00 5.185 0.020 HM 77F 288.76 32.25 7.105 6 (5a) 287.88 0.88 32.86 0.61 7.045 0.060 HM 77F 363.41 64.72 7.925 6 (5b) 359.21 4.2 65.15 0.43 7.945 0.020 HM 77F 426.30 49.43 12.885 6 (5) 431.90 5.6 49.26 0.17 12.855 0.030 HM 77F 461.25 96.05 10.980 6 (5c) 459.15 2.1 96.16 0.11 10.945 0.035

Mean difference Mean difference Mean difference

= 3.30 = 0.26 = 0.039 506

Differences in the values of Pao, Pa (mg kg -1Fe) and LOI ( 1 ) determined by extraction and analysis (in different batches) of replicate analytical sub—samples drawn from a single ground fine earth sub—sample.

Profile and Horizon Batch Pao Batch Pa Batch LOI HM 78C (13) 52 320.35 51 196.76 52 3.790 (.0940) (.2320) B Cux below 54 297.88 53 197.67 54 3.725 ditch sediments (.0871) (.2325) D 22.47 (.0069) D 0.91 (.0005) D 0.065

HM 79B 101 (1) 52 453.69 51 31.26 52 26.100 bOh—Ah (.1325) (.0398) of 26.035 medieval 54 505.17 53 28.72 54 palaeosol (.1466) (.0372) D 51.48 (.0141) D 2.54 (.0026) D 0.065

Values in ( ) indicate sample absorbances.

Replicate sub—samples analysed in different batches appear to exhibit very much larger differences than those analysed in a single batch, though Pa differences remain very small. However, this particular type of replication was only undertaken on the two samples shown and may not be representative. Other replication work at higher levels (see immediately below) suggests that these particular analyses exaggerate the likely level of differences between samples that arise from imprecision at this level. Within—batch differences are similar to those which would arise from imprecision at levels (7) and (6); this suggests that sub—samples drawn from a single ground fine earth sample are very similar and that this stage of sampling adds little to sample variance. It should be noted that, in the between—batch comparison and in all the comparisons described below, equality of absorbance values does not imply equality in the calculated values for P in soil samples, since the latter may be affected by differences in the absorbance of standards and blanks run with a specific batch. However, these factors cannot explain the large between—batch differences discussed above, since both blanks (Batch 52 = .0015, Batch 54 = .0016) and standards were almost identical in these two batches. 507

Replication of ground fine earth sub-samples (4) - T(ble A5,5

-1 Differences in the values of Pao, Pa (mg kg Fe) and LOI (%) determined by extraction and analysis (in different batches) of analytical sub- samples drawn from replicate ground fine earth sub-samples of a single fine earth sub-sample.

Profile and Horizon Batch Pao Batch Pa Batch LOI

SP6 (2 ) 2 272.03 3 33.93 2 11.670 (.0834) (.0810) Ah/E 60 275.58 60 39.64 60 11.905 (.0833) (.0973) D 3.55 (.0001) D 5.71 (.0163) D 0.235

sP8 (2) 2 255.83 3 26.39 2 10.915 (.0758) (.0780) Ah/E 60 246.62 60 33.75 60 11.390 (.0750) (.0838) D 9.21 (.0008) D 7.36 (.0058) D 0.475

Values in ( ) indicate sample absorbances.

The differences between samples shown above include imprecision at levels (7), (6) and (5), as well as (4) and, moreover, may include differences arising during prolonged storage of the fine earth (in OD condition). Batch 60 was processed two years after Batches 2 and 3; the effects of prolonged storage will be considered separately below, but it can be noted here that, whereas Pa values may well increase during prolonged storage (due to mineralisation of Po), Pao values are unlikely to be significantly affected by storage. In consequence, the differences in this fraction (Pao) may have arisen in part from the sub- sampling of the fine earth sample. If so, such sub-sampling may contribute little to sample variance. The samples shown are among those which suggest that the between-batch differences evident at level (5) may be atypical. 508

Replication of fine earth sub-samples (3) - Table A5.6

g-I Differences in the values of Pao, Pa (mg k Fe) and LOI (%) determined by extraction and analysis (in different batches) of analytical sub- samples taken from ground fine earth sub-samples, each of which was drawn from a replicate fine earth sub-sample of the single bulK taken in the field.

Profile and Horizon Batch Pao D Batch Pa D Batch LOI D

SP 10 (2) 17 220.01 1.04 17 29.12 2.95 17 18.365 0.395 AVE 20 218.97 21 32.14 20 18.760 GSP 9 (3) 17 245.45 3.28 17 53.88 0.12 17 6.685 0.140 B l 22 248.73 23 53.76 22 6.825 SP 5 (2) 2 354.38 2.57 3 43.06 0.33 2 14.950 0.000 Ah/E 81 351.81 81 42.73 81 14.950 SP 8 (2) 2 3 Ah/B 60 251.23/ 17.70 60 30.07/ 6.62 11.153?( 0.302 81 268.93 81 36.69 81 11.455

Mean Difference all samples 6.15 2.51 0.209 Mean Difference excluding SP 8 (2) 2.30 1.13 0.178

/ The mean values from two analyses (see Table A5.5 above) are used here.

The sample values shown here are affected by imprecision at all the lower stages (7 to 4) as w ell as (3) and may include differences due to prolonged storage in field (wet) condition. Although analysed only a few weeks apart, GSP 9 (3) and SP 10 (2) each provide instances of bulk re-sampling after a three month interval; SP 5 (2) and SP 8 (2) were re-sampled after a two year interval. (These four samples provide the only fully comparable set which can be used to judge the effects of long storage in the field condition; it does not seem that, with these very acid soil samples, such storage has any substantial effect, though a much larger check would be needed to demonstrate this conclusively). It can also be concluded, if only tentatively, that f'ne earth sub-samples extracted from a bulk sample are not substantially different from each 509 other and most probably provide a represent-tive sample of the bulk sample. These examples also support the notion that the between-batch differences noted for level (5) are atypical.

Replication of bulk samples (2) - Table A5j

During the Holne Moor sampling, one profile was partially re-ampled after an interval of one year and so provides an opportunity to assess the extent to which field samples are themselves replicable and so may be regarded as representative of the profile horizons from which they originate. Although each sample was separately processed down to the stage at which an analytical sub-sample becomes available, extraction and colorimetry was done in four batches during one week and many of the comparisons avoid between-batch differences. All samples spent similar time stored in field condition, but 1978 samples were stored for a year longer in OD condition. This resampling was prompted by the need to obtain a better volume sample of the very thin, buried Oh-Ah horizon; it was felt that the use of the standard procedure during the 1978 season had resulted in some contamination of the Oh-Ah sample through incorporation of overlying and underlying mineral soil. In this instance, therefore, the differences between 1978 and 1979 samples may mainly reflect the recovery, in 1979, of a 'better' sample of thic. buried surface soil. All the other samples simply represent a deliberate replicate sampling.

510

co oo K.\ ON ON 0 • • 0 0

cc) i.rn •:14 0 ‘.0 OD •zr • • cc) cc) 0 N N LC' \

o w o co CO ON Lc, o 1-1 o o CD CO N CV ON 0 • • • • 0 CO O &"1 Isrl • • • • • • H H N N CO CO CO CO CO ON

0 r-- '.00 co • • • co o r-

CD -4-)

Lrt ON RI rsrl ON 0 CO C) • UTh . • .4-1 • Co .•••n ... 1---- '4 H H N R c rE Cr3a) -1-,C1) 111 U-1 H •—• ...... "-I fd g C'4H CI) 0 .,1 (70t4 p r-- ON H OD 1-4 •r-I 1-1 9 '8 0.`7` '41 0 H 0 \ 0) H P n • • • • II • • • o4 P., Ill cd ON CO CO ON H H H CO 3 (1) 1-4 N P N Ci P - 1 (X) 00 iszl 0.1 N -P a) P.. 0) 1-1 CL) 1--1 P4 C.) P., pl in c\1 co R H 8a) ccItl O A • . .44 • . cl ,.. a) 0 co • r-- ON .. H cis N H H Isrl rd LC1 rf cr) Cl)

a. 1..-1, p.) 4S 1--i Ri t.rn a) -: ai •:i4 'II 0 \ LA la.) •.-I V.,. 0 li- \ r0 .. R N II t 4-I O N N r-I RS czt LCTh In ...... 413. cli ci H H H n •,-i Ei co c14.1 0 ..o coo cp,,I cr. pl H .0 O H di rfl co cia • • • • • • • • • • :g 4C3 0 Isrl ON 0 01--I H H ON CO 1.1.1 ., ,c; cd 0.1 rst1 isr) r-- 1,, rl, co '.0 ‘.0 In 8 a) 13-, cis cis '44 .44 'N C'4 'N 'N N N -,-1 n . 4 pc) 0 A 11 r.-4 CO ON CO ON CO ON CO ON CO CO cd .. Cd 1.--- r-- r-- r-- r-- r--- r--- r---- r-- r-- "td) -I-5) #a)) cr-1 a) crn 0.. cr. 0\ HON HON ON 0 \ ON aN Cl) C0 X) H H Hr H H H H 0 ON cli II ...... N- CO 0 Cl) 00 4)0 1-1 3 ... r--1 N S -P -P CO 4-1 CH fa, -,-1n 6-1 N- rd il o El 0 5 ;- o CH r4-4 a) N 0 o 03 0 N rd 00 fa. `.--.„ F-I 6-1 $-$ el-I CO ra o ..0 4-1 r—I 6-I H I I i I 23 q H 0.4 •=4 ...Na cl) 0 a) 0 a) F-1 (c) .8 0 tn A 0 0 r-A r-1 0 0) 0 CI) 0) H 0 > CI) stl a) 0 0) o ..._.. rii P 0 f..1 cd 5 5 -.--t N CD > 4)H p N r-I P N 0 .0 a 4, et-i•,-1 '00 •ri PI CD •ri PI 0) •,-4 •r-I0 3 g c.--1 II II 0 F-1 EP F-I MU 'x F-I c. H ;.-I o .0 0 peLIP olcd PI 40 0 O ud0 R 4_, CD •1-1 r-I • • a x .4 •ri H.0 Z pci H o Z A .4 H c\I 511

Since the initial sampling of this profile had removed or seriously disturbed one face of the sampling pit, most of the 1979 samples had to be taken from the opposite face of the pit, some 75-100 cm distant from the original sampling point. In view of this, the similarity of sample values is somewhat surprising; this data suggests that, in I wild l soils developed on uniform parent materials, soil phosphorus may be more uniformly distributed than is commonly supposed (see Beckett and Webster 1971). The differences between paired samples in this profile could have arisen entirely from imprecision of observation; even the soil in bulk samples taken in different years may have had identical concentrations of the phosphorus fractions studied.

Replication of profiles (1) - Tables A5.8 and A5.9, and Figs. A5.1 and A5.2

Many of the studies reported in detail in Chapter 5 provide information about soil variability on a scale wider than the individual profile and

based upon the chemical qualities estimated for complete profiles. However, in order to pursue the question of the reproducibility of this research to the highest level in a manner comparable to foregoing replication, certain data is presented here; it illustrates the extent of variability in samples from specific horizons within small areas. Fig. A5.1 shows the location of sampled profiles within one half of zone C; these groups of samples (A and B), each provide a random sample of an -2 area of land of ca. 500 m • One profile in group B (SP 37) contained a 'grey stone zone' (see section 4.2.1.1) below an iron-pan; separate statistics omitting this profile are included below.

512

1--I Nr1 • • • • • OD .41 LC\ .1 1-1 r-I H r-I r-I

W\ O\ ON 0 Cx.1 • • • • • .:14 coV tsr) 1-1 (\I r-I r-I

c‘.1 co r-- f=1 • • • • • CQ ap OH H ON r 4 rn

N1 ON r-I cti 0 • • • • !4 C\I 1--- CV \O CV LC-1 N- ON \C) N- CV N C\I N N A ON ON cil X Nr) N1 di N1 tql \O H0 0

n cti di '44 .44 a) tz 04 n n K-; P 0 1 1 I t 1 a 0 um 0 LC\ 0 CV H \C) H C\I N N c' N CV 0 0 N LID a \ CO bl) P Z 0 •Zii .4 II II 4 LC\ Pi II II II r--- 0 0 'S r-_- NI o H ls(1 H rfl -----, 0 0 0 0 0 TA 1 0 •44 go Pa iii gi E Cra-'

Lr1 \O OC)• 0• CO• • • 7) t) \O CV .41 Lr1 LC1 CI4 CV H H I to N1 NI ri vo o • • r4 , . • • rn r-r) r-- ON .4 tan N n.0 r-I a Ist1 C\I ON rn ON o A • • • • • cc) Cl) Pi i 8 P P, H I r() CO (4 0 • • 3o t x n21 A c; r-- o O 00 HOD .44 CO cd \O \O \O \O VD .:0 A co r*-- 11-1 CO H r-- ON CO LC1 CV P41 CI\ O $-1 0 VOL 0 0 0) N 1 0 r-- WI W, 1).0 r1-- 1"-- 1 1 IA cIN CD O• In CV CE l'el H di H N1 O \O .41 \AO ‘ztl \O N

1A0 CO ttO .41 -41 rc ii II r-- II N- 0 0 P t--I H rn 0 Cd X 1:14 X DA • rre4 P=1 go CD CO .4 <4 CO CO 513

A full evaluation of the soils in zone C is provided in section 5.4.2, where more information is presented. In this context, the aspects worth stressing include: 1) the overall homogeneity of the sampled horizons — the CV veluec are markedly lower than might have been expected; 2) the absence of any evidence that 1978 samples differ from those taken a year earlier; 3) the absence of any significant spatial pattern in the values; 4) the substantial increase in tle sire of the maximum difference betle.een samples compared with differences observed at lower levels of replication. It seems likely that, at least at this stage, the apparent differences between samples may arise not only from imprecision of observation, but also from hetereogeneity in the materials sampled. This zone is not unique; Fig. A5.2 and Table A5.0 show the pattern of values for comparable mineral horizons in one of the sub- sidiary sampling zones.

Table A5.9 — Bench Tor and West Stoke Farm

— Area and Samples Range Max D x SD SE CV n soil type

Bench Tor. Ah/E 217— 18 223.60 7.47 3.34 3.34 5 Moorland from zone 235 stagnopodzols ca. 620 Brake Field, Ap 1013- West Stoke from zone 526 1256.60 230.79 Farm, Hilmic 1539 103.21 18.37 5 221— 2 brown pod— 270 m zolic soils.

Withinasimilarly—sized area, the moorland CV values are even lower than those in zone C, though field values, affected by phosphorus fertilisers and FYM, are substantially more variable. This study is pursued furtler in section 5.2.2.2.

Sources of variability_in observed sample values

Insufficient numbers of replicate analyses of all types are available for a proper statistical analysis, which would allow one to pin—point the different sources of variability with confidence. In addition, many of the sample comparisons may include differences arising 514 from more than a single factor (e.g. differences in storage as %%ell as stage of sub-sampling and analysis). However, it is apparent that -1 differences of up to about 5 mg kg Fe of phosphorus may merely reflect error during colorimetric determinations and this source of error may well be the principle cause of within-batch differences in replicates. It is likely that Pao replicate differences (within-hatches and bettkeen- batches) are higher than Pa replicate differences as a result of the greater dilution of these samples. Not only are colorimetric errors magnified solely as a function of the arithmetic (five to ten-fold), but the process of dilution itself must add imprecision. Between-batch differences must almost certainly be higher tlqn within-batch differences, but the evidence available cannot provide an accurate assessment of the differences arising at this stage. In the author's view, a judgement as to the significance of individual sample values must be based on a consideration of the data from all stages of replication. On this basis, it seems probable that differences in Pao -1 sample values greater than about 2 0 mg kg Fe will usually reflect real differences in the sampled horizons - though one murt be aware that, in some cases, even larger differences may be due solely to imprecision of observation. For Pa values, the analogous threshold may lie nearer 5 mg kg-1Fe and when the samples being compared have been processed and analysed in a single batch, even this threshold may exaggerate the level of imprecision. Po values derived by calculation from the Pao and Pa values must be less precise than the Pao values. One may conclude that the sampling, sub-sampling, preparation of samples and analytical procedures used in these studies are capable of indicating the amounts of soil phosphorus fractions present in the lend sampled with as much precision as can reasonably be achieved during routine analysis of large numbers of samples (see Yana's comments (1962) on the precision of these type of analyses).

In addition to general studies of replication, the effect on sample values of specific parts of the process of field and laboratory sampling and analysis have been studied; the effects of prolonged storage in field condition have been considered above and a small-scale check on the effects of storage in OD condition was also undertaken. 515

Replicate analysis of oven- risound fine earth samples after to yenrs slisgeillself-sealirla_pplythene bau in the laboratory - Table A.5....10

An increase or decrease in Po (due to immobilisation or mineralisation) are the most probable changes in soil phosphorus during long storage of soil samples. Measurement of Po itself is, however, unlikely to reveal such changes clearly due to the lou precision of such measure- ments. Instead, changes in the more precisely determined Pa fraction, which can be expected to vary inversely with changes in Po, can be used as a proxy. Increases in Pa should indicate nett mineralisation of Po; decreases in Pa should indicate nett immobilisation. Five highly organic surface samples, which could be expected to be affected most seriously by such processes were, therefore, re-analysed for Pa after an interval of two years.

516

8 (9. 8 RI 4 • • • • • •

CV ON n0 r-- CO \-0 H CV 0 Isrl n0 \L) CO 1,... rCi • • • • • • a) g. \O CV 0 di LC \ LC \ Fx-i 04 r-- LC1 H 00 0 CV HHH H H 7bn ... VD 13. r- %.c) [---_- ON 4c11 CO cx0 -Pca \.0• CO• N1• LC• \ d•i Iscl• EH cli r— H 0\ CO 0 r- .Kti 0 F'--- 0\ CV H H H H

Idi H \O H ON ON 0\ CV PC+ C 11 H r- rsr) LC \ Isel f::1 I o o c) 0 o o to 0 0 0 0 0 o • • • • I. + + + -F +

ril ul Cl) u) a) ro ro rCi 'CS C.) '41 $.4 S-I i-n i-4 0 0 Isel LC1 LC1 Lf1 CO a) LIS cd ai cci LC \ H LC1 H V\0 ccj, rd rd rd A ..C) 0 0 0 0 0 0 0.i ;-4 0 0 0 0 0 0 o • • . • • • 43 I I + -I- -I- -I- ca ul u) (13 -IS rpm - .4 -P rcl 4) r8 .. 0 el 4 r(r2I 4 0 . \O ON 0\ di N- ...... - ..._s..-c.)... T\ f`- CO 00 Is(1 re 1 ai FH1c11 "gCV 0 r-- CVO CV di a) a) C1.1 HH0 H f--1 4= 4 = = = • • • • • • ,. -P C) 1 LIO . = w .4, ,c) 4) in In 0 0 LC1 ON b.1) F-I Cl) CO \ 0 H LC1 r-- \C) El = = = 0 O H CD r•--- C11 0\ H V, f.4 Cl) CV H HOH H 0 CV H I--- • • • • • • r-- r-- r-- r-- u) X) •rti 4• ;..1 0 0 c.1 04. cd 0 0 p Q PI 'CI rrio 0 r- o0Lt1 CV -P o -I-' 0 0 HCV •cti -0 CO H cq ,--1 CO N\00 C \I kr% .4- +., -I- CV r-i H H H H ca • • • • • • a) a) H H CV c'd •n-I •di -P 0 0 LC \ LC1 0 0 Cl) vz) 'Z14 CO CV lf1 CV CO Cr H CO 0 a) '1:7 cfl `,1 ,s4) Lrf-n 0 • • • • • • Cl) rn +) H H ut

•d4 I.- COTe C) to0 Pl H 0 0 cd Pia) 0 0 0 • o o 4 4 <4 + • + 517

This data set suggests that little clange occurs during long storage in an OD condition. Although several samples did give higher absorbance values in the second analysis, even the mean increase in Pa (expressed as mg kg-1Fe, which, due to slight between—batch differences in standards' absorbance, may exaggerate differences in samples) is hardly greater than might occur as a result of imprecision. In only two samples (both Ah horizon) is it possible to argue that some mineralisation of Po has probably occurred. Certainly, variation in the length of OD storage is unlikely to be more than a very minor source of variability in sample values.

Changes in field sampling procedures at the end of the first season of fieldwork (see 3.3.1) might have led to some differences in the estimated P contents of E horizons and thus whole profile estimates. The sampling program in zone C, where similar numbers of profiles were sampled in each year provides the best opportunity available to check on this potential source of error and bias.

Augsment of tam_effActs gf c_haikepaja. field *pmplinq procedures in zone C — Table A.5.11 In 1978 seven profiles were sampled to augment the ten examined in the previous year; of these seventeen profiles, four exhibited unusual features, which are discussed in sections 5.2.2.1 and 5.4.2, and will -2 not be considered here. The total weight of Pao (g m to a depth of 40 cm below the mineral soil surface) in the remaining thirteen pro- files is tabulated below; the groupings used here were selected to reveal significant error or bias, if it was present. In all cases, the values have been calculated as if the lowest E horizon sample had sampled the profile to exactly 40 cm depth. In most cases, the true sampling depth lay within 2 cm of the depth used in calculation, but in two cases a depth of only 31 cm was sampled due to the abundance of stone. 518

Om• Profile Group fl x SD SE CV Range

All profiles 13 159.39 15.38 4.27 9.65 131.75 - 181.83 1977 profiles 9 159.50 16.73 5.58 10.49 131.75 - 181.83 1978 profiles 4 159.14 14.13 7.07 8.88 145.54 - 172.49 Profiles sampled to 40 cm 5 160.62 12.68 5.67 7.89 145.54 - 172.4 profiles sampled to depths other than 40 cm 8 158.61 17.66 6.24 11.13 131.75 - 181.83 Sub-zones and groups within zone 0 (see Fig. 5.1) North Field (stagnopodzols) 7 157.66 17.01 6.43 10.79 131.75 - 178.59 North Lobe (brown podzolic soils) 6 161.40 14.54 5.94 9.01 145.11 - 181.83 Profiles sampled to 40 cm: North Field 2 157.83 17.37 12.2 8 11.01 145.54 - 170.11 North Lobe 3 162.49 12.55 7.25 7.72 148.40 - 172.49 Profiles sampled to depths other than 40 cm: North Field 5 157.60 18.94 8.47 12 .02 131.75 - 178.59 North Lobe 3 160.30 19.16 11.06 11.95 145.11 - 181.83 North Field profiles Groups A 4 160.05 16.87 8.44 10.54 145.54 - 178.59 3 154.48 20.37 11.76 13.19 131.75 - 154.48

The wider implications and meaning of the tabulated profile values are discussed in section 5.4.2. The main points to note here are: 1) the virtually identical mean values for 1977 and 1978 profiles, and for profiles sampled to 40 cm and those sampled to other depths; 2) the similarity in the differences between the mean value for the North Field and the North Lobe profiles, whether the men value is based on profiles sampled to 40 cm, to other depths, or uses the entire set of profiles. Even the small subsets of profiles in the North Field (Groups A and B) produce mean values that differ insignificantly from the larger sample sets. These data demonstrate that neither 'year of sampling' nor 'depth sampled' can be regarded as factors which may have introduced significant errors; in particular, the adoption of a standard sampling depth in 1978 has not resulted in any bias which would affect, indeed invalidate, comparison between the soil in the North Field and that in the North Lobe. 519

Although there is no evidence that estimates of the Pao fraction in the soils of zone C have been affected either by the sampling change or by a change in laboratories, which occurred immediately prior to the processing of the 1978 samples, there is evidence that the oven-drying of the 1978 samples was not identict-1 to that of the 1977 samples, and that, in conse uence, the proportions of Pa and Po in the 1978 samples was systematically altered as a result of extra mineralisation of Po during oven-drying. The data which suggested to the author that this might have occurred is listed in Table A5.12. Whereas a very small change in the proportion of Po and Pa in surface soils might be expected to occur as a result of seasonal and inter-annual changes in moisture and temperature (but note that all these samples were recovered in mid-summer - mid-July 1977 and early August 1978), changes of this order of magnitude, extending deep into the profile seem unlikely to represent real differences in the sampled materials at the time of their recovery. At the outset of laboratory work, it had been recognised that Pa values would very likely be affected by any form of sample drying and that oven-drying, in particular, might increase Pa values at the expense of the Po fraction. For practical reasons, oven-drying of all samples was nevertheless adopted (in part because air-drying posed greater problems of sample equivalence). It was accepted that, in consequence, the Pa va lues would be, to some extent, an artifact of the process of analysis. The data in Table A5.12 prompted investi- gation of the extent to which the standard oven-drying (24 h at 105° C) had affected sample values. Assessment of the effects of various drying procedures on the results of subsequent phosphorus analyses Two experiments were run; in the first, separate ground fine e • rth sub- samples of a single oven-dried (24 h at 105° C) fine earth sub-sample were used (to hold sub-sampling 'error' to a minimum); in the second, fresh sub-samples were each drawn separately from a (wet) field bulk sample. Precise details of samples, the experimental conditions and the results of subsequent analyses appear in Table A5.13. Prolongation of the oven-drying period was included in the experiment- to establi-h whether longer oven-drying could be substituted for the prior air- drying of samples that had been adopted as a standard procedure.

