The Role of LIM Proteins in Signal Transduction Susan Brown Department of Biochemistry and Molecular Biology, Monash University, Vic 3800

Total Page:16

File Type:pdf, Size:1020Kb

The Role of LIM Proteins in Signal Transduction Susan Brown Department of Biochemistry and Molecular Biology, Monash University, Vic 3800 Volume 32, No. 1, April 2001 S h o w c a s e o n R e s e a r c h The Role of LIM Proteins in Signal Transduction Susan Brown Department of Biochemistry and Molecular Biology, Monash University, Vic 3800 The intricacy and diversity of cell func- The LIM domain is similar to, but dis- tifs, but have also been shown to bind pro- tions require an incredible complexity and tinct from, other zinc-binding motifs des- teins, mediating dimerisation and interac- specificity of protein interactions (1). LIM ignated zinc fingers, which occur in a wide tion with other zinc-finger and non-zinc domains are one of a growing number of variety of proteins (3). Zinc fingers were finger proteins. Evidence to date indicates structural motifs implicated in mediating initially recognised as DNA-binding mo- that LIM domains are protein-binding zinc protein-protein interactions required for regulation of transcription and mainte- nance of the actin cytoskeleton (2). This review will focus on the role of LIM pro- teins in cell signalling pathways. LIM is an acronym of three transcrip- tion factors lin-11, isl-1 and mec-3, in which the motif was first identified. LIM domains contain 50 - 60 amino acids form- ing a double zinc-finger motif with the consensus sequence (C-X2-C-X16-23-H- X2-C)-X2-(C-X2-C-X16-21-C-X2-H/D/C) (Fig. 1). The conserved cysteine, histidine and aspartic acid residues form two tetrahe- dral zinc-binding pockets, which stabilize the secondary and tertiary structure of the Fig. 1. Schematic representation of a LIM domain. The highly conserved cysteine (C) and histidine (H) amino acids form two zinc-binding pockets. The two zinc fingers are always separated by two amino protein. Mutation of either the conserved acids. The more variable sequences of between 16 and 23 amino acids form the two fingers and contain cysteine or histidine, disrupts both zinc the protein binding sites. binding and the function of the LIM domain. fingers (4). The presence of two or more LIM domains in most LIM proteins, ena- bles LIM proteins to bind more than one protein, and therefore to act as molecu- lar adaptors or scaffolds for the coordi- nated interaction of several proteins. LIM proteins have been divided into three groups according to the amino acid homology between their LIM domains, classified as types A-E (Fig. 2) (2). Group 1 LIM proteins contain paired N-termi- nal type A and B LIM domains either alone (Lmo proteins), or in association with a C-terminal homeodomain (LIM-homeo- domain proteins) or a kinase domain (LIM-kinase). Group 1 LIM proteins are predominantly nuclear, with the exception of LIM-kinase 1. LIM-homeodomain pro- teins perform critical roles in embryonic development and tissue differentiation. Group 2 LIM proteins contain one or two Type C LIM domains followed by a glycine-rich region with no other signifi- cant signalling domains. They include cysteine-rich protein 3/ muscle LIM pro- tein (CRP3/MLP), targeted deletion of which has been shown to cause a dilated 7 Australian Biochemist S h o w c a s e o n R e s e a r c h The Role of LIM Proteins in Signal Transduction (contin.) cardiomyopathy in mice (5). of transcription factors, to fine-tune gene cell line inhibits red cell maturation and The CRP family members have a joint expression, particularly