522

The main conclusions reached from an examination of this d.t1 are:: 1) any form of oven-drying will increase the values of Pa beyond those which would have been recorded if the samples had been air dried. In some cases, more than twice as much Pa was extracted from OD samples tan from AD samples. It is probable that even less Pa vould be extracted from samples analysed in the field condition. Oven-drying at lover temperatures reduces the increase in Pa but the vq lues renain signifi- cantly higher than those recorded for AD samples. The differences 0 between AD samples, samples dried at 80°d C an those dried at 105 C suggest that Pa values might increase still further if higher temrera- tures were used. 2) Since samples that had been re-wetted prior to additional oven- drying showed greater increases in Pa, it seems possible that tie initial moisture state of even a fresh sample could affect the size of the increase in Pa caused by subsequent oven-drying. 3) Longer periods of drying clearly lead to even greater incre-ces in Pa, though, particularly on the fresh samples which had been air-dried before oven-drying, the extra amount of Pa after 48 h instead of 24 h of oven-drying was not substantial. 4) The absence of any clear trends among the Pao valuer indicate that this fraction is not significantly affected by alterations in drying procedures of the type tested. If this is correct, these same values can be regerded as merely sample replicates, which provide furtler evidence for the level of precision achieved in these studies. Another implication of this conclusion is that the change in Pa values must be at the expense of the Po fraction. More generally, conclusions 2 and 3 support the practice, wh3ch had already been adopted, of bringing all samples to a similar moisture level prior to oven-drying and argue against the adoption of lengthier oven-drying. One may note also that lengthy storage in field condition seems to have had little effect on these samples, but that storage in OD condition may have led to a small increase in Pa. Finally, it is evident from conclusions 1 and 4 that the signi- ficance of Pa (and thus Po) values for samples that have been dried prior to analysis requires further investigation. Dot the d'ta provided by previous studies and that presented in chapter 5, leave little doubt that the Pa - Po division of soil rhosp1-orul3 is more than a mere artifact of analytical procedures, but it is probable that any form of sample drying reduces the apparent amount of Po, probably most markedly in samples from organic-rich surface soils. 523

Adjustment of Pa and Po values for profiles in zone C ------The differences in the proportion of Po in the 1977 and 1978 samples from this zone (listed in Table A5.12) are in many case., greater tlan those induced in the experiments described above; they are also remarkably systematic. Both features suggest that minor differences in moisture content prior to oven-drying are unlikely to be responsible for this pattern of sample values. Since all samples were oven-dried using the same standard procedures (24 h at 105 0 C), there seem to be only three possible explanations. First, it is possible that the pattern is 'real', and reflects changes in the sampled soils; this seems extremely unlikely, especially in vie u of the analysis of a sample taken in 1979, which had precisely the same proportion of Po as had been recorded for a 1977 sample from a profile lying less than 4m from the new sampling point. Secondly, it may be that the (new) oven used to dry the 1978 samples, although set at the same temperature, did not in fact dry these samples at the desired temperature or, thirdly, produced drying conditions that differed in some other manner from those used in 1977. No other sample set available from other areas provides a clear indication of the sort of problem encountered with the zone C samples, but it is also true that no other area provides such a clear set of comparable samples in a small area. However, differences of the magnitude evident in zone C do not occur between the 1977 and later samples in other areas. It is also the case that the 1978 samples from zone C were the first samples to be dried in the new oven. Taking all of this into consideration, the autlor concluded that the most probable cause of the higher Pa values in the 1978 samples from zone C was oven-drying at a temperature higler than that indicated by the oven control mechanisms. Unfortunately this hipotle.is was not specifically tested in the experiment-a work described above and time forbade further investigation. In all later oven-drying, tempera- tures were checked with an independent (mercury) thermometer. Although a definite cause has not been established, the author felt that it was necessary to find some way to adjust the measured sample values so that subsequent calculations used to assess the soils in zone C should not be biased by an artificial element of variability. A very simple procedure was used; all 1978 sample values for Po, whicl- showed clear evidence of having been affected, were raised by an amount equal to the difference between tie mean values of Po (%) for tIe 1977 and 1978 samples from the particular horizon. Thus, for example, the percentage values of Po in the Ahl horizon samples from profiles SP 31, 524

32 and 34 (see Table A5.12 ) were raised by 6.5% (Si' —4 from 76.5 to 83.0%, Si' 31 from 76.7 to 83.2% and so on). In doing this, the original sample variability is preserved but the marled difference between 1977 and 1978 samples is eliminated. The samples affected b3 these adjustments are indicated on Table A5.12. Some profiles close to a prehistoric house in the North Lobe (SP1 and SP34) contained abnormally high quantities of Pa in the B horizons (as did the house itself — SP 33). Since these samples differed so substantially from all others, there was no way of deter- mining the extent to which these samples had been affected and no adjustment was possible. Although the samples from the lower B horizons in the North Field may have been very slightly affected, the variability in values is so great that adjustment seems unjustified and would in any case have made very little difference to the values used. It must be stressed that these adjustments to the measured sample values in no way affect Pao values for samples; the procedure takes the Pao value as a 'constant' and simply adjusts the Pa and Po values such that they conform more closely to the pattern found among the 1977 samples. Even the differences between 1978 samples in respect of the Pa — Po relationship are preserved. 525

Zb.5. for Chapter 5 526

17-,‘ H •H o U) N- 0 00 \ c) 0 In UN '0 .44 CV CO cH 0• N N- u-N N trn 0 kn ON X\ N CY\ 0 0 N • • • • • • • • • • • V 0\ 0 CO N- g N. 1,4-, r-I ON NI") H •10 4.-E. A H cv C \I H N N r0 0 P4 • a) co o V Irn 0 0\ •:14 n H FL P) P N- 0 ON LC H In 0\ 0\ H 00 • • • • • • • • • • 0 • N- 1.`.-- 1"41 \O r-- LC1 Nr1 I"- CO CO NM C0 o.jko H H N H H H cfri

13Q. otko .0 in CN.i 0 CO I's- N- N1 CO I'el Ln 0 V • • A • • • • • • •• • • .,-1 \O Z N- CV ON kr, ON .:I, N.-)N\ rl LA CV Cr) N N r-1 N r-1 H H H ('J N • rO a) A +) cd 3 Wi In 0 0 0 14-1 N- N.- N- 0 N H in • • q • • • • • "C1 • • NA NA o o. ON r.1") u-, 1-1O 0 0 TilHl H H r-i H tl 0 tan 1K, a) N CO co CV CV (V 1/1 1`/\ CO 1.4.1 4-) 0 • • • • • • • • • • • 2 w 0 000 CO co oi \121 O 0 ;21 H H e-1 a) N

O H •H ...-.. .0.^.. C'4I 0 CO 0 P.1 IrS 1.4.• ) CO N 0 0 ix; ,..,.1 • • • • • • 0• 0 • in -4 Ntl '..4 •44 N41 PI gal UN CV 0• •...., V KC:1 2 H N-- 0\ H \O TIO \O N- H Co • • • • • • • • • • H C7N H 1\-- CV 0\ HPI Lc-, 11-, .,:t. kr. ,t, n.4, 3 '4 `A R o Cl) U) -P ...-- Cl) 5 0 .0 o Cl) -P cv N., 5.4rd ---, 5-, ,o CV H ON ON V 00 in N CV ccl 8 ''.:• • • • • rs; (1) • • • • • a) • • = c/4 •Zil ra r-- Isrl 04 H ON 010 ret Nti 5-1 NH 1::1? rG11 .. .44 •cm •04 K1 a) a) 1> 64, HO 0 c1) cf-4 4-1 CO ce-t otN- O Cr\ N H .4.P. 0 N-- CV N 0 N- ...... 00 N- CO N- 0 0 H • • rzi • • • • • • • • • •ri \ 0 NI4 Z .0 0 \ 0 H In r-1 0\O W, 0 H 0 H H 0 CO V PI 0 0 0 4-) HIcd •r-1 ..0 P4 .0 c‘4 to . r4 4 tzl c('4 o ; N .\ MI A (15-'2 2 f•-1 •Cg 4 0 0 XI aa Ht.. 0 ,a4 A a) n:i • • • • a) • • • • • • 0 H o H CNI r•cl 1:4I tr, .0 A I N- CO ON H r-1 527

H •4-1 0 WI 4-1 \ 0 r-I co 00 1-1 N Nr1 • • • • • 14-2... N ON di CV LC1 A 4-1 r-1 r--I 4-1 9 co 'sr H .4.-4 isr) %JD CO N 00 \ 0 (1! r-- r-- 40:71 •I • • • . • N CO 4-4 0

.0 §I? N0 r-- ,44-1 • • • • 01 0 N N N 0.1

"CS

00 CO. CV. • • 0 H N C Hr-1 H r-1

O N1Lr, OVDC CN1

<1.) C • -P • 0 Cd 0 C.)

a) N .1--4 Cl) 0 •r-I rs- 0 • • 0o00 CTN 1.r1 • 0 • •:14 .41 N • N 0 CO CO V • • H In 0 erl P tr, 0 0 in -P ...... - a) 5 .-0 0 n -1-1 C \I Isrl P •••— F-, 8 N- CO N LC \ S T • • • • cd(1) • • 00 "C,211 a) 0 .-1 ;•I 4-1 a, \ 4-4 0 N •n••1 44E.. 0 ('4 0 Fs-- 0 • • • • • •:14 N 4-1 0 • Ni cd f-4 !..4 CI) a) a) a) o 40 •ri a 4-1 a) 528

Table 5.2 Measured and predicted soil bulk density and loss—on- ignition values in Ah/E horizon samples from the medieval aeosolBa_CM2_1danearlaoodzol

Contemporary Iron Pan Buried Stagnopodml Stagnopodzol

Measured soil LOI (%) Measured soil Loi (%) bulk density bulk density (gcm-3) (gcm-3) AVILlaftgal (a) Tipper sample 1 .1331 10.52 1.1185 8 .23 (b) Lower sample 1.0284 11.36 1.0068 8.46

(c) Whole horizon calculated(I) 1.0866 10.86 1.0748 8.30

Predicted(2) 1.1o80 1.2004

difference — 0.0214 lower than — 0.1256 lower than predicted predicted = 1.97% of calculated = 11.69% of calculated SBD SBD

(1) SBD and LOI calculated from values recorded for both samples, taking into account the variation in thickness of sampled layers.

(2) SBD predicted from the calculated whole horizon LOI value based on two samples, using the Ah/E regression equation for SBD/LOI (see Table 3.5, section 3.3.2) 529

_Table . Measured and predicted soil bulk density in 13 horizon samples from the medieval palaeosol C1M78131

(1) Measured Predicted SBD LOI (%) SBD Difference B1 0.8711 8.92 1.0708 0.1997 B 1.0764 6.66 2 1.1595 0.0831

x Difference 0.1414 lower than predicted

abIejLi_lleasured and predicted soil bulk density in an Oh-Ah 11Drizonsainnlefro/ledievallaeosol(HM79B)

EM79B

Measured (1) Predicted SBD LOI (%) SBD Difference

Oh -Ah 0.7405 26.07 0.7087 0.0318 higher than predicted

(1) SBD predicted from the LOI value using the appropriate regression equation for SBD/LOI (see Table 3.5, Section 3.3.2)

530

1-1 Cd IP '41

0 •H 04 0 0.1 00 CO in rcz c\1 Go ON ON •44 .44 ir c:14 41 H • • • • • • 0 CN-a)'.0 0\ 0 41 9-1 rsn cnI C L11 C) PLI C a) tQ. cr-i 144 S 00 0\ O co4 0\ N- U1 ta -P $-• 4-) a) • ... .—I a) 0 tt 0 0 Lr\ +I F '8 N- e a) 1-1 a) cd ul .t...._, . • • • 1 • • . -P L.C1 00H •41 00 4-1 0 CV CV 11-1 •41 H Q, two 4i :gr, ualp., 461 '10 O W $-1 CV •:4 0 tcl Pi, ti) 02 P ID H H tn 04 -P ON H cf) Cl) -P k.0 CV a) H . • 1x4 0 •H .21 74 g cv 0 H -P 0 •H CV H to-PC) H t`r) •41 W.1 0 Ca -P r-1 +3 CO a) H .1-I N- ON co N- LC' ON CV a) 0 tA 0 '0 Isel00 U1 •:/1 U1 E (1) 1-1 CD CD 9 r -4 qt 9 • • • I . . • P _La •,-1 En •H ta bA n0 o o H CO CI-I $.4 H 1-r\isn VN Cr'ci 1;11 2 8 .,71. t.) cd 0 0 0, . 0 ta p.,,0

tg. CH '.00 0 0 a)0 ‘0 • ••4 If \ CV r--- N-1 ro • .., 0 o .41 H .44 H ON -I-) • • • • • i CV H •r-I • Lr \ -1-, ...../ H °a CHg CO Cn1 O P (I) Q)0 ta cs, -1-3 a) Cl) -P rs•-n • Q •r-I O H 0 0 N- Li" \ 1-1 0 H cri El -P H H 0\ n in CO CO -P +3 In +a 0 F.4 QD__ ON r'n ON Isn 321 cA '0 03 a) •H •H cd Isrl NI Hr'el \C) P 0)H Q) • • • 1 • Cn •H H 0 • ril •:17 ir:R p ON Cl) F., in ttD 0 H (1) 0 . $.4 P Cl) c4-4 -4r c‘i .4 0 Cl) Qs o 00)

-P ;-1 O 0 I'd 4-1 •r-1 0 CD Cl) H -I-) ta u•N VD 9 0 a) N- N- p r—I P • I I I I I • I •1-, r—I la' '41 '.OH I rd cd a CO cd cd 0 H ri-I O c) -P 4:1

f-4 1 a) O '0 0 0 in N.- -I-) 010) Ca) I'll NI 0 CO 4-1 N f..4 a) 0' ON N- r--- •41 0 cd ,I 0 a) • • f•el a) 0 N- N- in (I) P cv c\I • • • • • • PI I I O cd H 0\ H Cr_N 1--- n0 0 0 VD a) M CD ttj H NI di CV -P O -P Ca re\Cd a) IE 4-1 O 0 0 0 f•-n H hi) H 0 NI •1-1 I 0 1>b 0 ft la 0 02 -P t.) 0 4-1 0 H i-4 r.) 0 CV CI rd Cn CO 0 E! l I C..1 a) 0 Ca • r9 !i.)) Inl g WC)1>b -I-) a) a) 4-i tn I% E Pp I pt -0 -P 0 rel g 0 trI i a) a g g OlU !R. rrl H C I f-I H rn r0 r54 0 rCl)n 1 \ I0 g HO Prz H I—I 0 .W H •H 0 a) H Q s ir..74 _I, 0 Oa) PP 0 b.o be, r—I 0 Cm., 14 cf) rd PQ 14 ,S4 V. cd C.) Table 5.6 Summary of quantitative estimates of organic matter changes in the medieval (1) palaeosol

Horizon Stagnopodzols Palaeosol Palaeosol Estimated Difference between Zone C, group prior to at time of nett post- stagnopodzols and A x values burial sampling (2) burial palaeosol at time (n = 4) losses (3) of sampling -9 kg LOI m -

Oh or Oh-Ah 27.99 17.74 12.48 5.26 15.51 Thickness cm 12 8.25 6.5 ( 6.76) (29.7%)

Ah/E 8.25 12.44 8.75 3.69 0.51 Thickness cm 7.5 11.5 11.5 (29.74)

B (to 40 cm) 20.80 18.24 17.80 0.44 3.00 Thickness cm 32.5 28.5 28.5 (2.41)

Mineral soil 29.05 (4) 30.68 26.55 4.13 2.50 (13.51) Whole profile 57.03 48.43 39.03 9.40 18.00 Thickness cm 52 48.25 46.5 (46.76) (19.4%)

mg LOI cm-3

Oh or Oh-Ah 232.9 215.1 192.0 23.1 40.9 (184.8) (30.3)

Ah/E 108.2 108.2 76.1 . 32.1 32.1

B (to 40 cm) 64.0 64.0 62.4 1.6 1.6

Mineral soil 72.6 76.7 66.4 10.3 6.2

Whole profile 109.7 100.4 83.9 16.4 25.7

Loi

Oh Oh-Ah 49.6 38.4 26.1 ND ND

Ah/E 11.2 11.2 8.3 ND ND

B (to 40 cm) ND ND ND ND ND

Mineral soil 8.2 8.7 7.6 ND ND

Whole profile 13.8 11.9 9.8 ND ND

(1) All calculations to 40 cm below mineral soil surface. (2) Figures in brackets make an allowance for compression. (3) Figures in brackets indicate loss of organic matter as a percentage of initial amound of organic matter. ( 4) Note that ; for all zone C stagnopodzols (n = 8) was 30.27 kgm-2. 532

Table ,7 The fractional composition of phosphorus in the mineral horizons of the medieval palaeosol and nearby stagnopodzols (1)

Medieval Difference Pt profiles Pao profiles tweenl Fraction Palaeosol be = 4) medieva (n = 2) (n palaeosol and Pt profiles

Pt 176.4 + 4.1 172.4 ND Pao 137.8 + 16.2 121.6 122.0

Pf 38.6 - 12.2 50.8 ND Pa 30.9 + 11.3 19.6 20.6

Pi 69.5 0.8 70.3 ND Po 106.9 + 4.9 102.0 101.4

-2 (1) All values in gPm calculated to a depth of 40 cm below the mineral soil surface.

Table .8 The fractional com osition of.hos.horus in Hem samples from the medieval palaeosol and a nearby stagnopodzol

Pt Pi Pa Pf Po

HM 78/79B medieval palaeosol mgP kg-1Ne 493 413 166 247 80

% Pt 83.7 33.7 50.0

% Pi 40.3 59.7 GSP2 iron-pan stagnopodzol -1 mgP kg IFe 484 385 125 260 99 % Pt 79.5 25.8 53,7 % Pi 32.5 67.5

• 533

0 H 4-1 cP,p rse) 2 • • • • rc)• • •

c --1 r-I c-1°N

0 • CO

V N 0\ ON 070 r`el r-- r-I C ON") N cY1 •ri 070 • • • • • • • 0 • • Lrn Cl) co N 0 N- 0'n r-1 H r-4 H H H H N 44 0 Isk

07 0 re•) • Lf1• 00 LC\ N- co rel • • • • • • 171.()I 11-N 0u 0, 0 c' Nr) c\I

0 -r-I 0 0 a) 0 N +) Isr) 0 CO in LC1 -P in• 40 • • • • . • • H H H 1-- 0 0 HHH t>

0 LC1 01 N • 2 in N. rr) re) K.) o N 00 • • • • • • • • • 0 H CO ON r.- r-- r-- c). H r--1 r-i H r-I

--.---n ...... —. ,—.. ,-...... 0 00 c\I N r-- cv is..n 114 .N • • • • • • . re)• o t4 ‘14 N- OHH —.5 n A \.0 i.r u"N 1/40 in LC 1/4.0 1/400 Z .....- S.—S.--...... -...... - ..... 90 0 0 n r-- r--- Lr C1 .1 r- N cit N 0' 0• • • • • • • • ‘..0 H N "di T•11 ON .44 tf1• V 0 N ‘..0 \..0 \O n0 •cti cd H -r-i 0 o co P., ---- a) -P cd 0 N T•el a) -P n T.4 8 `8 0 "..... CO• •0 N• CO .0 CO N t4 cd • • r.4 • • • • • 0 •:4t Cr„?.1 it O 0 0 rr14 Noir\ re) 0 ri")ro P l'cl a) x 4 4-1 o- N 0 Ilk 0 Lf1 rt) 0 c.; r;) V

roci f-t

Cd • 0

0) O 0 H N Cll N CT-1 ,c4 Tx1 a) r-- 0 Ed • • • N re1 •n14

▪ 534

41-1 0 1:11 0 Lf1 Lr't r-- C\J CO 0 q • • • • • • • • 111 r--1 r-I Cp.) r-- o *SQ. H r-I N Lfs\

CN rel .44 .44 vti CO 0- N- .0 N ON O. Cu • • • • • q • • • • ZHHI.C\MU'l r-I r-I r-I Z ir-1 ',Di F4

N.-. 0 In 0 ' V) 0 CE ON q • • • • • aci • s• • • Z 0 N1 ON f`•- \ 0 N 0 N N N H ('4 N rtl N N

N n co o CO 0 1,) hr.) q • • • • • q • . • • CO n0 CO

LI1 Isrl N N 111 A • • • • • 2 • • • • 4%1 I I r'rf; HH cr-1

/1 /1 COo 0 co r(-) • • • • • -410 N10 l o N- 0 • \ 0 0 s t4 r.,-) .4. .0 N • Is() •4i V IC; C‘4 • • • • • CV 0 ON n r--1 Lc\ Ln 0 En

co H LC1 CO 2 • • • • • 2 • • • zit4' L'A 4 CV

CV N.- 0 te) 0 111 Ns- 0 N1 N1 0 q • • • • • q • • • • 0 I z 1-1 Li'l CO Irl N Z r--1 0 CO • 0 H 0 0 ""--4 rd 4 1--1 i V i 7..,z -P r01 P 0 0 t N 0 j a) ts•ri „II 0 . 0 H rd adf Pi C-4 0 /1 0 O 1-1 N( CC1 tiD /a co r0 k ..-..., (1:1 V rA o i a) w ...—• O .., H N . :7-1 0 ...... ta O CD 49 A A t11 ta r..., 00 A A A ta CD 0 H trl 0 .64 ril XI XI C.1:1 C -I N 0 •24 P:i A H -1-1 Cli T 2 .0 S-I 1E1 D- g ai O cd • • • • • 1.4 ; • • • • • Ei M ca 2 P-ICE$ H N N1 NO CO ON 41) H N re, .44 N.

5-15

Table 5.10 Concentration of organic matter in Bh and Bhs horizons of selected stagnopodzol .profiles in zone A.

Sub zone Profile mgLOIcm-3

A SP26 94.2

B SP27 89.7 C c 3 114.1 D SP23 111.1 E GSP6 106.9 F SP12 112.8 G GSP4 115.9

21m2_5,jl.ozapmicmayter_sontentofthep.rehistoric_paiaeosolj its overburden and other_profiles on Holne 11oor (1). -2 Profile kgLOI m LOI %

H11177F6 Overburden 33.59 7.75 Palaeosol 27.89 8.61 61.48 8.12

HM77F5 Adjacent stagnopodzol 44.49 11.12 Zone A, sub—zone B StaRlopodzols (p ---7 5L _52.86 3,345

Overburden 32.36 10.42 Palaeosol 9.80 71.29 10.07 Zone C — North Field, Group A Stagnopodzols (n = 4) 57.03 13.82 — North Lobe Humic Brown Podzolic soils x (n = 6) 32.98 9.82

(1) All calculations to standard depth of 40 cm below the mineral soil surface.

536

•,•-n 0

7 40 iscl H CO CO n0 n0 if1 03 CV CV n a) TN 0 inCM CO N-- H rrl •ct, Ncl ON N- •It N-- a) HI Pk 0\ \O c0 O N TN ON o 40 N NNNNN P FVN P W. rll 5 O wi 0 H GES 1 Pi O N'l c4 n N.- •al isrl H 0\ N- N- CO •ri I r‘ 1 ON N- "al ON H CV •:14 EV rs-- H krn N F45 • • • • re-) • • 03 • CO • • • O 0 -0 •zti N H • H "zt4 • l'sel • n1) p ON -,-) ON 0 H 0 03 H ON N-H E b.0 4-1 H H CO f-i ONZ). fr a E

5 01 0. L/1 (:)N H ON CO r n H LC\ n 0 Tr • • • • +) V. • • • • • • • • • 0 CV 0 LCn H CM ON H HHH H H H r-1 H 4-1 H 04

0

0 0 0 -0 H ON CQ ON NO ON t 0 \01 0 P4 Opt \ 0 .41 ONtr. 0 .0H a)

11'1 VQ P-I H 2 2 2 2 2 2 2 2 r-1 C\I p

0 Pi 03 ON kO r-_-. 0 n cv ise_l 8 '8 0. 0. 0 H P4 -cti ON ri 1 n13 ON NH Hisci ON rrl i'el I H H H LIB g t)D 5

4-4 \O 0 P al cr. p A A it, $., P.4 nO lf\ ZZ ZP 2 2 q 2 c4 z Z Z 0 0 H 4--1 (NJ 4. I $11 co co 0 --. 44 1 Pi a) Ea .H H ;-, •,-I 0 ON 0 cu, c0 CT1,rl i; H ,:o lln 0 cd CV n40 ca Ls-, ON U) 0(S.:". rit1 191 Fti P4 •:ti •It •41 4 in tn r.- r-- 1-11 'CP C.) i1 i H t 0 I ta r0 0 U) PL +) H A A A A P4 H° 0 Z Z z 2 Z 2 a 2 2 2 L.P. .0 .0 Npi ... 0. Ts $. .0 °0 0 0 111 11-\ "gt 41 rd co a) .4 01 P=1 •,-1 fc) $4 01 cr) .0 0 0 Z 0 C.) I 4 r...1 IN a) 0 4 9-I ..-4 f—i o ‘o „o s.-i :-, .4-1 0 Fx-1 0 CV CO VI \o o t-i N n ci-i .,-1 1"--- H .4 H H CV CV 4 K1 di M K1 0.1 0 F4 -r-I I•41 P4 $4 0 o .4 P4 H P4 PL. 04 .4 1-44 44 P, 13-1 (14 cil P4 = u) 0:1 cr) C.1) En cf.) tf) 4 GI E.') CU d) C.f) c.5

• 538

0 r- CV 9-4

(\.1 .-.. c \I .--... a) .0, —' •,-i •f-i to • • (11 o I \ H 0 1 +3 +3 a) Lc\ C \I $i I-I N- C-I X X tlit) o 0 •• cfs In V •• cd (1) 0 '-C • (1) (1) Ln • 0) 0 c.) +3 -IS • V 4-D 1.,.• • CV -P A ts, r- cd r--1 r-I r-.- ai 1-1 0 a) a) c..) i-I I $-n I O CI) Ill + I + i cn Ca Ea A al A (1) U) CO I I o la0 0 0b0 B H ,. 40 I-I ... co Pi P:1 ...... • u) tii a) a) a) .0 0 0 0 0 ca 0 o O N N o ,0 ••-1 ..j 0 -P 0) 01 CV ln CO cti n N- N- O 0 0 OD 0 O\ r •.1-1 .4-1 ...... isel •• • 0 pa ‘d, c1i CO H In N- CV CcI H H H 0 1-1 1-1 ni cd

11 TS '0 o a) 4)4.) • .. 0 CZ C.) iEi. E H LC\ FT-4 .1-1 .r ON '41 1—I 4-3 +3 H —. H H to CR n • 1-4 • .••••• t (I) 0 0\ V 0 ...1 H i r,-) 04 b.0 C'.D 0 0 N-- 1 CV 03 ..S4 II II Ise) • • Co co tr. •.a) ...... - ,....0 ttO n . • 0 • • a) a) • a) p..• tID 0 N-- -P I"-, rn i N1 -i-) O a) a) CV._8 in 0 H (--1 .0 cd r-4 C.T4 ix-1 C..) $.4 I H I-I + I + i Ea Ca 01 .8 +, 40 120 Ul Cll Cl) a.) .-% .- o tal) 110 0 40 .... 4) 0 H .14 C.) ...... +) ciA ...... g W 0 ..1-. ,C1 0 0 • • O (1.51\ n .1-1 ...... re\ V OD N- co N- cti V 4-4 cri 0 .0 )..o O 0 • • • rE N- %.0 In H CV H H H I ca f--1 r-I 0 • 0 IC') 0 0 CD 0 0 O H •r1 ••rl .2 ,..1 4-, 4),, 4)0 4 4)4.) 4 `"' oo 00 N- re, N1 •-n Ch .--,CH 0 t..) C) N. • If \ 1",r) r-1 r- •r-I 0 0 3 V H 0 • Li-. •• o 00 0 • Lc-, • 0 • 0 p.acri .4)Z 0 t.) z o .34 0 n 0 •41 n0 *---' 00.1 Isil c14 F.4 H H H H'- H ...... O cd cd al .0 G) .ri -.-1 -P 4)4.) CD •ri 9-1 P 0 0 4 O .r1 •ri 4.44-1 Cl) Ul 0.) (1) Fr i)i 0 cd +) H H .,-1 to u) 0 . , 0., . N 0 Cd CC' •ri rci (1) O rd H •• a) trn PP. oH cd c-4 •• H 0 P 0 0:4 P:I .r-1 PA P. 4-1 r-- ctu r-- Pi 0 N- ,--. •-.. ..--. r-I (11 re) .--- ...... -....., C ca., ,4 1 -M. 0 539

(1) able5,1.5___W_eio_f_101-ted.fine earth in _the_preld,ftorics‘alaeosol and other soils 1ln Home Moor.

BM77F6

Palaeosol 296.14 Zone C Burnie Brown Podzolic soils

North Lobe R 300.47 SD 8.32 (n = 8) 1E= Stagnopodzol 355.62 Zone A Sta,zomIzols

Sub-zone B 353.54 SD 21.97 (n = 5) Sub-zone F R 363.66 SD 18.86 (n = 6)

(1) kg m 2 to a depth of 40 cm below the mineral soil surface.

Tale .16 jheconsen-taLtion_of phospus in soil orromic matter fraction and the concentrationgforgulic matter in individual horizons of the prehistoric salaeosol LIIM.7.761 and a nearby_ soil profile._I___La,...zone SI AL...sub-zone T),

HM77F6 SP29 Po LOI Po LOI .-1 ...7 -] mg kg LoI mg cm J mg kg LoI mg cm-3 Oh 1629 181.90 Oh 1303 250.43 AhE 2732 73.25 Ah/E 2553 78.57 E 3442 47.99 1 Eg 3261 70.32 E 4125 34.04 2 5c 3321 104.95 bAh-Bhs Bhs 2943 86.72 5 2953 94.34 bA/B - Bs(h) 3290 87.90 Bs 2909 74.76 1 Bs 3410 51.22 Bs 2892 56.05 2 BCux, 2829 47.46 BCuxi ND ND Beux ND 2 1540 41.57 Beux2 ND

540

Table J7 PhosprimisansullarLic matter content of some B horizon _rmlessar from site F and from selectedprofiles in zone A.

Profile LOI Pao Pa Po -3 Code number % jig cm Site M1 18.29 437 45 392 F M2 22.65 365 62 303

Zone C3 sub-zone C 20.16 313 29 284 A GSP 4 sub-zone G 17.80 312 17 294 SP 12 sub-zone F 15.66 330 27 303

gable.oshorusand organic matter content of Oh and Ah/E samples from profiles in zone A where two_peat layers were identified and samRled.

Pao Pa Po LOI Profile and -7 (1) cm samples pg - % SP 26 1 401 62 339 55.03 2 321 36 285 53.70 3 244 13 231 7.28 SP 27 1 379 93 286 56.44 2 326 39 286 35.69 3 215 18 197 8.60 GSP 5 1 401 73 328 40.63 2 354 58 295 26.35 3 195 22 173 8.05 E 3 1 328 91 237 52.46 2 304 59 245 34.25 3 339 42 297 11.70

C 1 1 208 54 154 87.29 2 193 34 160 33.64 3 154 26 129 11.86

(1) 1 = Oh, 2 = Oh2, 3 = AhE. 541

Table 5.19 Coefficients of correlation for linear regression anallses (1)--- PBA traufglo_agglejl,...subzone D

AhE Oh n = 10 n = 8 statistical significance

Pa Pao 0.83969 // 0.93615 /// Pao Pao 0.63966 / 0.95203 he/ Po Pao 0.60314 NS 0.94136

Pa Po 0.72453 / 0.85601 // Pao Po 0.52387 NS 0.93667 /// Po Po 0.48997 NS 0.93410 ///

Pa Pa 0.79473 // 0.80310 1 Pao Pa 0.68469 i 0.72227 / Po Pa 0.65692 f 0.70279 NS

(1) All phosphorus values used in these calculations were expressed as A P cm-3. (2 ) NS = P > . 05 =P <.05 26( = P 4r .ca iff P 4; .001

542

• \z) 1-4 171.1 H c‘i •r-1 - .t.z. • • • • • • • 2 •zti 0 Nt1 H Lt1 r-- 0 0 • •cti H H H •—•

H

.--.. •-n ••-n H A 0 nQ. cti LI) c \ 4 n Co sr\ .di in o 1 Z Ivl '4' um IN -) r-i 0 N... ..,-) r.... H P-1 ta0 HO NI, N- Lr\ n H rii,i)1 ,- H H N 7—N1 rr) LrN .44 LCN .—.., ....., hi) El

0 (NI ":14 0 '6?‘ ,t4 c 'Pr) .41 t‘? 4 cr;i &qj

f=1 0 \O o %,r) Isn ,4) n Lc, r‘r) 0 Co

0 "-Ns cd o r-- 111 0 "41 co 7tr‘i po 1/4.8 ;111. P41 WI it

U1 in a) tn. g Lr: cu N \JO 0 "44 0 in H H H

1.4 4 (3) gc) i-D S 4) 711 HN cv'rn .1-1 • *A gq U1 xi v) Gcl r4 0 4 ..-.., xi ...... pq ...... • • 543

H o 14 H ti r-- di o 1 di CO lf1 P4 tiO CI \ ,S4 n isr) to

N- CO \ 0 Ca. • co 0 \ 01 cd CO co co P-n

a) r..., orr cd 1 CV H in H Ili to r-- LCN \ 0 1--1 ,. r,- •44 F1 lt1 '0 b.0 0

CN4 is() In• rel• a: o 0 o o n LC\ Is(1 K1 •44 '44 44 H H H

0.1 \ 0 11": cd ▪ • • • PLi \ 0

0 00 • • • .4+ P4 H 0 \0

0 H ca 0 •1-4 III a) e.) o 00) CO CD r-1 ..--. •r1 •1-1 171 r-I 0 E 0 -1-1 H $.4 rid -ri 0 0 w ci-i cQ 0 0 r-1 C-4 4-I 0 o .0 cd 0 It: o EI $-4 9;.., ,CI 0 F-1 ;-I Nil ;-) Pk 0.0 w -P 0 P4 ,---- r-- al 0 Pi 0 ''... at o H $4 .0 0 H '0 +3 r-1 0 0 g •4 P4 cs1 -.-.- .5 .0 1 N 94 rc:1 0 rd 0 -P cs4 ci-i Ed 0 a) ca 0 /.4 ;•-n 00 C) 0 $4 -P -P P4 'cl .00 fa. c.n al cd 1--1 OH Z 0) E'0ID 0 *---, a) cd 0 C.) • P.• H i. $4 e0 -,-(1)1 ° al a rd -f-I 0 a) '4 ,ca c\I 4-4 0 r-I 9 $ Cxi 1 -..... -1 -al 0 co cd al .0 = crl 0 ca -.1 0 .ill -P a) -P V-, 0 H •44 $4 \O 1--1 .44 0 cd H o .ri H ro (4.4 .0p 0 $.4 cd 0 P 4-, Z CH CH 4 fx 1 a) -P H 0 0 0 -1-J 0 P 01 s. 0 H 0 Cl) Pi 0 r.4 0 13.4 I4 Z .....-.. El ,0 CO I4 •1-1 l4 P4 E4 Cl) e

544

U) C/) H . tr\ • • • o 1.C1 0 10cti N 0 H H H HP-1 f:1-1 00 • E-i ,-... ,—. ,—. ,--. a) NO CO a) in I.-- '.0 CO in o P-1 1.2 • • • • • • , • 0 H g. H N ON 0 0 ON N. .0 P. r-t '. 4 I-.4 It H H H H ,---• ..-- I N-\In -4-) ...... - ....., to r-, .- o Z H cio a) 2,—. .—.. 0 a) c.) w..1 CO '0 di N nI0 .0 H id4 .0 4 0 OH H N-- LNr- vit.In H -P 44 I ON Lc\ S.‘.n V. 41) l'fl 4 t-;` `,:"Pi Fr; v/4 In ..--• ...... • 0 a) txr) Cl) E a) a) H ..--. .---, H••.1-1 1'41 0 CO 0 N- Lr1 00 ON • 4-I 04 0P-1 0 to .4 •( t' a 'V+ P I 1 Fe \ d 44 Ts1 1 ll tc?, $., , \J. SaJ rA H ra, E c) r..-1 r..4-1 ..--. --- H CO di H •1-1 CH ccl I 'al\ co\I s vo 0. cv .4, 0 C\I • • H Ili E .4.1 o nc) cv H I 54 0 0 .....„ ..../ cy ...... u-N A N 0 Bil rig \ 0 GLI H tk ..--. tn 0 r-I 1--1 N • • 9 N H 0 1-1A Vt. A .0 ;-4 N H

Ca .C)g CO a) trn 0. • LC: 8 • P g E 0 H 0 CO H0 0 0 H i--1 H • 0 2 4 01 oi +3 (III P-I 0 E-I n.c)

Ws N- 0 0 0 di ;A • oi• N\: • cd cr., H 0 C) N vz. H r-I \-0 Pi H cc) co-i 0 H H r-I 1 ta 0 P I—I ,- $ -P 0 2 41) r-J 0 0 H El 1> P-I i ri-) LC\ N-- .44 0 ho ,:ii ON H P ll 1)4 ..- (11 00 .0 N 1.C1LC1 HLC1 .0 tC1 0 to -IT co A 0 )4+ g 5 • • 0 0 n Cr. Lrs 0 0 0 n ;-1 Pi CY \ in in .44 0 ci-t .41 •41 Nil N H En 15 N'l I VD -P n0 cd El H I's- lf1 • a) P.1 0 0 tr, N-- H H f.'s 0 Ca 0 P 4 • .0 o Ca 0 H r-- H •cr o Cd ON H C'.4.44 Pi In 2, %.0 r-- N .9 H Cl) ••--1 a) 'd 0 C) CO ao cd 0 H •f-I 0rl a) N -,-1 0 0 a) ,--1 ...--. k 13:1 .0 -...„ ad 0 H ccIN 0 r-cri 0 V) H El M *ft 04 PQ E-I 0 -P .0 gl ...... ,

545

a) CO CO VD CI H • • • acd N LC\ 03 0

Iscl Is-- H isrl l'srl . • • ,.... ri, N N CO CO CO 0 N P:1 r-I r-I

H 4-) Ci) g so mcd c\i

H o a) p cd 0 - 1,c•N N CO in k C.)w 4:1 • . . I-4 0 •‘ 0 0 P-, LC1 I's- N •r1 Cd M Lfl \ 0 CO0 H Ha) Cd H rd a) a) H A 0 4-4 a) cH"-01 -4-) 0 •r-I Ch a) pi . .41. T..4 0 -44 0 a) -P ,0 • R H N Ha) c4-14-+ .t10 +1?-4 0 'Ho U) •.4 111'Qs...... g Tigi) ca 0 p., 0 a) in TO N• c0• H N c4-1 1.7-1 81 421 CV a) CH Ll1 cd 44 c) 0 •44 0 + 3 o 0 i-•

fi,80., r_ir0 1 i .,. 4 n gm 0 LC\ re) ...-1 H 4-4• . . i-, H N U-N CO W\ LC\ N a9 cc{ -I-) ;4C1) 2 4+) 0 a, a a)

49 2 El +) 0 4.4 Cc V 4-1 ul ° ai cOj Clio 'S \O. •.5 isr, 0 CO S `4). • • 404. co o N r t ) c0 d r CA CV C A '4 C0134 r— co o 0 H cll fa., 0 0 H ai 4° 1 'al u(?) CI) V) t H 0 C4 .1-1 H H .._..• rg (2) l ia '1) t" C) 4-4 4-4 a) • \ 0 0N- ...o tat; • • • +) 0 P ft (T) 0 cd 3-I o a. o. , r a) 4-i •1-1 M cia .4, 0 U.0 0 1.4 0 a) 4-4 rx. 0 0 u) .ca tzli c::1 •R-i1-1 4-4 4-1 •441 04 0 0 u) a.) 0 0 0 U)l 0;4 "0 0: 0 H (1) :X •f-I :X 1:1 1--1 C.) 4-) 'd 0 4-) 7:-)I 1 •f-I ....., u) N Ul Z4-1 H •••-1 42 : 2 0 '0 0 •0 0 0 H a) ri FT-1 a) N H N rs4 ro 4. o ro c,) ,o a) c.) a) 0 o • ,-1 0 a) 0 0 -f-I 0 tri (1) 14 P-t fzi 104 Z 0 $-4 r7-1 0 Pi E nO 00 F-4 P41) .-0 ,0 a) ,0 t'l 40 g ,.4 -4-) 4-1 -P I +) 11+' e.0 Ni 4-4 -P $'4 ;-1 0 CO-1 ;-1 1.1 CH 440 014 0 PO -12 'Lj0 .4-1 0 0 -rl 0 .-1 CO Crl A ZZ A ZU) E-1 Z PQ Z 546

_21e5Tal ..2iplicis_phorus content of samples from the Oh and AhE horizons of soils within and adjacent to a stone row on Home Moor. (1) —

ST Series SRW and SRE series Outside Row Inside Row

n = 5(2) n 10 n 12 Oh -)1 780.2 718.6 712.1 SD 230.0 140.0 58.9 SE 72.7 62.6 17.0 CV 29.5 19.5 8.3

Ah/E Tc 230.1 244.8 223.8 SD 68.8 79.9 43.4 SE 21.8 35.7 12.5 cv 29.9 32.6 19.4

-1 (1) All phosphorus values are expressed as mgPaoK5 Fe

(2) Samples outside the stone row for which analyses of the B horizon are available.

- 1 ▪ 547

H ..-1 H V;) 0 o • Ea N H di CV H rb KI1 CV n0 H g H n0 op Cd o 01 ;-I Pi a) 0 .g a) ,O -P

+) c0 0 H H ct-i o cd I-I C7-4 In a O C7.- nI::) H a) o 1:4 Pl r— vti -P I-1 CV rs- CO a) • in H . 0 Pi H 3 El cv O o • g 0 L(1 I-I a) O H LC1 4-i X) H • cd PLI •di (/2 Pl ON a) (\I CV N-Lf1 4-, rd •n.-.0 .41 cd 0 H cd 0 2 a) OH O H • O cd CV N 0 c.) • .34 • CV I f`el 0 .14 LC1 a) • Pl .0 H r-- I-1 L(1 I-I rfl CU CO CV cd LC1 0 O 0 0 o H C)Z +) a) FT-4 H o riH H cd a) H t> 0 o 1 2 M M tx0 r-i HO) I .W I HO) b.0 •:C CO a 0 ... 0 cd 0 cd P4 P-, fai bn ta0 r--1 cv 413 El El .....- ..._,

548

a) F-1 r-I a) GL4 3 0 0 01 a3 1-1 a) ul H Pi r- I g 5 H ..z cd cg 0 cla ra r-I cla a) Cl) Cl) P4 -I-) $4 P4 •H CH 0 En 0 0

O oF: EP' 4 s ., 0 0 c., c., z c..) 4.) P a) cd g (1) P 1-1 11 NI ON \ 0 l'r)n0 CO N1 •4 4 -;14 0 0 P C) V.. • • • • • • • . -0 x k ..z; N- K.\ .sti N- in iscl in c.) 4-1 r-- 0. 0. co 00 ON ON ON VI 0 TS a) Cl) 0 En g cd H Cl) w CH a, r0 H H C-14 H a) cd 1 . ,4 fl

.E4 0 rx., u- 0 n 1-1 .0 E-1 n r- co .:14 n43 Ise) ..0 ao • • • • • • • . 0 4-3 4 a ▪ In P En .1-1 P4-I 01 cd Cl a CY1 in T1 *. 0 O P-I Pi Cl) a) Ft qi cd F-1 a) Fri 0 0 -P Cl) ... 0 "0 rS4 O Ca) cd 0 u) -P isc) r- cv Lf1 111 •41 .11 0 PI a) ... o Hr-CDCO .41 C\.1 H L.C1 nco .a a. H a) P.4 '-0 CD •zil N-- 00 N- in N- al • • . • • • • . -1-5 N 0 c) O a) H H H H H r4 El Cd 0 F-1 c4-i I-1 En 'CI a) O c•-i Cl) d a) -P H +) P., En Cl) 0 .. o cd a) cd ci) 0 1 cil -P N- 0 .4i (N4 CJ N1 CO if -Nz\ •,-I Cd CP N. 111 in r- CV .41 H u) Pi Nr" N- n0 • • • N- N CV ril H u) H 0 r0 • • •C.14• Ell a) Ica 0' H H 1•<1 N1 H H Cl) H r-S1 4-) H O I cd fal '0 •1-4 Ei . .. to 'd 91 I-1 01 fal En to a) in 0 a) O 0 o o .0 El CO r- r-- cv ul •,-1 'ffi z 0cc) p. 0 8: c4 p ONONt)01s cV a) 4-E cd 0¼0 H a)1 0 ON 0 \ H .. • • •_ 0 • • • • • H ., r9 CI) O N N E.v ca I.C1 In N N H 5. 0 4-) H C4-I H f-4 = ga ..sa O 0 M Ed i-t 44-1 ....., rx4 0 Ell Cd an 0 Ic). H b.0 .-S4 a) .ri ....-, 1 CP al 0 a) Ea '13 E '.;: 0 .0 ..0 F.4 in Ed Ea lEi -.0 3 E Pi -r1 0 0 3 -P O E H +) E H C \ I H H PI 0 r. Ca 0 4.• al -P cd H 4-4 C4 -P 03 0 Pi $-4 0 rx., k k cd PI f-4 Cl) r-I 0 CC) 0 0 ci 0 0 -P OH . al F.4 ,.1 H 0 CO ,. H 0 0 n.....• 0 0,) aJ Z 01 0 ria 0 H ...-..- 0 H -P w En 0 m E a) En a) cd C.) -,1 ZS U) P a) 134 '2 M 0 0 H a) -Ei a) cra ,0 El) _a +) H -P OA cd O ;-1 h0 r9 0 ho A r9 +) r9 UI CD al 0 0 cd 0 ..0 0 cid 00 ad o a) ,-.1 EI •,-9 4-4 0 174 g g Cr11:4 ›. M =c.) = H 1x4 0 -P ,0 Gt4 Fs 0 a) 4.4 a) -P Ul •r-I En a) 0 a) XI) -P a) F-I 0 E0 17.t, P.. ra g Cl) Q) Cl) a) a) H 1-1 rd H P4 M M M C/1 C() VI CO U ro 121 cdcd g 14 M rz4 c: E H El ril i>4 >4 ?C M A To4 ...... 548a.

Table 5.26 phosphorus content of soil samples from Brake Field, Stoke Farm (I')

GSP11 SP46 SP47 SP48 SP49

Api 1539 1086 1457 1188 1013 47.4 60.3 52.4 56.2 60.8 4614 4788 4726 4790 4571

Ap2 1163 ND ND ND ND 55.0 4493

B 864 448 1 553 539 439 41.3 62.4 64.5 67.3 64.7 3800 4395 4170 4221 3411

801 B2 40.4 3526

B 790 3 39.1 3482

Bcux 355 31.3 2817

— (1) Values shown: (a) mg Pao kg 1Fe (b) Po . 100 Pao -3 (c) mg Po kg L0I 549

Table .2 Wei ht of ho s horus fractions in soil rofiles at the West Stoke and Rowbrook Farms, and on Bench Tor, Vag Hill and H0111.1.....(12aftS)

Po Pa Po P0.100 Pao Location -2 g m

Rowbrook Farm RF1 232.5 59.9 172.6 74.2 Vagg Hill - Podzol RVI 144.6 20.6 124.0 85.8 - Humic brown RV2 138.7 27.6 111.1 80.1 PodzolicS RV6 149.3 34.9 114.3 76.6

West Stoke Farm GSP11 + satellites 275.4 116.4 159.0 57.7 Bench Tor Stagnopodzol GSP10 120.3 33.1 87.2 72.5

Holne Moor - Zone C 160.0 29.6 130.5 81.6 Group A Stagnopodzols MAX 178.6 32.3 146.3 81.9 (n = 4) MIN 145.5 29.3 116.2 79.9

Holne Moor ; 161.4 31.1 130.3 80.7 Zone C Humic Brown MAX 181.8 40.7 141.2 77.6 Podzolics(1) (n = 6) MIN 145.1 23.2 121.9 84.0

(1) These profiles do not include the high phosphorus profiles (SP1, SP34) discussed in section 5.2.2.1 (see also section 5.4.2).

550

c\I ON Lr‘ op cr\ in o4 Ise) H H H H 1 i I

N- A di o VC) CO I • CO N-- N- H • 0 H I I.Cn I 1-1 I

Oil

0 ON rel H N ON H in r(1 o 1---1 f`r) 0 CV. ON ON ON '41 N 0 0 • • • • • • • • • I-1 0\ 1-- N ON 1"-- 1••el 0 n19.) p) ao Isn LC \ in N N N ..-1 g u) 0 0 N r-I 1 oct 0 I".-- CO ON • • • a) F..4 Pi a) MH r-- c\I I--'H NO 1-I •zti l'cl I Eng to a) H 0 •t-I CO LC1 ',CT) cd 4-i • • • PI-1 0 0 0 CO EaD Pi "0 ifn r-- 0 P.1 .41 -41 Isel

r-- 0. 0. . l'..- on nO H I I I

a) C.) 0 4-1

A CO N i H • rt.) ..-1 ON C \ cd 0 C.1 cri 1 i H cd F-I 0

N I :r• ED NO N1 CICI fl a). U: CO 9 0 H • Cd 0 0 C:7 O N 0 \ cd .-0 N n0 CC CPI CV R4 H H H tit) El 0 0 Nt+ 0 +) •••-n Cl) 0 0 5—, 0 N CI •1-1 a) P H 0 a) H ..0 H 4-I A 0 H ...--. ..-.. ...-.. al $-4 H r-i CV M Pi Pi 40 5...... , ...... , 551

Table 5 t22__Coefficients of variation for soil samples from Bench Tor and Brake Field.

Bench Tor Stagnopodzols Brake Field Humic brown podzolic soils

Oh horizon n = 4 Ap horizon n = 5

Pao 7.9 (9.0) Pao 18.4 (18.0) Pa 10.0 (9.9) Pa 31.0 (31.2) Po 8.7 (8.9) Po 8.6 (7.5)

AD horizon n = 5

Pao 3.4 (4.7) Pa 10.1 (13.3) Po 3.5 (3.7)

B horizon n = 4 B horizon n = 4

Pao 24.4 (18.3) Pao 12.0 (16.2) Pa 45.1 (38.4) Pa 13.8 (20.2) Po 16.4 (12.7) Po 12.4 (14.7)

(1) Figures in brackets are calculated from concentration by volume data; figures without brackets are from concentration by weight data. 552

Table 5.0 Zone B — test for outlier among samples from soil :Rrofiles lying outside the medieval droveway. (1)

Dixon's discordancy test (N7) for a single upper outlier, x(n) , in a normal sample (Barnett and Lewis 1978)

Test statistic ) - x(n 1) Outlier PTS—X, 711 x(n = x(n) x(n) - x(1)

Critical values (n = 8) 5% 0.468 1% 0.590

711 — 45 - .7399 P <0.01 711 — 338 -1 (1) phosphorus values are expressed as mgPao kg IFe

Table 5.t3Zone B — Phosphorus content of profiles in the medieval _mrelazdr a_d_si_anurroutadinland (PP and PT series) (iT

SE CV Inside droveway 9 469.8 56.4 18.8 12.0 Outside droveway 7 392.4 39.5 14.9 10.1

Student's t test of differences between profiles inside and outside of the droveway. Observed t = 3.0782 with 14 df. P <0.005 (one—tailed)

(1) Phosphorus values expressed as mgPaokg IFe in profiles sampled to 30 cm below the mineral soil surface. 553

Table_ 5.72 _ Zone B — linearregressimegamdsnefflisAents of correlation and determination for phosphorus values expressed as concentration • wei ht of ' ited fine earth and as concentration by volume 1

1 -2 x = mg Pao ke IFe y = g Pao m

r(2) All profiles n CD y = 0.1152x + 53.04 17 0.7847 61.6

Omitting profiles PTS — X, PTS — 0, PTD — 2, PTD — 7.5, PTN X r(2) CD y = 0.1910x + 24.59 12 0.9256 85.7

(1) All phosphorus values are calculated for soil, profiles sampled to a depth of 30 cm below the mineral soil surface.

(2) Both correlation coefficients are statistically significant with P <0.001 in both cases. 554

Table 5.7'3 Zone B - estimates of chan:es in the •hos horus content of 1) soil profiles in the medieval droveway and in nearby land

PP Profiles A(2) B(3) (4) D(5) Comment 16 95.474 -0.126 106.366 -10.892 17 96.683 +1.083 100.232 -3.549 19 108.795 +13.195 102.808 +5.987 12 107.485 +11.885 92.911 +14.574 near gate 18 122.236 +26.636 102.487 +19.749 near boundary 10 1777.664 +22.064 94.135 +23.529 near boundary PT Trofiles S-0 95.424 -0.176 85.548 +9.876 3-4 94.864 -0.736 94.242 +0.622 S-X 126.925 +31.325 70.020 +56.905 boundary wall

D-S 118.196 +22.596 94.409 +23.787 D-2 120.199 +24.599 81.469 +38.730 D-5 101.519 +5.919 96.731 +4.788 D-7.5 100.351 +4.751 79.438 +20.913 D-N 107.211 +11.611 91.786 +15.425 boundary wall

N-X 78.048 -17.552 81.957 -3.909 N-3 88.159 -7.441 102.504 -14.345 N-10 109.281 +13.681 98.567 +10.714 flint flake

-o (1) All phosphorus values are expressed as gPao m to 30 cm below mineral soil surface. (2) A = observed value. (3) B = difference between A and the mean value of profiles outside -2 the droveway (95.6 gPao m ) calculated after exclusion of PTS-X. (4) C = value calculated by multiplying the observed weight of ignited fine earth in each profile by the mean concentration of phosphorus in profiles outside the droveway (392.4 mgPao kg-1 IFe) calculated after exclusion of PTS-X; this provides an estimate of the initial phosphorus content of each profile. (5) D = difference between C and A; this provides an estimate of residual phosphorus inputs or apparent deficiencies. 555

Table5_,a_zoiuQa_LtLiao_h_h_Q_zjzoaaapli_s_fxgLn stagno_podzols. SD SE CV Range West of reave (Group A) (n = 4) 49.6 3.7 1.9 7.5 45.2-54.2 East of reave (Group B) (n = 4) 46.8 4.5 2.3 9.7 43.5-53.5 All samples n = 8 48.2 4.1 1.5 8.5 43.5-54.2

Tat_ _i_e_13.5_1arAC- -blacknesscni_ litter of Oh horizons in stagnopodzols 7 SD SE CV Range West of reave (Group A) (n = 4) 12.0 2.2 1.1 18.0 10 -15 and iicriag. litter 16.3 15 - 19 East of Reave (Group B) (n = 4) 6.6 1.4 0.7 20.8 5 - 8 and including litter 11.6 10 - 13

Student's t-test of observed differences between groups A and B. Observed t = 4.1964 with 6 df; P <0.01 (two-tailed).

Table 5.36 Zone C - depth of auger penetration Ccm) below mineral soil surface in soil plIAA_LIT122121141_1271. - x SD SE CV Range

North Lobe (n = 5) 52.4 9.4 4.2 18.0 42 - 62 North Field (n = 5) 57.2 12.9 5.8 22.6 37 - 73 556

12.322__t_5_,37zonets for outliers among North Lobe rofiles(1)

Dixon's discordancy test for an upper outlier-pair, x (n-1)' x(n) in a normal sample. (Barnett & Lewis 1978)

Test Statistic Outlier pair SP 34 240.00 = x(n) —2- x (1) — x(1) SP 1 212.52 = x(n-1)

North Lobe sample (n = 8) Critical values: 5% 0.607 1% 0.710 •240 00 - 181.83 = 0.613 P < 0.05 0.01 240.00 - 145.11

Zone C sample (n = 16) Critical values: 5% 0.418 1% 0.508 240.00 - - 0.486 P 0.05 > 0.01 240.00 - 120.42

Zone C sample, excluding SP 37 (n = 15) Interpolated Critical Values: 5% 0.432 1% 0.523 240.00 - i8i,83- 0.537 p 4./. 0.01 240.00 - 131.75

ZoneCsamat, excluding group B stagnopodzols (n = 12) Critical values: 5% 0.481 1% 0.579 240.00 - 181.83 - 0.613 P 0.01 240.00 - 145.11

2 (1) Phosphorus values are expressed as g Pao m- to a depth of 40 cm below the mineral soil surface.

557

au

.0 0 H ON l(1 in n0 ...... 0 In H N N +) i I H r--- 00 CO C.4 H 0 0 z...... -

0 I•Th N r-i I .V Nr) 4 o El id ...... - ta 0 C.) 'H CN CO •:11 0 0 0 . a • • • •:14 r.-1 0.1 0 I-1 0 in CO cv C\4 ,r/1 1.- • • it f--1 at Z H o um n0 v) 0 H H ol r-- 8 cl H I-4 ol ,...... ,-1 1--1 44' Q tio Ei

.4/ CY-4 I I CV •0 ...... - Nr1 -P 1-1 0 ..... • $.., 0 P Q) ...... / CT\ CV CO H 0 in o pi 0 .ri • • • • • 1--- N.C) t.) F-1 CH c4 CO 111 Nr1 di ‘41 • • 0 d 0 P1 0 03 00 N.0 N 0CN o .A o (NI ,-4 H di r-- 0 -r1 -49 R' H H -P OA - 0 Pn C-1 0 a) a) a) o I-4 0 I4 Z 40 a) - rill)

ta rt:/ -P a) O a) ad-P a) to 0 4-)

.0 0 gl C.) 0 •ri nd a) ta o 0 A :0 , ...... ,--1 •,,i irl ,o t1.0 0 Z 4 E-1 Pa id .4 a) a) o L., r.-4 $-1 4a) cd 44 0 +1 ri;.0 1:1 0 0 O H ,-1---s CO 0 CO CO •Ci c1-1 N. CV ON. ON 0 4., 0 -r1 (1.) `.0 N CO • • • •H A • • od 0 -P CO CH -P II HCY \ H 0 n a) PI H CNNl PI) PI) 0. s r-1 a) 0 0 .1-1 U)Z ...-... ir, 0 CH C1) C.) Z O .4 -1 21 0 t-t -P 4-' CIS \14 t) • Cd nti 4 a) U) .---, CN1 In .4 r-i 4-I a) 0 • -r4 O -4-a 0---- 1 Z CO tn + c*-1 Cl) 0 0 -cii In ,ctl CO .01 n Ist) -1-) o o r--- (11 di LC1 H cv in .o %:t4 o O ca 0)0 1--1 • • • • . • • 0 A I-1 CD • cd ,-- 0 r"- CO 0.1 H 0 CO co 0 ci) 0 Ca4 H C \ 1 Isel (4 ,--1 4-3 a) H 1-4 r4 H r-1 l'n 4 4-1 co-1 O ti) cd r1 *I-I O 4 Q ao g El CA 5 il) (1) +) '41 o 4-1 4-• -P %4 +1 +7 -1-) ti cs--1 ai cd nd EE ct r-1 0 ON In rn o In isr\ o Q) ..-...• (7 \ C \I tn N coIn 0 0 a) o o S . .r1 iri H . • • •. • • ,s4 r- C7\ r- H 4-1 4 N- N 00 CV t( -8 a Cl; 0 0 (NH W-1 c9 P41 ta0 cd da 0 PI f-i -.1 R I-, 0 0 I--I a) Pi o 0 o .-O 0 F-I 4-4 4-1 0 -P z to rn 0 0 I a) 4 a) c.) +) -P o 0 El tfll 0 0 7 C) 0 H 0 0 0 o a) 0 N -0 5 0 isl o o c.) H a) .....n ..-...... , .H 0 Cl) cra Cl) ca En cn ca el a) o a) H 0 a) k cd f-I a) a) g g A I-4 0 (I) •"I -P 0 ,F-z1 0 -i- 0 a) di H 4.4 +) o o H 4 .-1 4" ..0 .0 % o P E-4 14 0 El .c4 El 0 44 Cci E-1 -P P- 558

Table 5.39 Zone C - physical properties of soils in the North Lobe and the North Field (1)

North Lobe n = 6 North Field n = 4

Without Oh With Oh

SD SD SD

Fine earth 336.07 7.21 356.2864(2) 9.12 4121701H 1.13 LOI 32.98 1.81 29.0511 1.74 57.03 5.38 Ignited fine earth 303.09 7.86 327.2411 8.31 355.67 Stones 86.33 3.75 93•7J 5.84 93.7J 5.84 449,9311 Soil 422.40 8.25 9.27 506.40' 11 4.84

_n (1) All values are expressed as kg m 2 to 40 cm below the mineral soil surface. (2) Significant differences between the North Lobe and North Field values were assessed by Student's t-test C4 = P ( 0.05, ff P <0.01, = P 0.001).

North Lobe n = 6 North Field n = 4 without Oh with Oh FE .100 79.56 79.18 81.50 soil LOI .100 7.81 6.46 11.26 soil g--E- .100 71.75 72.72 70.23 soil stones .100 20.44 20.82 18.50 soil LOI . 100 10.88 8.88 16.03 1FE stones. 100 28.48 28.63 26.34 1FE • ▪ • 5595

0 P-n ....--N- --.r4. ---In- -... ..-- ;.4 ri, ,--1 0 H to H 0 o • o yL . \ vJ I`r) cnI co nc) CH 3.-1 0, z 0 5111 O ...., I X rc) o a) -i-' al N 1--1 '41 P RI' .`::',. cp V a) II--1 Ti (Ns K1 ,r5i., .. 4-44:4 0.2 fai ,.0 4 01 CIA 1-1 -,-.1 0 I, • )4 P-I 0 3.-1 ti rd M Z Cod g cdO• 0cd ,0 II a) c0 0 ..... 4-1 cri 4-1 -P -1-) 4 t cn ro •41 9 H• c`: s_, 0 34 13c, odc H 0 (0 0) 0 •---- CO er r-- eccti 0 14 14 H N H Ea a) 2 H g .1-1 t-01 -P 0 in '0 • ,-0 al H in -0 0 -P 4 +3 (T) g 0 a) rid '',:;;" P. 3 o A In r— CY \ CO 0 to ..-1 co ) 4.4 S "N CO L11 N N H H .4) 4-1 -P 0 ai Z .0 04 ocd !Tic! cH.44 itiHa) A H g 0 .2 0 %-1-1". !R. -T-1 -P ii cp t anD -1-1 fal 0 0 a) ro 0 0 n N0 .:14 -,-1 CT-1 0 a3 40 4 -P a) 0 I X in or' in ic. 1 . q rn u • k ( GI ca) cd 111 H ,41 ON .0 0 XI -I-' 0 al IA -P n ITal 14) 2 v g F`L) ' .., 4 P14 • 0 r g 2 1 `' Pi 4' "8 1'0 A H +) 4.) • fa, cc a) CH 01 0.) • .d 0NNHNONp) vs 0) 0 -0 A., 1 x (i;-,?) CD" 4 t'a') 41 45 (1) I I S-1 ct-i v) n P, `Li-;t `H 04C‘I `il 1> -P.ri •1• 0) cd ••- 0 •el H H 0 -0 II Pi 0 .1'r-1-1 t), CO 0 H a) -F. 0 t .1-1 In P-1 4 .c4 ,c) crl -rl 40 P.I al ist1 0 P4 XI co-I En +3 .5 re, Cil ••n H N 1-1 N o cl, 414 di H 00.i ...... , ...... - Eq co • • • • • ,cl 0 n 0 r—r— 00 o 4.....• ,0 1"-- 1-1 •.0 N .41 P4 0 ••44..• 4,....0 ',I ..-/ 4.4/ O 04 O i 1 A t4 N. H •421 ON di U\ OD bn 0 +3 3 CO ‘.Q. 0 •C) di 111 •ri -1 l'i 11 •0 •0 HH N NV cr) C \ I rn N- rci .0 A 1---- 0 QQ H u U1 N H 0 trltrl 'di H 141 H CO • N a) -4 .41 N NNP P -1-1 -P trO + bO rzi Pi 0 acc 44 - 0 _. 0 00 pq, +3 ;-1 +3 II CV P • E-5 91-191-1 k 0 OH O 0 H 11 •0 0 F-4 PI 0 FA 0 Cl n 0 n

A 0 LL-N 0 tt1 1-1

0 oe•-n cv -P 01

N r-1 CO tp a nre) co

a)

1-11- 1 r—I I ta tlo

pc

b.0 a3 ai 0 -P 4-1 N-t ta0 ▪ I I P-1 Ili 1:14 560

Table 5.41 Zone C - test for outlier among_ stagnopodzol profiles

Dixon's discordancy test (N7) for a single upper outlier, x (n) in a normal sample (Barnett & Lewis 1978).

Test statistic Outlier SP7 4045 mgPokg-1LOI x (n) -x (n_1) n = 8 Critical Values x (n) - x(1) 5% 0.468 1% 0.590 4045 — 4045 - 30277 - 0.486 P 4! 0.05

-1 (1) Phosphorus values expressed as mgPokg L0I.

Table 5.42 Phosphorus content of _profiles in zone C and sub-zones B (I) and F in zone A

-2 g Pao m mg Pao kg -1IFe - X SD SD

kr—a-A Sub-zone F (virgin land) 137.25 11.18 378.6 39.5 6 Sub-zone B (prehistoric field adjacent to house on site F) 147.95 3.67 420.0 32.4 5 Zone C North field 160.05 16.87 450.5 53.3 6

North Lobe 161.39 14.54 533.2 53.5 4

SP 33, 34, 1 221.16 16.33 772.7 41.0 3

(1) All phosphorus values are calculated for soil profiles sampled to a depth of 40 cm below the mineral soil surface. • 561

01 os -P p.., ON a) 0 0 'O tr) ( • tx0 C‘.1 g I 11 :Di 4-I F-t 0 O 0 E • a) 43 • In $-1 ca a) • 0 • Nr1-1 g I -n .0 ON ON p 4-i cd ON ON '41 .1-1 4 4

P-4

a) • ta N- O 0 (1.! •H b.0 • • • • H r--/ O •:14 Is() N1 •r•I 0 I fa, U1 0 cd cd Ca •1-4 4 a) 4-3 CH cd r0

•••-n

O 0 H fa, in I • •zri •• cd -P ul CI) • 0 0 a) 0 H • 1/40. 9Ho -p trlH H H Cl) od 01) CD 1•4 4 P- O cd a)4- 1-1

E•c4 ba. *erQ.. I.Rn FA p a)

cd 562

Table 5.44 Zone A — Adjustments to observed peat depth values to allow (1) for peat cutting losses

7( peat depth(2) for: sub—zone Profiles Changes to observed values A n= B n. A No adjusted values 14.00 5 13.67 12 No adjusted values 14.00 5 13.50 14 GSP 8 Raised from 9 to 11 Segment XI 13.80 5 13.79 14 C 4 Raised from ) , Segment 10 to 14 ) vi 14.80 10 14.78 C 6 Raised from ) 9 7 to 14 ) SP 16 Raised from ) 10 to 13 ) SP 17 Raised from ) Segment X 13.67 7 13.67 11 to 14 ) 9 SP 18 Raised from ) 9 to 13 ) SP 19 Raised from 11 to 16 Segment V 15.50 2 15.50 2 F and GSP 5 Raised from ) 11 to 16 ) SP 14 Raised from ) Segment I 12 to 17 ) SP 15 Raised from ) 10 to 14 ) 16.50 8 16.50 16 GSP 4 Raised from ) 12to 18 Segment III (3) SP 10 Raised from 8 to 19 )

(1) All peat depths in the table include depth of litter; all values are in cm; all calculations exclude profiles in corners and edges of enclosures. (2) A = R peat depth of profiles for which chemical analyses are available (after adjustments to observed values as indicated in the table). B = R peat depth of all sampled profiles in relevant subzone or segment (after omission of peat cut profiles — see section 4.3.11 and Table 4.3). (3) All profiles in Segment III were peat cut. Values for these profiles, which lay on flatter land than those in Segment I I were raised to match the value for Segment IV (18.75 cm) on the plateau top, but the mean value for all profiles in virgin land sub—zones F and G was matched to the equivalent value for segment 563

Table _5,45_ Zone A — .pbosphorus content of BCux samples from Home Moor(1)

Zone Sitrzone Profile Value Comment

A G GSP 4 253 Virgin F GSP 5 252 Land

E GSP 6 259

GSP 7 297

GSP 8 354 Thick E horizon

A GSP 9 223 X 253.5 A HM 77C 4 284

HM 77F 5 302 Shallow HM 77F 6 313 Palaeosol Profiles

All sub—zones All profiles_ (n = 9) x 281.9 SD 39.6 CV 14.0% SE 13.2

C North field GSP 2 224 Stagnopodzol Forth lobe GSP 3 286 Brown Podzolic lin 78 B 247 Palaeosol All All profiles_ (n = 3) x 252.3 SD 31.3 CV 12.4% SE 18.1

A + C All All profiles_ ( n = 12) x 274.5 SD 38.7 CV 14.1% SE 11.2

-1 (1) All phosphorus values are expressed as mg Pao kg TFe. 564

0

r— r--

• • '4+ LI1 r— 0 IL" \ CO CO

•nnn•••

r=.4 rn cd Z

r0 a) I , CO trl ;-4 Pi Z Z cd

0

0 113

'41 cd

0 cd 0 . co. 0 a)

Nc. b.0 4-7 rn 111 cd 0 rci 0 •• a) CO 0 rd V 0 0 a) cd cd •c4 114 H P-1 t.C"n cd a) .0 -1-, a) ci-i t-4 0 • '5 al ca c0 Isrl CA C \I 1.( 0) fa• A N1P1 n0 Ctn 0 in 0 H 0 Cf) CV *14 VO \ 0 1---- 01 o 0 0 0 0 0 P • • • • • • H H'.4 40 r— 0 0 0 0 0 0 cd 0 V °A rl- ri ) -1-) I ri 0 CU r— 0 •r-I .—I •Zi4 4 ca .cg N-1 f 4 r— ON in I,-0 0 •cti II H0Cn10.10.1n a) a) • • • • • rcl 0 t II 1—H1 H H H H 0 1 I N 0 H r-0 Cd CO r0 a) a) 0 1 CO. fr-i 0 H 4 cd 0 •f-I V • o H CO a) H cd H c0 F-I 94 44 r-1 r,..) A IA C 4D1 -1--, a) 00) cd 0 I-t H E-1 PI 0 E-5 II ..—..

565

It r-- o in co op

0 co z --k Er) crl Z Z

tr)

ca ratai ' R 2 2

tfl i

1 0 y 0 I CA i .1-11 f..4 0 U CO tr) Z Z 1 .0-1 •=41 4 eH / -P 01 SA i 01 crl ai Hi Z a) 2' a) c:i- ro ._ — / cH a), V 0 i 0 cli i 'xi 4 P-1 •H i 4-1 $4 i 0 0 1 tn vz. t cH4 u) 01 cd p fg RI p [(;. 'CR 8 0 rd 0 u4i .+5 co . • • • . • a) 'CA i0 0 N 0 00 0 P-4 u) R V cd i VC) Pl N co 0 On i .H • t•'") N 0 00 r— C \I N -c4 Isrl IX N- N- H f-- -CTn 0 ‘:0 II • • • • n • • cd a)/ r-- op a. r-- O r-- O II g In a 0 O 0 1-1 N 0 cd H CO cd 0 a) Cl) Cll Px4 0 cd 0 i—i V OH H H cd Hci) GO S-. .1g Pq wCi -P a) 0 CC Pz-1 Cd o H 0 0 11

566

c‘l co a) o .o co LC1 ON H o t.crt'N4 H .41 H I I '--4-)."' 0 0 N N1 di dli N- VD H Ln dt, N- I'll ON 0 C., H VD 0C'4 di H \ 0 r's VD di dti d+ C.) N H Nl N H H N H ..-...

LrN in H \O n 0 re) H N g PI C4 Cr.1

0 0 cr) 0 '.0 CO H CO '.0 trN H V11, CO N1 H '.0 CV N- co 1::) oN ci ) H H

0\ di dhiC "4, H IfN '.0 N1 CV 00 \ gi dt1 N N I I 0 N- o o N- CO VD C:? IT; OD \O dt'.0i N1 (-I N N H H

H ...... H- Ill\ Lt1 N1 V' '.0 r-- ON CO -7-1 -, rcl di co di N I-1 U In -P a) C-I II cd...-- rai 0 Nr1 Ise\ rel on o 0 CO N fr./ pl cro_i f9.1 cLC?\ N-- CV r.-- 0 H • • rn -P 0 0 CV Nl nQ ,411- \o N- 00 0 i -P H In LE N H di N 0 1 ca di cd 0 II VI...... cd 0 C\I di CD CO nID r) 'cti CO a) r4 0 H CO 1---- r-- N 1 N ON EL tsr \ N1 N1 C \I H

P 0 ON N !--1 ON N- di 0 di 1 Isrl di di CV CV N tr to 0 II Pi 0 \8\ kOrNN C;1S) ctE1 H N In CV H P=1 N- CV n N • r-I Is(1NNN H

q-, 0 r-- ln N 1 n In ON H H In K? :R N N r--1 N H CV di di H Ln 0 c4 II 0 ON TN5 CV nQ r-I in cm Q CO 0 0 rn •:4 .o C \ I \ 0 1U \ N1 H R rc -1 Ri C \I N "1:--1' H d 0 •1-1 -P Ln 1\11 r-- 0'.CO ON n0 0 0)1 ( \ I PI ln dtl ri-1 \ ° 01 RI N N N CV .1--1 II -I-) 0 -I (1) A CAR 0 :::e TN CV 0 \ N- CID` k H n 0. Iscl ON N- N 0 0 0 di 00 I 1V1 N Fri cv H H N CV H .:4 001 0 N I r-i N N1 dr H 'N C\ dt1 H CVN.) VP

CO dli • IN") N1 011 0 C.) 0 ta0 P-1 a. g I 141

567

• • • • • r- co r-I N

N W cv • • • • r-I CO NC C\I N ON C\I

N \ 0 Lf1 0• CO• • • • 1-`-- LC \ 1.'- 191 co .--, 0 I I - P ON VD LC \ •:ti H H 0 0 • • • • • • Cl) 0 ON 0 Lr \ LC1 H e ...... '.0 LC1 N ON C \ I

C LC1 N r-I • • • • • HO r-I .0 H \ 0 H H H H It N 0 1•C) 0 tsel l'el 0 • • • • • • H K1 FT-4 CO Pll N H H • 0\H a) \ 0• H• a). • • o NW'\ cti rr) r-I cti A-) H H H cH rn in (I) '.- il no r- n vc.) r-- co Cl) ...-0 • • • • • • 0 X \ .0H n 9-1 17-1 in r--- Pi ON C 1 H 0 Crl p:1Cv N- Isrl N \ 0H H • • • • • cd N Istl r-- VD in + $-1 -P H a) ca .0 r--I 0 A .0 LLTh CO C \I ON ti4 r-I g It • • • • • • I I 0 Iscl '0 CO C \I LC \ r-- a) tiq n);) cYn in .:14 r-I CV \ 0 .0 H H -P W 0 N N LC\ \ 0 0 • • • • • + H 00 Ch VD a) n .0 • 41 ro TN .4 s',. 4 1E1 II CD .4 t.) 00 0 \ 0 .41 V) 0 0 • • • • • • 0 + 0 •;14 ti a) o NO N cii A NN st Nil H N .0 H H co-i 0 •A• 0I I C \I• • C• \ I \• 0 0•rl LC \ -P r.cl CNI 0 \ 0 \CI H H N H (I) LC \ C1) ('I'dI ni O CA ii o cd Isr) \0 01 GN H a) N 11 0 • • • • • • Na) LC) \ 0 CN 0 \ 4 .41 S .4 \0 \0 rrl N 0 r-I H H Cl) 7:1 H G) CNI 0 C.) LLI • • i--! N: 0. cd I t rd I'cl cil \ 0 In NH a) P H H H Iscl c.) LC \ f-I H ii 0 Ln r- M in c0 0 4-1 W g 0 • • • • • -zr r-- N• V,) \ 0 in § + VI A '.0NN .0 r. i 0 N H H 0 W ul .0 cii 1 .4 0 co 1 o( ol .1-1 II II 0 Lr'l \ 0 A N cd I Cd I ° I cd CO a) 4 H c0 e0 0 •1-1 'di Isrl tR. 4I- ...... -a) 1.. II 0 11-1 03 r-i H I >4 H P-, al -,-1 PA H ('4 ci--;\c ,I 4:1 01 0 I ..-... ..-...... -5 d ce 0 1-i 0 r-i C\41 Nr1 E-4 P-4 si LID P-1 bD ...., ...... _....

568

01 CO LC \ 0 • • • • .0 N CO 0 NN H NI pl N r-- 0 VO VO CV CV \ID N1 I I ON r- cO .0 • • co 0 • • 01 CO In VD 0 N um co oo C N CO 0 N .0 r- 0 CT Iscl VD .0 '.0 CV 0 rel tst") Iscl H H CV CV H vD • r-- o • ti o NI CV • 1-... • • o L.C1 tsel n In (NO C r--- 0 O In N N CO H .0 rel rcl

I I -I-' (N ON O istl 0 0 NI VO .0 0 • • • • OD c/I ON 0 ON CO NO ON -:14 •:14 H C ,-... H ON NO isC1 H CO H H N C\I 0 (.4 \A P ?2i

ON In .41 1-1 • Ist-1 l'el \ 0 0 OD • • • ON ON CNI CO OD ON Lf1 VD H H Iscl (N \4 In H 1`41 H fx1 I I 0N r-- \1;) • • .44 r--- r•-- N-- p) • • + 0 w.\ rel P'\ a) H ao m szii o 1.4 c-.1 o 00 .0 H N N CV .cli i9 4' •c4 . 0 ci4 0 .0 • • • 0 H r-- o um H • • In 10 (N.! H N- pl OD \191 0 VD 1 0 N ,0 0co (.4 -P N VD 0 CV ci2 In 0 4-i -P a) u it o• Nil• • • 01 0 ca ...... m 0 NI H In P1-4 0 n0 0 H \ 0 0 N .0 CO V;) .0 N-C-;-, H r4 r-1 N CV CV NI r 1 rcl CV .. • 0 N- 0 Q2 Ca • CO Isrl H 0 -P 01 • . • cy. \ H O 0 CV 1*--- CV CV 0 0 ON..:1 4 um CV H H .0 4 E I '.-7:)' v.\ o m N- N r- CD a) U).4.1 NI N CV c1-1 0 Ca 0 •g CD ii NN- 01 NI • • • • 00 Ca ....., \ 0 di nff 0 CO 01 ON Nr1 Isrl CV 0 CV CV -P CD CD r4 00 N- 0 C \I ill 4 O 0\ CV Wl In 0 CD -f 'CI n 0 '44 R rs.O 030 \ • • c \ 1 cd 03 N") di ON • • p, RI p 191 H i 0 n .0 ) in • 0 .2i H In 'V .,:4 VD In c4 49 .0 Ca CD H 0 Ii o g ,-4 c.) _9. cr.• ,ii• • • o o .0.. 0 0 \ N- CV (.1 En 0 O oz) N N.) o (P) N g.... re) N-- H .41 0 CT di •0 C \ I C H PCI '44('4Cn1 H N r'n N ll'N rel ct 4-I .,-1O U] P 0 \0N-r- 0 COrl-P 0 • • • • 1.--- c_, CV '-.0 V\.0 O In 0 .0 CV '41 . ,7/1 CO CO N N- CII .d 4-Pia. `4-i a 0 Cl) LC1 it

C!3I I rci \I) I-I C7. •:14 rijcd • • • • LC% 0 g CO LCN 0 01 CO g 0 \ VD Pil H N- N -P In CO N N 0 N- H ,60 ca <4 .0 1`11 NI \I91 N ca XI H C11 CV N rd ...4 + 0 71 C.> In 0 Ceti H -Pcti H 0 H . • ON CD CCI rj -P \ 0 N1 N- ND • • N N- N- 0 La 1 I n CO N 0 gIN LC1 r4.) N In (N -1--1 C \ I 04 ii HC) -P II in N H rel 4-4 N' • • • • -1 0 ON H CO H 01C) 0'. 0 tli 0 N .0 N- ON CV § W Ca \A K1 CV 0 '''.. I \‘il 0m N '41 .0 .0 Crl .c4 H •z4 CO I I clj• Cl) H O N I I a) A NO H N N1 0 Lf1 n P-I H co Cl) H Q ,0 H H i--i ,c1 0 •,-1 ON H 4-I 0 0 0N CJ 1 0 14 pT.4 ...... • I 110 7 cti I I 2 I--; 0 g x be In, H be ..-I X H PA HI H be Cl) ..-. I .r-1 0 be 4-1 H i N t3.0 0 01 Ci 0 ..-.. (Ai XI -...... ,.. be Li 1=-1 czI 1:(11:.:1,1 H N\ cd 0 1 110 cl ..-...... • ...... , E-i PL4 1 0 C5-1 0 P-1 H 569

Table 5.59 Zone A — .phosphorus enrichment or deficiencies in the sub— zones of zone A takingthe virKin land sub—zone F as a baseline for calculations

(2) Sub—zone n Phosphorus loss ( —) or gain (+) or Profile A B Mean of A and B

2 -16 +6 -5.0 A 5 +1 0.0 5 +5 +4 +4.5

E west 5 -7 -17-J —10.0 E east 4 +21 +17 +19.0 5 +11 +14 +12.5

C north 2 +14 +31 +22.5 C south 8 -17 -18 -17.5 ED 8 1 -26 ...0, -17.5 ED 3 1 +16 +7 +11.5 cc 1 1 +8 +37 +22.5 CC 2 1 +75 +91 +83.0 CC 3 1 +20 +19 +19.5

-2 (1) All phosphorus values are expressed as g Pao m calculated to a depth of 40 cm below the mineral soil surface. (2) A = difference betwegn the observed weight of phosphorus in each sub—zoneo(R g Pao m-4) or profile and that in sub—zone F 137.25 Pao m); this is equivalent to the values in column B of Table 5.33, which were discussed in section 5.4.1. B = difference between the observed weight of phosphorus in each sub—zone (R g Pao m-2 ) or profile and an 'initial state' estimated by multiplying the observed weight of ignited fine earth in each sub—zone or profile by the mean concentration of phosphorus in sub—zone F (378.6 mg Pao kg—lIFe); this is equivalent to the values in column D in Table 5.33, which were discussed in section 5.4.1. The calculations for both methods A and B were performed on the values for individual profiles; subsequently mean values for sub— zones w ere calculated from the profile data. 570

FIGURES 573-

FIGURES— note on conventions and lay—out

In general, all figures appear in consecutive number order starting from Fig. 2.1 (chapter 2) and concluding with Fig. A5.2 (appendix 5); exceptionally, Fig. 5.50 appears between Figs. 5.48 and 5.49, and Fig. 5.140 appears between Figs. 5.138 and 5.139. In most cases the keys provided with figures cover all newly introduced information, but in some instances symbols and conventions are repeated from figure to figure and are only keyed in the figure in which the information is most relevant. A conventional depth scale has been used for the many diagrams illus- trating the vertical distribution of values for soil variables; it is marked at 10 cm intervals and the 1 0' included in it indicates the level of the mineral soil surface. Values above the /0' refer to Oh horizon samples and those immediately below it to Ah/E horizon samples. Diagrams showing cumulative weight of soil variables with depth (abbreviated to /cum.') usually indicate cumulative weight both to 40 cm and, where appropriate, to deeper, sampled depths.

• • • • 03 'd fq 0 0a) 01 +1 k reN 00 01 cj +' .1-1 Cl) ci o 0 ai 0 0 C-t 0 F-1 •4-1 •P 0 VO 0) •r-I 0 0 -P 0 0 'd o.---••n 0 ...-24.. no 0 P. H .o H -P o a) 0 -P co ,c) t..0 N WO A •• P. rd 4-1 4-4 4-I k a) fd >, a a) II II II II a .0 4N 4" o 0 C >, a) CD C/3 Cl) co n co • ---, H e FA H 0 w 0 0 4-3 H >2 ..../ ....0 0,0 01 •0 H 5-1 44 ,t$ .0 a) -,-1o .-•-•. II II a) 4-1 0 -PC) CO co 0 a) to > + VI Cl) 0 4.4 0 4-, .,1 O 03 -)-, 0 01 0) CU ..--..u.., r--1 H 04-4 .4-1 .1-i 44 ci) 00 cd 03 03 el k. 11 1 1 I". 0 • )CI) 44 C 0 01 4-3 44 ,-.. C*4 r--1 0 . 0 -P a) ..-... s....• .0 +3 4-0 4-I 0 ••n 10 43 II II /0 0 et n •- . ...-Nrd NN a] c-I 0 H 4-) 0 + +0) C/1 ..-1 0 3 0 -P P. I.4 ...... -...... a) -la 4-, 4-1 44 4-4 H g II II II II cd H N.-.1-1 trN u-N — C/3 Cl) C/3 C/1 c., „ ,..._ 1 .., c., . .p ,-I k + t .. /C1 cd o 43 0.-4 • + o 1--I 0 0 4.3 -1-3 ...-.0 ....• $4 4.4 4-4 -1 0 II II rd a) .01 %.0 ,..0 A-) Pi '.., + C11 C/3 4-3 Ps +3 ..-... id IL 4-, ci 4 (4,' ,+r d H +, .----. 0 lan + 0 4-i cm - 4., bO ;.. II II a) + 0" +I 4-, -21-; 0 0 03

ci H 0 .ri +3 S4 0 Cl) ••••n•••44 34 0 41-1

Cr] --> --.- -n--> 4.) E-1 •••••1,

•••••• .12 0 r•-n

•C". n nnnn .1• • 1==1. a) .0 -c

0 0 1:72 0 a.

0 0 4-- 311dOdd IVRIV iiNn Id JO IHOOM SHEEP DUNG DRY WEIGHT (g 406cm-2)

0-19

20-39

40-59

60-99

Fig. 2.4.

4.: 301 •

0 10 20 40

171

EXCHANGEABLE K(m— equiv

0 10 20 AO Fig. 2.5 IN•11111===n1 ▪

a) ,--4 -Fp +) Cri C.)

Z Ct •,-1 U) a) ;-1 fx4

?.b .L.) water a) N trough CO i-o 40

(ll H

cl) (11 4 ho

a ) • Dung deposit Ul 1.4 0 A

ai . N • to .ri to cz., 9 •• '0 0

O H

O SO 100 m O 0 O 0 •ri

O cd •0 Cl) •,-I f-f

4 E .,-, 4_, A......

gate n0 CN1

4.9 •,•1 Czi 1.1111MNOMIMMIMINNIMmm•Mmoonwnm.n 111111111111=

water trough

Sodium bicarbonate - soluble phosphorus > 100mgKg-1

0 66 100 on

gate

Fig. 2.7 Distribution of sodium bicarbonate-soluble phosphorus in a Dorset grass ley grazed by Fresian cattle (from Salmon 1980: Fig. 11) ▪ ▪

• •• •

• • • • • •• •

. . •

• - • • . • . • - . • • 4 • • • - • 7 - . •

. *. • • • • • • 0

• . • . • .• • • •• • .

% . . • • : • % • • •. •• • • . • • • .• • • • ▪

z E 0 o 0 U-

• • . • 0 ••• •.. • - .0 . ',0; . 00 o0 0 0 100 °, • ' 0 A 0i).0 ,.,0 0 0 : • • .6v'''• .6 6 A- A 0 o.v . 06)0v0vo v 6 8 - .P.• ....•• 0: 0°- v • Ap .. :- . -: • 0 0 00: ‘°0...... ; -.0. ;0 0 0 • '0 . .—. ..8:1 : p.0 9 °. 0 08004 0 00 0 • . . ..0 : . • • 0 • 0 0 .0 . 0 :: i'• .. . . . 0 0 0

• • 0. • • • • 0 • • „ I o 9 0 . 0 w0 t; 0 • 10 0000 00 00 0

••• 0 0 • 00

.0 • 0 • .. 0 0 • • 0 0 • . 0 • 0 a) 0 0 • "6 a) • 0 .0 •

4.)

U) 0 • CO CO • • .0 8 00 0 0 0 • U) 0 0 0 . 0 ° ()0 En Eo o +) CO 0 Cd

0 0 - 00 0 • - ° o • 0 o

0 P- test va_tues

10 -

co -

Depth _

a 100 .

A Heather-grass, Salthelleven

Intensively-used pasture, Salthelleven

8 Mesolithic settlement, Salthelleven

..... - .... Modern arable (fert4ised), Sunde

Arable in recent and iron-age times (700-1100 AD), Strapa- Sands°.

Fig 2.10 Vertical distribution of phosphorus-test values in Scandanavian soils (after Bakkevig 1980: Figs. 10, 13 and 16) a)

a)

CCI

• 4-) Erl

0

0 •n-1 a)

a)

0 MO••••111111• IMO • 11•Ir••••641 •••••••••• 4, ••••••••1110-...•••••• mmm mm •••1112711n- 111 mmun3/401.011111111111Miargiii. a)

$-• mat moss NMI 4-3 RIM•••‘ •••••••Il •••• 4-)0 •••• •••Il SOHNWENS •••II MOM MINNNEB MUM •••Il ••••••1 ••• •••• 1•••

0 -1/4— • ' • '

•1111•111 AMMO 811•111•1111 1111•011•1 ••••••I ••••••I

......

SEEM ... SEIM • 1•••• ••-- n•6111-•n• Vann ... • MINIM 1 • . •

4-) 4.) a)

fi Cl] . c.) •ffi -o 0 C I —1 0

° • CV 4-) 0 0 I • a) (10 .r4 2 I •r4 1.4 41 +2 a)

E-4

•zr r-I

CV 04

--+ "1—••• re)

`11

2

2 0

V 0 4

A

a 2 r_

4. 2 U 2 2

-c ".0 CC CO z ea e- mi kg. 2.15 Models of the changes in soil development and profile morphology caused by cultivation of stagnopodzol soils. Fig. 3.1 The location of the main study area on Holne Moor and the secondary study areas at Rowbrook and West Stoke farms. CRASSLA.4. Wrei4 aAASWEIV l'Aoa X X • 1'1 P trr ••n • V======1 a•RECTED OY ASCENT' 10‘4,SS I "If NI Ye n1, VALLEY HOC AREAS .0 40 El.ulli oxosA r:77,1 Ila/AL./•",9 SeiL EA A.LuodA - TOLIAIIA "Melt 69 SA..1 • s. •ITEll

Fig. 3.2 Distribution of vegetation in the Holne Moor study area in 1969 and location of soil pollen sampling sites.

BROWN

EARTHS

(Gunnislake Series) - — \ , . -- \ . . % • \ / \ >f / \ n / ‘ • n \ • / n • -. - .- -- —.//... TYPICAL BROWN i - -I HUMIC BROWN I \ I I PODZOLIC SOILS I i PODZOLIC SOILS 1 I (Moretonhompstead Series)' /1 (Moorgote Series) /

..., .." N. N. •• -SI'N

••nn•

FERRIC PODZOLS FERRI—HUMIC

PODZOLS

IRON—PAN PODZOLS (Unnamed Series )

•nn ••n• dr. ..•••• . .••• ••• ../ ••••

N. N...... N. ....„. I' ...„, •,..„ N. „... I ‘ ,,.•

IRON—PAN FERRI—HUMIC

STAGNOPODZOLS STAGNOPODZOLS

(Hexworthy Series) (RoughTor Series _\— — — /

• STAGNOHUMIC

GLEYS

(Princetown Series)

n••.

loe Zoe ..., 1 \ 1 ___,4 -

r - - -

I

1 1\ .

/ /

/ / / i / / / / / / . /

. . / , , , , Z ON A 4 1 0 \ _..i ,

\ - •4-•. *4+ VIKNOoAD aemyc 1 \ St. ....: Wow

...... -<;:-. RcA yLs 4- CAIILN S 0 “OUSES

Fig. 3.4 Prehistoric land boundaries (reaves), ceremonial monuments (cairns and a stone row) and houses in the Holne Moor study area. 0

Fig. 3.5 Zone A — prehistoric and medieval land boundaries, archaeological excavation sites and sub—zone divisions. I 1 • / , / ----.. i _c I -c . iJ / 0 I M 1 di 1 I 1 I 1 , / 1

I I t I

I I I I

\ - \

1 4 I % k 0 z It tn

I 1 k i I I • d

• 0

Fig. 3.6 Archaeological site C — south face of excavation showing section through stone reave boundary and bank/lynchet, and soil sampling locations.

wlea aaffICIA/ • ',fat" •

- n c „ C E .1rA A 1:

±"—C r L ••••• • •• AtiL0 g • . . • . • • I. .° • °• •• • .. • • • wEgrEllN . . • . • . • ••• • Fle4 • . • • . • "f*.e4 • • • " • • R• • : • • • • 1 .. \ • I .... \ . . • • • • , --- % 1 \L.*** . . • ...... ? „v. ei,,, _, 1 _. % EAs ri """••n•° •••• ••• t i x x x x x I Wsif's,,,E1. igiwyr, I \ n Goo- ..:. % . I ! ..) t ! I \ \ I \ I % \ \ . OWL. 0 N.., N ft A L n . 1 0 A T I-1 Ls' 0••• •• . I N Fi El- P2%....— 0... . n ...... — .... ""••• •••n fhb" , 1 i 00°' ..••n• ft.. 11•10...L...... L..i...... W .1 \ n .n• .0.. 4 C.1. 4trwiT4et. \ tli T-z 4,,,,..7.; \ ...... -..... > s \ 4' Le. , \ 43.h,C4r. L 0 a E 1 / ...- 4 ,-c.L ..,-, ‘....0•n•• V • ...94 • - r.elar \ %•;Z:a4•4441r \ i nnnnn.... \ n••-•i---...... „...... „/":4, ..:. . . ‘,:.4 n , .00" r A 4 t li ..;i4$ . • ' ..•: .: • / I ....)...... bolo. he ' '' / / 1 11.11WISINID pli-D / Flii-Di I re.oirRALI\ I / Our ER S ourH / Lil ac 3 .1 . i ,.9 At„,...,-...:_,...„,--...... ,7 /

F E x x X I - ,.... Sou TH . ., ‘

...... -- -...... ) \‘‘ s.,,,,H V .4.4 CAA Am.,/ t. V . .v '1) Ur•D •ra D .... Ivr, 1 141 greitoe F IELO kr. cLosRl '.-W1.4:1,:;11 1'141 *`'.....ic'S.Ci:v.:. /141 2 * * ef - e•I.:19;1••) ••"Zia • JA. '‘ '1''''144 4. .01. 1 ',201. • . 1., att'll:;:7,403...... ------W 0 6:::„. ../ ....:1111.6. 4 74 win;t7i i i I ::.;:t .t;;;‘. › .i . •••:.....,n•nn•11- .0. '1 cy.,..r,-...... - /. ft• ,/•••:.+n,....7... LONf Me vef Ii. V•• % I\tr.....4//1\ i, \

40,,,vpwa1 FS" /10.t5''C Oflumetsnmgivr rooRLY AMent 1 . /1•414.rre.q.e ga,oes.1X % p,rs 4.18, 4.,,et ISV.,44A•ietit /0 r"c, fdad Iff (••••• ") HOC* CA ma ..... Ced.row.isrmArtrIWV A ...„0 AMISIT Avila! CZZZ210 /no • SRN r NIMI 4A M /3 .r "e. /Neil/CAT * re•An, S.. • l 4.„ ,n•0/4.1 A0.4 OVell War,.

Fig. 3.7 Medieval land boundaries, fields, rabbit buries and tinning works in the Holne Moor study area (after Fleming and Ralph: in press) • 19 77 M4/1. 1N4 LOLAT/ 043 mais4 :noose zonoff • /979 , 1930 R p oirion/AL MnisPINC • ......

Fig. 3.8 Soil mapping sample locations and the main study zones in the Holne Moor study area.

▪ ▪ • • . ‘ ,.., a as . (0 u 0 r•• \ • o. . c .. \ m II 'I r/ £ l''' I' / `... •Ir w so •-... /.0 m ..'... V1 1 4. so I $ 0. M • .. V'''. — I••• .1 I m 1% £ • - - v, = E / .4 tr.. Z 311 IC ? v. vt‘ 4 a 4 ,... • • . v. n f 4 ?. le i / n., s ..... A 0 1 u4 o z c., o • V 0 • e c • 0 0 n 0 ... '. c ..,

t l Zi o

0 • 0 0 0

o • 9 0 4 • A a 0. .11 • • p.' 0 .1 4 0 I- • 10 el 4 r. O .44 0 •

.41i • 4,17, 0- 0 V7.4 41 c4.4

CO r. a A, —4

0

0 I. • o 0 O 0 0 LU 0

0 0

0 0 -r o ‘.• 0 0

0

0

0

0

6 • ‘' 1.• . L 0 • 4 0 • •

Fig. 3.9 Zone A — soil sampling locations.

Fig. 3.10

.712

r11• • 0111

4.-wo 6] AlISN90 Nina mos Fig. 3.11

03

N-

CD

NNN

.4-a

2t C3

(11 Ul CD

03

Ce-w° 6] AlISNDO Nina lips Fig. 3.12

(11

'7 1 II r-1 1-1 1-4 1-41 •-1 0 0 X X X CV CV ••0 CV NI 0 0• 0• CN o o 0 + `C) Q Ln O rg n 11 Ul • • 0 0 0

II II II 10) 0 0 03 CO 03

(f) LU LLI ILI >- ›.• ›- CC IX CC U U U LU 1-I < < M

2f CO

CO Cr) (r)

-J

00

CL1

•43 03

* ED

N-

n••n• • O

[2-w3 6 ] AirsNal Nino -us Fig. 3.13

0 CV ,I,8 :1. 0. N- Or CO ..— 6 I I + 1 71

...c:(

.4- OW

MI IILL_I

= CO

III

MI

I II III

AM

143 CV .111..n 0 ".n ,. n n ... •. ' Ei-w° 6] AlISNDO Nine -us

Fig. 3.14

1 s i r I r I / * Ii I 4 _ 1 1 I , s 1 : r 1 1 1 I I I 1 I rf i ri * 1 I *I *1 ** r i I r 1 r s r 1 i I r r r r I e f I 1 I I I 1 I 1 I * I i r I I t t / ri 1 1 * ii Ei / r „i • A 4,1* •, I •I • / * I t n , A5V It Ak* I n 1 •I 1r. I I I * I 1 1 * 1/ * * I / I * AV I 1 F•/ / * *• / / / ./. * /If / I / i *** * / eF ,j, * I lITIII Ai,* iII 7F *If * / i / I1 / i / / * ei / / IIt II II / II •I •Il I• I •• A

o Ln o Ln o Ln o Ln o 0 oo 1•••• l'•.- `0, •0 111 111 -4- -4 NI 8 d; 8 6 c; 8 iS 8 a 0 [ e-Allo 6] AlISNACI Nil% MOS

Fig. 3.15

• • I • In / • ••••• / • Il / • • / a • / t 181 i /is • • 121/ lig •• / / • •• / / Er •• •• / •• I / • • 1 • / El / 181 / / / •• / / •• •• / / •, •• •/ / / • • / / i : / / •, 181' / I • 181 I •1 El Et / •• • 181 / El • El•/ / •1 181 I • El / / TM •• I / / ra ; • , ,, / ,, / ,, ,14 / , El • •; / •• •• / •• 181 . p kg ,,,,,, : El I--i ,„,... / / 181 It / • El •/ • / / El , 1 ••• / 124181 • • 181 I 1 • El / / • ,: 1:31 / if ,; 1 , dt , I ,• C..t.' , •i LL1 : / El -cc ,• / / ril , 181 1 EY El 1812Y 121 Ifil / • / 181 181 • •• / i El/ a) / • 1:321// )441F111 I El 21/ lie: 1 •: 181 • • • i 181i/ El •• El / •• : 181 El / rgi • i /rgi 13 I N. le/l /ff / 3 El ,/ El / 1:81 : / •• El / i / • 1N1 ,/ •0 111 •II / I / / 1 / I / I • I I -4-o In t4)o in o .-In ..--o in o tr) . N. N, . . o. o. .- ..._. — — — 0 c; [emo 6 ] A1ISN30 Nina ims

Fig. 3.16

i II II 9/ I I / / It / 1 / / I I I. 1 / 1 II e , I / .t I. i If •11II If of If° / II / •O / l .-- r--1 . / --.1" / / ../ / of / e / e II / , / , , ,.., C , , , 1—.1 , , ./ , E) / ED / e / / 1 II I •../ / A I .., , / ED 1 .' / .# / Ili .1. / / . / / ../ . / / . / Il // e / Q e / e / e . / , I / , / ./ 0 / / •-• e. • , / • • , (1).' 1 li • / / / 9 " / 1/ .." / , , / ,/ , . 1' CO ... . ; , . . / /(331 I / / 1 / I I I .1

a VI Q LSI CI Ul CI Lf1 0 U-1 vs Cã N 0 0 Os Os GO • . . • . • • 8 ,- ,- ...! ,: .--• .-. 0 Et-41° 6] AlISN30 Nine iIos Fig. 3.17

0 CV

•-• CO

CO

ND

141 CM ..... 0 0%. CO N_

.II v--- ...- 0 0 Q [ 0J0 6] AiisNal x-Ing ilos -

Fig. 3.18

l' I 4 I I I I I 4 I I I I II I I-

I I I II I I 4 I I 4 I 1 .jt4 III / .I 0 . / I V-. . / ii I' / I' 1 .1 * Ii / / i 1 / / i ei / / /• / / / i' / i 1 * * // II I .i . / I. ./ / i // * * A / / II / / . * I' ,,, / i 117 I' : / * I / / :./ 1 / .i / . .1 // * */1 / ././ , . N0 / .. ./.. / if i i i / LA Il 1 i .. I/ / 1 •.e/ .7

•.1 A FA

IR R R Ca .Ln.- .2Cr') • • 8 T a aL •IP , ...... 1". .1. T.. .8.n .1 ..- 8 8 cl: C IOU° 63 kustua 41118 1 I OS

Fig. 3.19

I I I I S I I I I I I I I I II I S I I I I r I I I I /11 I I I I / I II I I I II // I I I I / I / I e I II I / I I I S I / / I P I i I I / I / I I I I •51 I I •I I v• / I I I 1 I I I 1 I S I 1 I I 1 1 I I I

II I I I I I I I I II I I I I S I I I S I I II I S I S I I I I I I S I I I I I

0 Lf1 0 Irl 0 CV ...... - 0 0 a • • m a • gr— ...— ...— w— .11.— 8 [ .-WO 6] AlISN30 :ma lios Fig. 3.20

• II DC L_J * * ° z cn * * El * * (r) * ('-n/ 0, 0 LI N -J LLJ 21 El * *

-J LU 1-1 CO

* In

Egi fs- LJ

3 N _J LU

0 so

1(

111 1.11 0 Lf1 0 Lf1 0 Lfl tr) C\ CI

••n 6 •-• V- V-. 12.-A1° 6] AlISNDO Nina -us Fig. 3.21

1

P 11 2 Ea m c II II 0 I—I I--1 6 LS

121 o1-- 11J LI IL. Z IL7 (1) 1-1 @ II:

z 0 LL1 * 131 Cl) I. c.. CO LL C) —I ILI

CO 181 * -)re 131

181 El '0 *

181

I 1 I I I I I I I I I

CI Lf1 C11 IP C1 in o 111 0 U1 1=, •-t NI N) cv t% 0 CI 0. 0. 8 .— - ..-- •n 8 [ 2-00 -6] AlISN90 Nino -nos ..-... ta .0 •4-4 4-4 b.3 0 OiD 0 •.1 ta Z I En a) 44-I -,-I 0 r-I 4-) i-i F-4 ;-, 0 ed a) +3 0 n ;..1 4.) ca .0 ,S) r0 +3 -P -,.-4 ca, 0 Cl) ca ra co 0 0, 0 p. 00 0 H H .-0 -,-4 z H H ct f-14 -P tL0 •4-I La 0 ai ;-1 -4I 4-4 -4 Cl) (I) 4) 04' ta E 0 F.-4 0 cd a) a) z 0 (1) F-I tto o 0 ,I.:: to • 4-4 0-P cu a) a) 4-) o •rl .4 .4 C.) Z A-1-1 +3 .0 ...... -41

rcl

043

C14

0

0 0

0..

0 a.

0

tn 0 ce 0 0

0 ' • °0

•=..1 0

- C•4

0.

ILA 2 z _c -c 0 a:T o *.:( CO 03 o 'it Oi 03 03 00 a) o 0 o ›-. A-:: 0 •rl Z ..-.... 41 -4-) H H -f-) 0 0 0 p.4 ..-1 g 0 P 0 = a) -P P 2, it, 4.),9 -1 r tia g ••-n a) •,-1 ,C ai a) 0 a .4:• P P. ;-1 g CO 4-) 4•) 0 +3 ',-J 43 r—I Pi 0 o Z ,--4 cti •r-I 0 4-) 4-4 •,-1 .0 00 0 -Po ta0 0 '0 P.

0 0 in In

TITT" 0 11 0 0 0 V) 0CL 0

u 7 0

0 oz 0 - 0 In

4.. Ct.

Lu Lu -c _c _ 0 < aa CO 0< cc'

0 0 0 0 0 o o 0 0 0 0 0 0 - cs4 cn 0 - C.4 CI 0 Ohl, h

ONAh Oh n=10

% Strip P Field o / o 0-...c.

cl) Z Stone H Row 0 0 =

0 4.4 AhlE D.) 0 n=25 H P. E cd u) H •,-1 0 u) 4 0 •r4 _J E 44 P-4

n=13 4-4 B 0

wi Z 0 V :Id 0 cd ;-I +) Z 4 a) C.) 0 0 Bir C) n=7 a) .0 4-) to 0 •ri 0 o .0 Cl) 3 Cl] n=4 5 BCux cu P 40 0 4-) Cl] H o =

Tr CV Isil

Samples b.1) H 44

El I I 25 50 75 100 125 150 175 200 225 250 275 300

Pf mg kg-' •

Cr

• .\ ••••

• • • • • • fo e •

II , • S • e: • •• • so• • • • \• • •

• •

o o a CI a a a a o ea. ...• n 4 :-)C"

I co-, E I '

Fig. 3.25 Scattergram illustrating the relationship between Pt and Pao in soil samples from Holne Moor. 0 eJ _

0 0 • -o 4 t

0 0 IP.

o 0 sa

• 0 0 . 4

0 0 0 0 0 os o n0 eV

Fig. 3.26 Scattergram illustrating the relationship between Pt and Pao in Oh, bOh— Ah and ironpan samples from Holne Moor. 0 0 0 0 Cs em ...,

Fig. 3.27 Scattergram illustrating the relationship between Pt and Pao in Ah/E, Ah, A/B and B horizon samples from Holne Moor. \

0 \ + \• \ • •40• + \ \ + • • + • • S • ++ • • • • \+ 4. • \ • • • + \ • • • ••• \ • •

0 0 0 0 0 0 0 o 0 0 0 — OS Jo ...i. ...4

Fig. 3.28 Scattergram illustrating the relationship between Pt and Pao in the normal and the 'High Pf l soil samples from Holne Moor. • ar

• 0

• \

0 • • \ 8 0 •: o 0 0 • 0 •••• 0 0 0 • 0 • • l' ° 0 • • • 0 0 • • • 0 0 • 0 nn••\'0. • .0 •

o o Lb 64

Fig. 3.29 Scattergram illustrating the relationship between Pt and Po in soil samples from Holne Moor. 0 4- V I2. It LO —c 7 . •

. ;.. / o o

a) i 0 H 4-0 o --,-4

E 1 o

a)

'0 • cd

a) Loi 2 a)

a) •0

C;

Ca) 20

a) F-1

a)

4-)

bO I.

e• r•-n • • 411, 4-) 4-) • 0

rc)

0 0.1 0-6 O•t I•0 NZ 1•n•n•••••n

4.1 Oh

3.7

- AA

amonn• Ak/k" 4.3

- 4•0

[ 4.5 7-7 .11„ A„„ P1/A ../IA 4•4 BA 4.3

Mom- MI/ 140,1./24W //i'sAl-p4A1 mei-t*Ad

A/8 4.c 8,

4.3

4.7

n//4 Ai/ A is.sBL

4.3

en•••=li alnID 4,7

•nn=1 4.5 8Cug

/ 4.3

SroNE 7-oe.C C zoNiA P-oto /714ti • rtn Negtrof AIEL.0 A Sta4-.70iC.

1 3 4- 5 6 7 9 9 Preefilt (CSA Zior,as)

Fig. 3.32 Diagram illustrating pH values in soil samples from Holne Moor. o I.

41 4

.41

El 4 7 .4

o o . 0 wl .41

0 I i 0 0 0 0 o 10 r4

Fig. 3.33 Scattergram illustrating the relationship between different measures of the concentration of phosphorus in the organic matter of soil samples from Holne Moor (all samples for which C measurements are available) • 0 0

E

0 0

0

r•4

Fig. 3.34 Scattergram illustrating the relationship between different measures of the concentration of phosphorus in the organic matter of soil samples from Holne Moor (stagnopodzol soils only) 5

0

0 e_

3 • 0

• 0

C a o , .., .4., • u 4 u i

en 0 C.11:;1

Fig. 3.35 Scattergram illustrating the statistical relationship between different measures of the concentration of phosphorus in the organic matter of soil samples from Holne Moor (linear and non-linear regression)

BROWN

EARTHS

(Gunnislake Series)

• •

TYPICAL BROWN .--HUMIC BROWN i

PODZOLIC SOILS r•ODZOLIC SOILS

(Moretonhampstead Series" (Moorgate Series) S-IV

/ \ / /\ // \ / FERRIC PODZOLS l/ FERRI-HUMIC / / , l S- IV WITH / I I / / 1/ 7 PODZOLS IRON-PAN / / I .'1 IRON-PAN PODZOLS \ •,- / (Unnamed Series) .-

...- ----\\ S-V / 5.- / •••• \,e /\/`, ••• \

IRON-PAN IS-la STAGNOPODZOLS STAGNOPODZOLS 'S-lb

(Hexworthy Series) ( Rough Tor Series _\-- ---_./ . - rs -- , . \ / -- / .. . / \ / . / / n / \/ .5 / /\55 / / n \ -5-.,. \ - STAGNOHUMIC

GLEYS

Princetown Series)

• • Fig. 4.2 Distribution of sub-soil classification units in the Holne Moor Study area (sub-soil classification units I - V are described in sections 4.2.1.1 and 4.2.2.1)

71- •N1/4:N ZCi:44::' • getoo...4

lb 4, 1 4 S. • • f

...:".....

... Z.- 1.

, - : • lev.,-,tF;.k.-*S-...=, vr4 a.!•••;7,..,

,

AMU mmmmm moms nem von sae .,. leva

7-7‘

1 I

10 —j

I j ; 'r s

. I

S - / P14r 7. s- 5- lc c- ti 54/1 54V 54V ~ nun,* ARIAL -1/ 1'71.1[4L dm-j., •P otervaaio + S//! ;Adut;•As rYPE tvfic q r feat

Fig. 4.3 Distribution of surface soil classification units in the Holne Moor Study area (surface soil classification units S-I - Str are described in sections 4.2.1.2 and 4.2.2.2) Fig. 4.4 Zone A - segment and sub-zone divisions, and the distribution of medieval plough marks, tinning and animal disturbances. n=12 II

n=25 • • •

11/ n=15

En n

n=13 Ill

n=65

6- Corners, 5- Edges 4- ro26 3- 2- 1-

10 15 20 25 Cm. Disturbed samples Ei Peat cut

Fig. 4.5 Zone A — histograms of peat depth measurements in segments I — IV and corners and edges of enclosures.

1,11,111,IV n•n

n=65

XIII;Xl V

n=19

V, VI

n=26

n=34

fil

n=35

6_VII,V111 5- 4- n=31 a- 2 1 - • 0 5 10 15 29 25 cm

Fig. 4.6 Zone A — histograms of peat depth measurements in segments I — XIV. _ - S.

tu

.,......

- e- 4...... _ .... • - .

1 ----.. 4. 1 . -, r '..,....„...... , CN '46 •••n c--4 \ - . X (41‘.,\ . `....,' r•n • x . R.N.- cn

-..-1) "••n. -••••• I . Q • rrl laj / ----N: / • 03 nft/ ft;

A'

0 •0 r4

a

0

• .N • - \ .A"

Fig. 4.7 Zone A - lateral variation in organic content of peat and mean peat depth in all segments (after exclusion of Corner, Edge and Peat cut samples). SOU -MOUI INglrz gun

]

t--1 ,-3 * •r-f H 0 a) Col' • 1-1 I-1 fr4 a) 0 g •r1 H •ri C-4i 0 cd P4 F-4 H -1-, H cd 0 0 0 0 F4 rd Z a) I-I c., d 0 ...... E 0 al a) LI -0 .0 El 4-) H a) czd P H r0 0 ›. 1-4 0 t-4 b.0 I I 4-, n 4-) 0 I-1 T .0 T- ci •H H Cl) Cr) -P 0 a) rd H 4 g4 d 0 4-4 H I c..) a .-4 Z (-4 O H H 0 0 I o o I •r1 0 0 rd q4 I I •1-1 0 U) o r7-4 P4 al -P 0 4-2 I I ct ..--. 0 0 ;=.5- P4 rd cd I I Cd H_- .-I -,-I -P 0 o F4 1 A P .1-1 cd I CD a) al- C.3 A I 4-4 4-3 I Cil 4-5 4-5 a) a) a) M I b.0 a) a) o I rd .._...... - P4 ....1 a) 0 H .4-n a) a) F4 cd H 03 c1,1 -c- CD a) H al rd Cd CZ P cu 0 a) 1-1 a) cd I I P a) ai tn 0 A -P C/1 C/) 4-5 rd co 4-1 cf) r-I a) • 0 0 a) ca as (1) r+-1 f.4 cr) Z El m 4 1-1 0 Crl •,-.1 a) 1-1 ,...... 0 H H 0 ....-, Cr-f AH 0 0 ...... , H! OW .9 0 C/3 0 cd q .0 C/1 -P a) .-1q • H VI 0 1 ,13 T-1 a) m o •,-1 o o r. 0 4-4 > cc •-4 •-I Z c--! H -I' cd :g -c-- te 1 r-1 1- m m 4 4 d $-1 1-4 •Fcl 0 0 o F-1 0 0 C.) cc Z 0 d 4-, 0 4-, O .H P4 cd C.) +3 4-4 rd oi 54 (T) -P rip4 O ct1

d 4-, rd0

c-- >4 >4 >4 1-4 F-1 Erl ME-.1 1

rri 0 A rx1 I 1 El a <4 I-i A El cf3c; 1

100 1.•

PASTURE

D I vIDED AR,48LE

/0"C. 0 4 Es 'EA. A 84N DONF a V C. /50o - TW6 A(?) f 7-WE • . ••

Coaolvt o 0 4 AA,sa- n liv rA k E / 3 00 Al4 MIS I re •• ..e.ORLIER A fiA/D0A, ED al Am 0 eNED

i• A.• A E ) 11 , ? . ,---- 6)1, c2):.. 0

•• • • • ER RSA, f [HEY AL Cu • V THEN Eir7P OU•V />A/C\ AMP p s r tm A N47,1/ TAAos 0

OARL,V /3rwC. T

,.1„thrf) VID ED

I Nr_ A'KE5 LA I'S R I3r0C. —L—RitA8L.E 11--- — jair". 0 • t s .. • Ari4 rIN,v,wf f c1300 r`oeivc l• PasruRE Afti" C./200 Alf ts,44,5meD 0 "- /6" f"C Tin/ o o EPISODES 00 0

8 ft E F Ti Li. A C 1%"4:•Nmi LATE N 0 a,

• E irRA.V ei,fx e usr/v4rmw

PASTORE. A /OA HALF A EVand / • I E. r*C. • LA rixe -0)Np4•Nc s•

Fig. 4.9 Medieval land use in the Holne Moor study area (after Fleming and Ralph: in press) . ( ?Z \ \ \ \ \ \

CR ,ISSLAAIO WITH AlfarAt• Deon.Mair CALL &pea 844CKEIII Akider rto•Mi. ••n ••4 ir, g rits. f‘V LE= • A/ Iferao OVARII-10/1 • VeitsSLA hurl, C4 ta-u•14 mteatneo., I. . Aa...Er- dog 1iI.4rW4 4./o st••4 AAAAA S omE am Ac.ff we

Fig. 4.10 Distribution of vegetation in the Holne Moor Study area in

1976-1977, and the location of vegetation sampling sites 1 — 7. LYAICNET om AGAvt NO RTH LOSE

0 31 01

• 32.

0 34. 4 2.

0 3 43

No firH FIELD A 1 s,

# 14 hi 7e, 79 8 0 3 5 PA cAEoSOL 0 CI c ROUP 13 CatooP A

li frl 79 12 A 4' 036 02

07 5 4 0 37 IkEAV E

so' mP L IN 4. Loc A TioNS A N D CODES 10 rn /977 197 € /179 0 Cfp sER/Ef 0 V sulks A SPEciAL SA mPe.mig

0 SP iliv‘S' ZONE C

Fig. 5.1 Zone C - Location of sampled profiles Fig. 5.2 Zone C - Section through North Lobe corn-ditch showing the principal features of the buried medieval palaeosol and its overburden o o 4- $ . o ‘..) A kn \ ...... 0 I N `NI . o e,.... ‘L .2 el 1 ."‘Na 4 St 4 - .. 0

1 A ‘T C44

•! n•

0

II "*.

.4 - I II •. 0 o

'"•n 4

a r— — — J ' n••n C) -1 .1 •

•."

:4

I

r— -

ra

1 o 1

1 1

1

1- - -. 1 1 1 1 . 1 1 I 1 1 1 1 1 1 1 i I 1 I I

I I I i i 1

_

I

0

0 4 It Ii II . 0 II tq II II II II I- ..... II II I

- TI -- I --I- — _

a

a • o o 4 v.. N- O a.--

II er ,t II

II II L f n(?1 a

II

II

_

co - - - I , -, - LJ

0 • sm

•n• 0 4

iz)41

• 464

a 0 II I • 4 I II I I II I I II II II 1 I Ii 3 it 4 Nt'r

1 1

ii 1 I I II

o Is

? 3 i ;

I

ri

I I

I — — -J I I i I 1 u - ..... , r-r----Z1—_—_ =21_ _1 ___q___I 1 1 F 0 0

3

1/44 0•

n4. e- t

- l

4

r— ......

r-

c. Fig. 5.24. Schematic view of the palaeosol trench through the wall of the prehistoric house on archaeological site F Fig. 5.25 Section through site F house wall showing the principal features of the buried prehistoric palaeosol and its overburden a)

rd a) r.1

4-3

a) ao a) ;4 .1-1 C-5 0

•r-I rd H a) ca, O rd 0 H (1.) r cd d rd ra,

cc

ln

n/ 0

a -

a:7 0:1

co'

-o

0

0

o .°?

.. 7 I)4

r—, %.1 4 yQ ..... c; ..1, c:r -4 !..! cc 'AT a • 4 .1 U. z CD ‘...... • I.. 0 Ct ..e ,b "i P' CO ‘‘I 0 X z Cl ,

0

cci

0 4

Ct 411

. re

.=:;•-•;;::=_'

0

471

• Cb

Cs z -I --

I - - --I

tr- - --I

0 In

1

1 - - - -I I- - - - -1 1.- 1 1 I e I 1 _I e 1 I

I i I

0

-

F- 44.1 0-1

-J

0

a

r- 0 %.

Q-4+;

0 C. 0

co

o

CD 0 o a

1 1 ••n L_ J I

--1

n __

t ts/ o

a Li I. 0 Is 0 '4t k (4I k a. a 0. 0 2 o 0(

ti

I - -I I I- - - -I L 44

0

CS -

•-..

0

4.1 1

2 _

.41 0 a

0 0

It II

II II o II II I I II _ It II II L.. II II II II • II II - . II II N• II II tz• II II II n II . 1 0

II

:

-

1 : •

rd

a) 0 4-1 0 ° Cti Rs a) irt I ic,31 -P t a) cH P-•

0

-P 0

7.4 -P 3 0

0 %JD 0 0 n•n a) rd

P4 a)

t•-1 •ri a)

rid 0 O o C'3 +3 U) 0 r- 1-1 aMMIM O ;-4 q-, 0 0 4-1 al a., al a) PL+ -P ai •r-i g 0 14/ H c.—, 0 ;3. 0 a) ut 3 ai ct 0 (0 -p Crn ;-n (i) O 0 ▪ F-1 • 0.) •rl 0)0) PI .0 P- ch

r- 1.r%

6.0

/61, /4.3 7 r C..D /84,14C 2.23, /04.c (4: 8) 2! /9

Rh wvt 32.6 2.93 V 7 32.• A A z 22_5, 2o6 241,220 277, 24-8 386,311 /9 21 69\ 2..9„/ • 6 34.636? 301,1.60 -r- 3ft, 313 172, 2 9 32 1 /3 • A n171 1 ‘9,1 35%3,310 1 • 7 1

399, C—W 3•4-9 411 , 32:

5 ' oir . Ce. e" Ce • 3g • ' • 32.4.3o3 4 u06 429, 371 3K,1,1 2.2.11-, 200 E .11 , 39 E • 38

24 4 g e , •

• *I.

F,Ein 8 5c" 269 , 2-36 (".6) 12.

4-1//, 432 mz • 674, 244 mi• 441 4-35 (2

MI 4-04- 376 in; 422, 392. In.. 4/8 ,377

1 3C 30

302,22o 354, 326 Fitcp A 2.9 • • 327, 296• 37. 265, 2.30 33 3 (n. ) 25 216, 2.6-7 Lsue-zoNe rj 32 /77, /60 30 • AfAvi 1,1:4) le

A A/E ,ty cm-3 Pao, Po o 6 IC) PI/ PA4,

e .Sc.,,/'seleve,i‘es /°•,..se Sev,,e Ir.ore

Fig. 5.51 Site F — Lateral distributions: Pao, Po and Pa in the Ah/E horizon •

co‘L C I 237, og (. :8) 38

V -V V

M1 • 4.37, 392. • m;•

• 345,3036:1" )1 272,2/0 3 2 (A=f) [sue-zoNe PI • 1.96,24-0 = 44 L.Atl'se- PAO , o

0 5 10 m PA.

Z ZZ" Steme Noase (ov•ACres /'‘....re I ...ee „ H „„ .72 • r 1/ftre

Fig. 5.52 Site F — Lateral distributions: Pao, Po and Pa in the B horizon 4.4

3

3

• 0 • 0 4

' ;

3 14." ▪ 011

Figs. 5.53 and 5.514. Site F — Scattergrams illustrating the relationship between Po and Pa in Ah/E and B horizon samples

2.926 6

V V 3391 e -v V

2322 1543 2429 4 9 vi • 34-46 v/H 4/14 6 3571 32.16 • a W •j v./ • Woodan hut 347 • C=114.11 3793 5 ' 06- ' • Ct • __•__ J3779 4 2‘7 .36'91

34.57 k 2.732 E • E • E • 44(29 E • ;11

P,fi r) 8 R27/7 1111/11P • 3910

47o9 MZ •

ffa o • 405-9 //to.

1.0 A Mt • 25'99 3,9 7 (4. 4. f) Esue-zoNe _ 2o37 3 0 ; 7 (.4

/941E

Po k -20/ 0 10 — _I

St." Rouse (ov •Cres /°<..se r .Len House) Er / • 43.. 14ase r S'A., e

-1 Fig. 5.55 Site F - Lateral distributions: mgPo kg LOI in the Ah/E horizon

4

V v. A A

2579 3039 3087 vi • .IH WI-1 6 3 4.02 3267 • • A . NA./• w •

F./Dec(4n At

Cc* 3976 E . E : , E • 3704 1... 5 •

in,: •

g i.n A vigS 3 r u 8 - zo Ne • .2-947

AS Avi ( 6)

3 0 oti P0 ki

Pk.se St..te Hawse 1144.se fl.j7 ItS.Te liwre

Fig. 5.56 Site F - Lateral distributions: mgPo kg -1 LOI in the B horizon C.34- c

6.61 a

ML 411 • 9.2.0 14.97

MI Mi. • 8.90 9.48

ri g t.13 A ML • 8:78 r Sj

[sue-zo Ne Fl • 3: 7.72 '7.82 AiAvi 61 6)

1494/C 0

0 6 I 0 ^9 Lo/

/24.,,t e jr SesAe (40N-Zres /34.se r /24.0. S'I-D.e 14.re

Fig. 5.57 Site F — Lateral distributions: LOI in the Ah/E horizon

r(4.0 C

V -v A A A

U.12 l.i 7.31 WH WH1 6 • • 4.1 •

k eeeLan hut

. . ...Ce • Cc •

• E • E • 10.49 I.:* E •

m. •

• 3 [ su e-zoNe PI •

AlAri

.B lo Loi

11" jr St.,e ek.se t „712- R,44..ta SfiAe H•ure

Fig. 5.58 Site F — Lateral distributions: LOI % in the B horizon 0 r-

77,

LIN • 09 b.0

Fri

0

cr)

-0 9

n •• ••• 3

0 0

Cl) 5 0 ea c0

4.4 2.1

0 0

•0

a

2 ,

sc'* I al I CO I JI Figs. 5.64 and 5.65 Site F Scattergrams (for location of samples see code numbers on Figs. 5.51 - 5.58)

LI

ta, 0 0 4t

3

1 0.4

2

n 11, 40 C1:1 I Q.! i

4gq, Fig. 5.66 Site F - Scattergram: mgPo kgLOI in Ah/E horizon / mgPo kg LOI in B horizon

C) v t o n t. .0 N. .14 ‘t I a 0. 0 \\ 01t \0 .e t k.. 0 o r l N 4 v *.1 4 st ....; %. l o v v r N4s. m• ;....4.,. 4.) . 2 • • i vi su

4.1 t C.) X N. 4 0 Lt. \ 0 4-

0 I

04 4 n 40 4 m 4 0 * C 04 1^- 0 0 ft 1". 0 Pi 6 0 tr" a k -4. 6 47, le t 4'") t stf Ns X X < L X 0 4*, • • 4. .41

It L 1 ft

0 0 0

• 0 < o .1 0 1...., 4 • a e n . I Q.! 4 itn, El • •

SI .t1 °•), ? er • d o ZeS CL. Q 0 CI!

1

1.11 In Cr) In •.0 (.1

csi ea 4 co ex% TJ ••.0 0 m M

1 02 o -- CT -+ 0.00 0 • I In

.43 0.00 trl o • L. -- 4

W 7.0o In ol 0 1 -7 0o 7-4 oo a oo 1- 4

1 .4 m 0 tt't a 0 a 0 In 2 I M cr, a VI - 1 7+ tr .VI crs 0. m m 0 — Oo a 4 -1' 4. m In 10 o' n 7 %al ON 70 a- ts• 0 I 9 Crl e'n 4 C.

El

_

II .4 M (.4 r- CO Cr. I WI M

1

.} 14 co 1.71 r- 0.• • I

o tee r-- 4. m N

0 0 n-4 E I

Fig. 5.67 PHA Transect — Phosphorus and LOI values in samples along a transect through a prehistoric house

• •

a 4 O 0 u.1

▪ %A\ • %al

A a\ a

I . =5 ..-., 0 g• ?. F. 20 \ a'c . 7 \ \ a 4 =.111 1 t...• 24 a‘• 1

• °44<1 (:)\

• J ° 0 .1'0 \ 0 411‘

kf;

,... -0 \ : . I I . 0 0 .,, : .4 0 - , a 'ti ;1 4 zsl -3 qe] —,

—9 Fig. 5.68 PHA Transect - Lateral distribution: kg LOI m -

Fig. 5.69 PHA Tranzect - Scattergram: pgPo cm:1 in Oh and Ah/E horizon pgPa cm ' in Oh and Ah/E horizon =44

<1

a 0 .gt I 2 a. =

1 Fig. 5.70 PHA Transect - Scpergram: mgPo kg - Fe in Oh and Ah/E horizon / mgPa kg- Fe in Oh and Ah/E horizon

A

3 0

00 t.o 0 r-- 0 tr.

• 0

• • Ot I ft? 0 \

ksi 4 0 I* 0 30 o -0

0 0 ' II 2 ,-) Zo. 6'1 4 gkll di .71; TJ"

• ci! •

V:4— cr. 4 3 o 0 NO

• 0

tsn

co 0 -4 0 0.

1? Figs. 5.71 - 5.76 PHA Transect - Scattergrams = 4 :.4 4 2 4 crsis

0 2 0 0 0 o el 0 .1. 0 C:) C) It

a

.0

(4.3 1.) .4 4

2 • cs •

0 0 4711 0 el 0 0

„ L

• 0

-41 cZt

40

2 0 44 0

et I 4re --I- at I o o NO 4 1

i

I

=1 I

1 0 o

I

I

..41

I

01 1

I

1 - _ ------

I .r •

I

:: •

I o o A • a II I

1

1 "

1 .2 •

I

I

I

1 0I

I

I

0 0 0 0 0 n t.n 0 :. r. •••4 cl 1:9 .12-7

CI! I '4:1 Ili E g

Fig. 5.80 PHA Transect - Scattergram: mgPo kg -21 LOI in Ah/E horizon /

mgPo kg LOI in Oh horizon q‘. I C4-I0 _ _ II o o c\ •1-I II CO II • 0 II 41-1 II • rd tD rI cd rm.! o Cd II/

el-,

•r{ I 0 1 '14 1 4 •-) o CL E

INSV/A1 cr)

0

•ri F-t

4-,

•••••• ;•4

0

cd

P I 0

rl ' / A

irAIMAM

0

PAr/All • • "4 IIA/A11

WAWA P.. 0 ts1

F.4 0 All pr-oFLIGS n:17

2 -7-1_ n

Propcles outside row 5 rd

;.n

Pro14.1e5 4lAe i•ou)

: 12.

co 0

P4 r -1 R CO

f:14

Fill profileS a:17 0 0 eri 4-, r-i 4.1 0

c.)

a)

Propel OotSicte v-OtJ 4-3

S• l• 5 1-1

Prop.LeS(jcide rotJ

10

46 r--/o7 17971,,

97- in- 1t .2rt- 20- 2.91- 331- <90 3C0 • it 0 ISO 190 230 170 310 330 b.9 •rf m 3Pk3-1 Fe ••••••

.% 0 1E1 .0 o

.0 0 +I .1-4

o 0 0 c0 01 CI 0 ria) fa.• C11 f.4 El 40 es-, al at 0 co 0 •ri n..me t A 0 4 <1 00 +3 .H ••• Ci 0 ;-4 0 0 .• f •f:g .J 1) MI o " 0 0 +3 0 CO rf) 0 0i ‘.0 CO LC\ ... c.., 0 • F

..4 ...1 it ul VI el 4 • . . . n C e e C C Z C

1

COI

0 •H 0 0 L-CN •r1 C ;-1

2 — — _I r. —1 ct 0 I 4-3 1g)I $-1 V) e) 41.)

ni i H •r1 a I cf 4

0 0 4 0- •

-11

Qt. 0. CO

O. • O. tro • ct -.$ 4.

z a

nno

f

ea 1.4%

• a.

0

-c 0

Fig. 5.87 West Stoke Farm and Bench Tor — Location of sampled profiles and cultural features b., E l el I < Ce ] cr

A'4• q u, MI > cc

191(1° 1 .c,

(11 \ ‘ 01IV,

....j 4 .4 Ne 1 \ o —...1 F 6•.. ) \ k 1 (1) .0 tICO C:S; q=2 VE? 0 !Rag, CCP I I I. Oft

4-1

Fig. 5.88 Rowbrook Farm and. Vag Hill — Location of sampled profiles, and. the distribution of soil types and. cultural features ▪

r-

v) g 0 •H +a ,.0 3 •(-1 U. F-1 CL -P Cr/ hi ...." u. ...- ed cc ./ H n-1 / ai U. i 0 — / 4 -, u. / P ec a) .." I H H •,-1 3

ct / OA cd /

rd i g d

cd I rti 0 0 ;-I rCI -- 0 124

ON so CO > • a LIN

• In 4.1

..-,..1 1 ers,

1 • —n•

t— — II • —. 7—•—•—; = — — — — _

In

F-1 a)

to cd

ce

cd

••••.

cd cri

0 0 F-1

0

cc In

ez• 0 -

0 0

rn

0

-P

.0

+3 0 .4

ct 0

4-,

0

tao cd

4 Cd

cd cxi

0 0

0 t:4 0

Rvl

•n•• n•n n•n

0 ' Rv6

0

R Fl

200 400 too Zoo ivoo iboo My PO - I°a c "3

Figs. 5.94 and 5.95 Rowbrook Farm and Vag Hill - Vertical distributions . a.

0 .4

rn

F-4 -P

.r1 rd

•ri -P

.rl

t11) ,

cc rd

Cr.1

0 0

0 r=4

\

Cz4 0 • 0 — u.

0 •rl

-P

7-t1

0

4-3 F-1 a)

•ri

crl

ai fri 0 0

0 (Z4

['— Cr\• \ • •:--1 fri -o

o

1 _ • - • -

%.1

o sib

Cr..)

0

cc

- - 5

0

-P rin

r • - • rid V.

Cd C.) 9-1 4-3

a)

•ri

bi) 0 Ed

Cd

0 rri

0 0 Cr-a

0 IZ4 0

_ a a sa

a o ro

r— — 0 UP - - .4

o o Of

,

a

0 S a a lo

o• a so

a o

o •

t ▪

olt

•r1 4-) ======o rl 4-3 0. t.r rd

• %A

•ri ;•1 CD

0 0

0

cii tr • .41-

cii r=4

4-)

a)

1.1 4- CO 0 • \

h0 0 0 a

cri • 4-3 0 a)

0 E-1

rc!

cri

a)

ua

4-3

0

:\?

0 el

4.•

a 0 o

t.r

o

ei>

4 Q. 0 tr) I 4.)

a.

ee.

_t

dee ‘7.a a. —

0

Ct. 0

4

..-P i

...0... ? 1,,...... O1.1 S t. 44 n•!**? vi. .—....1 0 4 11 4 N. on t 1 co .t -.< 1 , ‘t , to :5, ."V < -4 . 0 -4., 1 1 1 0 v Std...... „ en 1 .i. il 0 2 ' uo Q. vi 03 ,• a gc▪ 444 • • 0 en / X m tot

a

cL.

4

I I I I Cl' 1 ‘24.. 1 I t e4 I %,1 I .?. COI • 4 k 44 • .44• •44 4..44 4 . 1 • • 44 0 4 4.1 4 OX .Z 0,03 12 VI 4,4 IA. vol ''t .4 f4 so 4, -'• In ( 1 cr% r-

• • • • • • • •

%to tn t•to tot. •••

03 Q, o •.5 a 4 L:.

A 3-Y ATI WCInn0

a

Fig. 5.111 Zone B — The location of sampled profiles and cultural features

..I e•-• 0 ...... / 1 S .... ki .4 0 N. L...0 n ‘ .n '..., -V • CC . C 4.) IA 0 ...I.J • Nt ...1 -4 ..!. V°.S ‘1.4 ,44 CI Ck o 03 ,.- a -a " sa N •1 t I • a -.1 n-, a 1 ,... co cc ci.. liN e, st sO is , M 4 ...... 4 al M .4 Nt 44 d 4 o ;n o. r \ --,:f n0 an e \' • '\ its e 4 '1 n N ‘ \ \ n n n -.. itY .t LI, - ` , \ rel \ \ Ma X \ \ a In % . 1 X \\ ---1/ Q... ,...,;i I X Q.. I ! '4... X \\\ \ C 4 ,..4 ,...e4 -.%....

4 1 4 LI% 4

‘4Z.'

i...... , ...-. •-•. ••••. .... ' ••• —'Cr. 441 aa In n ,4 n .. t! 3 i • v, I, •:, t;.. -:. — e ...I :f MI 74 N .1 A A .1 n..4- -4.4. I '- .., '- .... -.... %a t - .4. N 0. ...1 ,,, ce -t I \ t'.A vi Cs f It en ,n N 0, -. N fp m 4 4 m m j. 4 4 41 4 2 ul 44 • 414 • . 44 141 •••1 44 4 . 4 • • 44 . .4 1.... 0 l'n In Ci o x cNce 1.1'. \A N I.!! )c cn r-- 4 N 0 Q. I

• 0 0 • .10 •

•••—.

a 4 4M

a'a 4

7AtI 3 A-ti we:7,nel? 'ken Yu,

Fig. 5.112 Zone B - Lateral distribution: mgPao kg -1 IFe and Pa in profiles sampled to 30 cm below the mineral soil surface s o .1 ,0 1 1 ,-!, i .0q . . ',' 11 2.i"? .. , ..-4. . .4 ., i . ... -v • ¢ . C z V % o ...4, 1 1 0 , v ....e ce n 1 M. C \ 40 0, 0 'el i ). o M 0 .., : -.. c 1.4 • • 0 00 2 X

O

i;

0

kr, 0

I I - I I 0 I 41 es p N 0 co I o co co I T... I-, VI \ 11 f at rn 0 o o N n to N • ON CT* 0 tbi I -- n n n ....7,:i n

44 • 4 • •4 n 4 •• 4 4 4 . 4 44 • • • i t, 0 Pn ,..4 cq 0 Q...... , OX 2 a• to 12 %A "4 11 tni X ON r••• .4. 1

• • •• • •• •

••• •III Do. 4

7" tt wa nnoe wn 'to LAI

a a

-2 i Fig. 5.113 Zone B - Lateral distribution: gPao mn profiles sampled to 30 cm below the mineral soil surface 4,1

SO

0 0 0 1.0 E r-

asp (,„ 0

r//, op

II

,41 CL

I kr) I r- a I I _

tz4. 11

1

0 1 I

1/41 1 N.

1

n.0

▪ •

rd

tfl 0 ▪ •

0 vrt 0 Cr-4 0 1\\\ \KAI

rrn MIL\n1116,111.11111

r7,1 N\\\Y/I

N\\NY/A rA k\\\17/

rA k\\\ Y/I

rA k\-\ \\Y A

ie ..\\WILIONE

k\\\ \Y/1

1MP • 10n11%

}\\\\ \r/ I et_

ir./A1

k\\ \\V /1

1') k\\\\\\1/ a_

1\\\\\\1//I

0 0

A.4 0

%WA nn.N1I n\V Gi -

_ _ 1 r

Os

1

_

laj vl .—c -...c I.. C) CE QII tk. .4. ]

i

, 0 0 0 0 0 0 o 0 0 o o o 0 o o * ei ...*

Fig. 5.118 Zone B — Transect I

I

I

I - - I

1-- —

- _ I 1 1 - - 7 I n r -I

:

I

r-- - _I

- n --I 1 --- _1 1 1 1 1 1

1

1

-I 1 - I 1--- I I I

CX) I 1 1 1 I I_ __ ,

1

1

I

I I I _ _ - - - iI-- - 1

:

, 0 o i o a o 4- en a 0 e-.4 o ....

Fig. 5.119 Zone B - Transect r — --

I 1

1 1 L

1 i

1

I

1 1 I 1

-c CD al

1 1

I— — — I I 1 1

o tan 0

Fig. 5.1205.120 Zone B — Transect

1 1

1

1

I lill 1-

1 1 i 1 1 1

I I__ _ _ - 1

I 1 1 r- - - - I 1 1 1 L__ 1 1 I 1 1

1.4.1

...... c cc(-.. IzE . I I I 1 1 1

1

1

I 1

1

1 i r 1 , 1

• 0 0 o 0 Iln 0 M N ci

Fig. 5.121 Zone B — Transect ▪

0 I. / 0 x 0 N • IS

4.

0 / • •

x 0

0

• 0 • •

cP

0 ON 0 • • 0 0

• 0 • • •• ‘4. 0 • X • • w 0/ 0 0

0 0 - 0 en co. 1:1, qi nI•

Figs. 5.122 — 5.127 Zone B — Transect Scattergrams vi

cx. cx. • 0 A

0 0 •

X

• •

0 0 X

°

Figs. 5.128 and 5.129 Zone B — Transect Scattergrams o 0 o in

VI o 6 a 0

in 0 .0 0 2 I- ,7 cnI In 0. 1 I- A 1 Q. 4 X n t• - • a- ..5 0 X

0

%IN n o o v 0 o o V. c I to 0 -i- o 0• p-, IN cL

ak

Fig. 5.130 Zone B - Transect scattergram: pgPao cm-3 in Oh + AVE horizon / ,ugPao cm-3 in B horizon

350 0

r- - - 1 ,i I 1 1 r_ 1 3000 1 1 1 1 1 i I 1 1 1 B I j 1 1 1 1 1 I - ---J I

loo

Li--

/ 000 I r

A A 0 3. la. 7 9 X 5 1-52 6 72 9 N x o i j0 PT S PT.%) P 77V

Fig. 5.1 .31 Zone B — Transect L\\

I N\N

03

1-1 kr, o • a Jo 0 el VI 0 cn N i •H P4 0 * 4 crs to— I 4 4 I o a • 0 a • * 0 a. .ri L A. IV" \

0ai c..) _ 0 h Q. ft. r'') Z. • ,.... et

• Nrn fl

0 ra.4 4.3 di • Z. d .. ..., 4 a. g cj d ;-I VI NO ;-1 ...—) a) ...o OA • • 0 -I-, .1 o -4-) a. • 0 al E tn C.) d • • c4 C!) -e • • • • • .... v • • 1 I . • pa • a. 0 i • • 0 1 • NI ▪.. 0. g• a_ a 0 •

• 0 • %.0

0 n42 (-4 5,1

1.... — w .1. Ia0 -4 . v. ,...... 1 -4 .... ,0 • e r., -Y ... 4 .''S 4,„ .... 4. t e 1 s . CI IA •.. VI Ve • t- o

• •

• • S. • k)

o 2 La re\ S. I S. • s s 0 \ C.)

•• • 0 • • 0

0 • • 0 4- X 4- a- 0 44 \ • 0 • • •• \ 0 • w X o 0

a

:0) It.n

0

• 0 •

(-4 0 0 X

`7.• az I

N.A TI4 rli 4.0,

C A O UP A 37. (4. 1)

0 - — — — — — No 4 rpr coat, '2 (R. 4)

.3 /my L 0 / Cm, A:y. 5:1399

i

r 0 100 2.00 300

0 I I 1 i I 1 AloArN Leaf 1 1 i I_ I -I SP saitiEs Fis 5:1 40 . I i 1 ' I . i I i I I 1 I 1 I 1 I - I I ' I I I 1 I I 1 I 1 - I

3-2.5 3.5o iii 3.76 4 . 00 1.22.6 i---

isloArm FIELI, SP sEg/cs 0-

4.16 3 • 25 3 . C 0 /, /1 3 .7 5 440

Figs. 5.138 and 5.140 Zone C — Vertical distributions c•1 ‘4,

\\\ 1\\\

c4,‘\

r 7 7 " -- I , '

V //I -

An°77-.

N\V * I X 1

N\.\\ K

S. ‘7".. eCe. CC KSIIIJogs

ca

t°43r• • d I

tI 31

Fig. 5.139 Zone C - Bar chart LYNCHEr ON 1114ve NORTH LOBE

0

• S o • 0 P.EAVE

m .2. P0-0 LO 4-0 cm 10 rn

ZONE C

Fig. 5.141 No 11 -1- H LOBE

• /7.9

0 17.5

N

.314 IN 22.4

0 22.4 • /4.9

/6.0

/8•2. • •19/ •2o.3

• /8.1 244.o A A /g.7 ,Env E

171.3 Pa- o ki 11 Fe a.nd P s a. per-eentaie 10 trv OF Pa.o to a. olepth of 40 ern > g oo • 500 - 599

0 7 00- 711 • 4.00 -19 ZONE 0 6 o 0 - 699 • 30o -39

Fig. 5.142

____fn 5 Po kL o /

10 sr, Profiler to a. d.GptA or 4. 0 ern flli.neral soLL 0 Ais

* Coo° - 54.91 9 3400 -3999 0 Ir. a_ 0 • a 34.94:99

.999 350 0 - * 4-6 0 0 - 4-999 0 2500 . 2999

ZONE C © (3 4000 — 44-499 A 2-000 -24.99 CI 3 " 0 - 3499

Fig. 5.143 LY.I CM E T am AEtive No/ZTH L 0 8 E

• +16•2. • +81.9

. +32:7

• +107-1 • + 29-7

• -0- 49.7

• + /5.5

• a • -.P. i 4. • 3 • —15.9

• + 2o-e —34-9 . • —64. AEAVE

PHOSPHORUS ENR/CHME NT (+) AND DEFICIENCIES (--) . 9 P4.0 Al To a °cepa. of 4.0 cni

0 rnI E C

Fig. 5.144 0

0

(-4 — — -

tq

a v.) 4 if\

rid 0 cli a , a —+ 4

0

c.1

1

..... 4 0 . o e tri .-

t a 0 k I- -1 0 kro 0 1"1 z 4 s v a

Co 0

0

0 0

1 eft 4 1 1 1 o III 1 1 co ,

1 4 1 1

1 1 1 tti

1

•0 4

nr; ..n.)

to

0 . o to' co

II II 0 0

-

I I

4-

0

• IV 0

4:

41 0 •

0 0 4t

4

n

k•-1 LvucmEr Aga vc NO RTH LosE

• • •

• • • A.EAV E

-3 PA korilon AL. 0 cm

00 - o SCo IN so o - 5 49 • 450 -49 ezoNEc • 400 449

Fig. 5.158 Fig. 5.159 Zone A - Distribution of sub-soil classification units (sub-soil classification units are described in sections 4.2.1.1 and 4.2.2.1)

• •

4 • S. 0 I. • U. tS 2 sv. 0 01 V 40 V 0 T 4 • 14J 4 QV' .1 i• 0 '4 %.1 V .1 I••\•••nn. E ). • 4‘ \ 55 y' 5. • 33

J••••••••-•:„,/ ...;:;;;;:' ,,.__•,•,__• /////////// /////////////////// / /////// ///////////////// / / //// 7///1 ///////////// /////// /////////////////////////////////////////////// //// / /// ////////////////// ///// /// / /////////////// ///// // /////////////////////////////////e•//////////// //// / // /////////////////// ///// ,••• ///// /////////////////////////////////////////////////// / /// // / ///// / / ////// //////////////// ///////////////////// ////// / /// //////////// / / ////////////// / / // ////////'///// ///////// /// ///• /////////////,'////////////// / /////// / / //////////////////////////// / ////// //// ////////////////////////// /// /4///////// / // /////////// // //////////// • /. . . /7:,:/:::::::: /: ,.; /.// /: // ' / // // // // ."/ /r / // // ' /////////////////////n ,•..„..„„,,,,„;///////// ,,.. //,..,.///...,/;,,/,/,//e,/,,,../.../"/„./„./..,///////, ..1 • \ .„„„„ • • /4,,I4 /////r///// E • „;:::::::,;":,:„:„:„::„T . ,„„ \ ,",//,,,,,,,,,,,' ,, ',,,, 14 \ /////r ii//////7/// ///0 i lik / /I// //".//:/.../../.1./;7/) *# ///////////////// // /////////// ,/,,./ // ////////////////////////,////////////// / //,//// // //// // // // // // // // 7/7/.///• 01///.///////////////// // // // // // // // // 4..,////„././...."/„./,./...////)//////"///„/////7,.///;/.; ////////////////////////// I////////////////////// ///////////// /////////// /, '////////////// •7 1::;::::;1%.!:;;;',2;,.. •////////////.; /./ /./..,/,,/,././/:. ';',/.;:',..; '/.//: :5/1 0 •/*////////// //////////;',/,./„/„/////,

7. "/;/..,://7/////%1 • • //////////

...... n•••.• •/////////////ea.",

-

0

Fig. 5.160 Zone A - Distribution of vegetation •

cr% Cr% Cr• a% cr. cr. cr. a% .4- cr. --1. as 4. .- 4. -4- (r) rt1 c-4 e...1 ,

. . a . 1 . 0 0 0 0 0 0 0 0 LP 0 try 40 LP 0 ln 4 -.1•• re1 rn r-.4 r4 ,

4( 0 • • • 0 4

Fig 5.161 A

-7- ••••-• • • 7-; C• ED • k CC

0

0

e. easte.rn.k1Jç of a) ,dah-3oA.t 12,4) 177

Cd F0

CD

0 F4-. 1 1-1

ALL SUB-ZONES E Cra.ss letn-ct with 8 r-cc.e ke

0

•r1 inter-rneoLidde F-1 0 Mixed Commun....Ey

CaUutc.o.- MotirLits. 0 moor-land teN

0 CIA -3 •• cm AI-Z SUB-ZoNES

F-1 A 1- I. sAmpLes 10 -1-D

I• •

9-1

loo - 14.9 260 - 2-99 300- 314-9 3So- 39" L4-00- 1I-49 4.5.0-499 Soo

*Cs C C

• ED3 •

CLe * C 6

• Coo

A

Oh 00 • A . ,A0 350- 0

300

0

Sue-Los IN zoNE A

150' L. A • • a • c • D s E o E watt Zoo • F

30 -3 :0 A AlE ../±1 C171

Fig. 5.163 Zone A — Scattergram: pgPa cm AVE horizon / ,ugPao c:n-3 in Oh horizon 500

# CS CC.2 •

.SPZI

0

Oh 0 0 0 • # 4 350 o • • 0

0 300 0 II

0

sue-ZONES 11.4 zow£

IS O • A

• B

• D • E east 200 o E west O F 0

ISO o ., 360 350 lecio icii,/E (.22; C/71

Fig. 5.164. Zone A - Scattergram: pgPao cm Ah/i] horizon / )1;Pao cm-3 in Oh horizon • Prl 0 la

d a. U co ...• 4 4- .4 • • 4 a

4 o

0 4 0 0 <1

4 4 • a • o a • 0 •

• •

ID*

U U ei

U

• 4 •

0

4

CP la • 'z CC 13 o N Z I w Lu 11 V' a 03 0 0 s ' 7 co o n <> < 4 •n •• o o 0 til 1.4 0 4 4

(Z) ez, o ‘c% --.. o 4-1 o'l ---

Fig. 5.165 Zone A - Scattergram: ,ugPo cm -3 in Oh horizon /,ugPa cm -3 in Oh horizon

L •1'

k

3r 4-

4-

o 0 0 < k w 2

>. 0". 0% 0.• 1- CP cr• 0, a 0' 0, a- CP 0, CT to cr a' C•1 fs, CT Z v./ -... 0 to ..... -..: -.. ... C. N C 6 • • . . 0 o w o o o 0 o o o 0 .1 0 o o o 0 a 3 We r1 ... 0 ON CO n -.. -.: -.7. 0 ...... ‘-k1 J --c 0 `z[ o 0 <1 Cr)

I

Fig. 5.166 0 0.- cr• cy• (3.- ch 0- 0.• -+ cr• ...1. cr- 4 N en en (-4 (-4 , I I I I o 0 o o o Q 0 tel o in 0 vs c) en en el e-1 , — il 0 • O. 13 4

Fig. 5.167

7 17 n B

N Atli' De.nim ACE

a 1.4.1EAteiN - q 4FY ED cr) Sue-Soft smi r- o C ;-1 to

a) Eo fo 40 C-- cc 17,1 8 '. Fl H ..-i D F - 7, E

e \ e • caste,. Lif \ 17 of 414 -pm. \e n -\ e\\l \

F.„,t C

C F 4 F -3 r/ PCL 0 on on POE korl) - - A.I.I. SamPLES 11 .4.7 ALL SuS-zoNES

[I

5"

\ N I \ N: /00-14_9 /50- /99 250-299 300-3i1..'3 . 350- 399 Fig. 5.169 43% cr• cr. cr• C- n 4 n •• vet (-4 1' • • • • 0 -Z o o o 0 0 o o 0 o o 0 tP 0 L.L.1 trt o Iti en cn •-) --

I`Z 40 40 • <> C •

Fig. 5.170

A NI

Li

••nn•

Pa — E0 0 F-4 CC

ED cc

Cd

•rt Ci rd

rd

Cd .. s-- E N e \ e • etSter 4 WC \ \ e e e of -Sol,-Ion.o. \ \ \

01 OMD

›"A

!Y.)

P ALL SUS- 20NES Ia. sAmpLis z 6-1 Ah/E Aorzion i on

E1 Fitts Dagispimst

LI WEAKLY -CLLYED 5u8 Soli_

0 4-, cr,

a) 5 0

• tr.\

h 0 1000-14.99 Soo- 939 2.000-2.499 - 2999 30c)o-34.99 3500- 3999 Fig. 5.172 8

CAE( DRAINACE

El wEA kL Y -CLEY ED u8 -SOIL

ED

ED 17Q 1 N

e= ecis te‘A N ka.ff of 40.3.4.e.

F AND 4'

F

A 1.4. SA MPLES

insa. d; 47

/3 kOri./ 0 ILS

ALL SUB-ZON4S

2 0 0 - 2.99 30o-399 t4-00- 4-99 500-599 600-699 ▪

..e , 4

kr 0 ..

4 kr

• 0 . 0 O 0 0 • o /. 0 0 a ra k 0 . • * a x 4- a 0 0 • E k : e • -V

+

0 0 0 cz -N- w z

ON (r. /Ir. T 07,. 0 s e\ 0.. CT' -I" CI ,* el re) I I . I N 0 o 0 o a a 0 %it a ‘4., a Q n 0 en in 4-4 (NI n r,

* 0 • • 0 o a

Fig. 5 .1 74. 8 TI

cc ED cc rc71, 7 N

e : e4s6er4 half of 4 aG-iO4e N

FIJI

rTi

ALL SUB-7-ONES

ALL A mPLCS 4.447

CAEE DRAhvACE

L4414KLy- CLEYED StiB 9 0/L- p j Pri 8 horiionS

5 . 0- 9-9 10-0-14.9 ,5.0 -19.9 10.0 -1.4.9 1.5 o-19-9 30 o 34-9 35.o-39.9

Fig.5.175 Zone A - Histograms: gPa m-2 in B horizons by sub-zones and soil drainage groups IS Cr' ON Cr% 437% 0 Cis 0"` CiN CiN 1:3- r's ''', 0 1..n -.i. INe) tel I I 1 I I N n c 1 0I o o o o 0 "e.,.. (:) • J 6 6 o a 0 r- Ix) --+ I•r)

. • . 0 4

Fig. 5. 176 B ri N - - - C - ED C— e CC \. F

17 - - e: G4.Sterrt 44.1/ of 406- C•ote \ IT

rAp,r, 4

ri ^

AL L Sua-2.014ES H a'.& sAmpus :S] ,cweE DRahvA4'4 - n.47

WAliel-Y- CLEWED 0 gU,Sgoli_ _

5

\-- B Aori•yonf , \ 30•0 - 39 . 9 40 0-49 . 9 5o•o - 59-9 Lo•o -9 . 9 To•o- 11.9

-2 i Fig. 5.177 Zone A - Histograms: gPo m in B horizons by sub-zones and soil drainage groups Fig• 5.178 \ A n \ \ 8 n -\ F n ^ C - - ED - CC,. FI N N D c--- e : eilStent e of \ \ E it...if rel e e \ 406-30,1e N n N \ ^ , FANag c N \ n 7

E FREE DRA tniraCE ^ CI WERkLY - q t_EYED - u8 SOIL

ALL SuB-ZoNES - - A.47 - ALL SAMPLES

-

- n ri

5 LasP 0 k''Loi j B horZ7o/t5 / F 22 50 - 14. 9 9 2.004" 2.7 49 2.7 Co -1999 30oo -314-9 32.5.0- 3499 3o514.9 3750. 3999

-1 Fig. 5.179 Zone A - Histograms: mgPo kg LOI in B horizons by sub-zones ana soil drainage groups CI

CI • k k

k o < A- U z

Crs. crs o 47% er. csn 4 a. 4 crn --$ ‘4"1 4 -4 re) re) Z)) N 0 1 1 1 Ci VI 0 ...0 0 0 14—' so 1:3 vl c 0 UN o o )•• t.cl 4 en cc) C 4

•1

Fig. 5.180

t

0 0 0 0 0 N ...o tn -4. ti r4

`.1 o , , -, o , , I. I ..... Cl- - ...._ ...... 0 tri -4- 01 r4 A

*0 • o

Fig. 5.181 Fig. 5.182 n PI

P • P.••1%.slve.s p.la•• s• I

o • 0 wt.-4"..-Atot A f•S",te NAM'S' 7

— ED ED H

7 7 — e e easter.% kftif ea,- 5.4e 7 7

••nn1

FANO

o Ale C Caoups A "Imo B r P • etalatael — 0 •Ovee6wedeet a a A [6114 2o/vg C , Alo,trs4 Loaf

5" .,9 600- &co 450-499 210 -2:31 3oo- 34.9 350-3,9 4-00 - 4-49 45o - 499 6'Co- 599

-I Fig. 5.183 Zone A and Zone C - Histograms: mgPao kg IFe in profiles to a depth of 40 cm by sub-zones and groups A n pi NI

-

8 N 7 7 -

ED - ID 7 C

D 7 N

I, . toter.. ^ 1 4444.jom \ E

7 N c

EfREE DRAINAGE - - 0 aii A ki.v - 4.LEVE D Su a so/4 _ to AL!. Su8-xonICS .... ALL SAMPLES' n:47

n n n

ferty Pa. o k1 - 71-e \ \\ Prop:Les to 40 crn N N T\ nr , N 2.Sø- 2,99 '3 o o - 34-9 3So - 39 9 4- ea - 4-4-9 Li- 5 0 - 419 S 0 o - 54.9 SCo - 699 600- 6 49 O -39 -1 Fig. 5.184 Zone A — Histograms: mgPao kg IFe in profiles to a depth of 4_0 cm by sub—zones and. soil drainage groups El 1-1 El Fi 17 - Pr P.-el...star,. paha.toSol 0= 006.60A4e4 f: Yak. C 8 Hm77if 1-1

E D

- - - CC CC ED C FTi r7- D

_ e e , ea4then. e kaif 01.6J. e E 5°' ra

11..nnn —47 FAND q c

- 10

nnnn•

- r--

n11nn• - ALL SuB-ZoNES N 20A./E A

ft r; 47 s

Pet 0 m-I- j 1 A-of aes to 4 0 cm

Alortrm toar ^ ZorJr C1 n1-1 1-1 n

Pr Oltd..eval. p4.2A4osoC Zo.vg C, 4x.up s A - o- Ovc,C,.."Aew A AJdo B roi p 51 A F v so p 110 1%0 130 14.0 15 0 160 110 I g o 190 2.00 240 -101 -119 -12.9 -119 -11+9 -159 -149 -179 -199 -119 -X09 -2.19

Fie. 5.1 5 Zone A and Zone C - Histograms: gPao m - 2 in profiles to a depth of 40 cm by sub-zones and groups \

— ED 7d, cc CC\ rJ51

NI es e._cto-4 E Aub-3o4e e\ \ 17'7.

1a8c DRAWASE

1.1. u8-X0x/E5 we41(LY-CLEYED SUBSOIL

Jo& mC2

P,-0 /Lief to 4-0 CM

ALL CAMPLiC ns

5

80 0- V9-9 90 0- 4)9 .9 loo . o- 09.9 110 . 0- fiq.9 12.0 . 0.12.9.9 1 30• . 139.9 r\-e•-/-•-"a 1600 - 169.9 —2. Fig. 5.186 Zone A — Histograms: gPo in in profiles to a depth of 40 cm by sub—zones and soil drainage groups o 0 vt

4

:1 • ;.4i . 0 u sO - 3 o

..0

4 ..., -Is • o ::: • • d : i 0 • ci o -+ '4-, • o et • • %k- m l Z • Q. o o

• II • 0 .1 0 4 o

o 0 •

o 4

4 • • 0 * o ri

1

U

co 0 tat or- 4 2 4, e•4 1.1 n 4.1 • C 0 .1.1 641.: Zi N‘ai

, . a SA CO tl 444 co Cs C) Lk c:[ Lk' L.) (../) Z

Fig. 5.187 Zone A - Diagram showing sub-zone R and SD: mg Pao kg-lIFe in profiles to a depth of 40 cm k

0 o

-k

E 0 In /Ln 1.11 Ln -4 Ln 11) Ln Cr) e4 ...... _ e-1 ri C 0 . g o + 4 4 4 I 1 I cn 4 V I 0 • o 0 0 -1 4, .1 Ct 1- 03 4 4 46.11 4b 4.4.: 4.1 ill 41 ..4t. 0 2 41 -a , ÷ -.0 0 I w . -...co w c-4 tn •0 --- E 2 c--1 0. A + I w t z ,, + + I 1 I 1 w - U U o 2 0 ci ..1), t- I ce U.— a. * • z la cria 0, 0 * 0 a a a.. w.1 0

Fig. 5.188 0

-C 0 oti

Fig. 5.189 Zone A - Vertical distribution, sub-zone .1-c : pga cm-3 C.4 t_t Li •

_c 0 Cid

- Fig. 5.190 Zone A - Vertical distribution, sub-zone x : psPo cm-3

01.)

E east B i / \\\ '-- A / • 8, 6r \. \ /1 / / ,. 0 E wed I'l / / I' l •/

It /.

100 2 0 0 - 3 3 0 o4. o o 500 GT. an.cL SD Su6-3•A el

Fig. 5.191 Zone A - Vertical distribution, sub-zone 3: and. SD: p.gPao cm-3 •

0 a) 4 es

v

0 •

ky 0

—C CO

-1 Fig. 5.192 Zone A - Vertical distribution, sub-zone R: mgPo kg LOI •

4co

ii_oo •

A IVE_

• 0 • • • • er-f 350 • ra• et:1 • Ln_jP_ao 0 o o 4-3

• a,o H 300 4-4 D-1 0

fi/14 •

•ri srl • CD (ll rr-4 H H • • 7 7 • • to to • 00 250 cd • • 1--4 (10 t)L0 • • • • • • a) a • qj • 0 C') 200 • •

• ,z4 • • • a) • • • • ••

• re'N •

ifl 150 • • b.3 •rI •

300 , 6'oo kja Fe "0 Pr-o fi'I 0 °coo_ Cm

4.00 •

350 • • • A VE (exct.E)

• , • •

• •

•rl ;-1 0 tr) a) 4-1 al •ri 250 `81

04 0 •,1

rte1

I 0 fEl 0 0 cd 4r3 04 40 40 0 Zoo

ca ;-1 43

a)

-1-)

c'? ISO 2.00 :5? PO. 0 RS Protas to 4-0 col Lfl r

csi °I 0

ln Cr% t.4, 00- M cla 0

— Maw n11. ••••n•

as 0 0- plik V) %IP r4

110

CC

tri .0 NI cl, z In c. M Oa 0 CL L.) r- c-4 1 tr, C.P.

...ti C V Ti K 0 11. C • N.%...1 o l 0 i -.4 o ....4 4) -..... 00 C ...c ...e 0 I::c D

* Fig. A 5.1 Zone C, GToups A and B — Lateral distribution: mgPao kg Fe in Oh and Ah/E horizons rc) 0

r— C•1 C•4

0

0

Fig. A 5.2 West StokT Farm and Bench Tor - Lateral distribution: mgPao kg Fe in Ap and Ah/E horizons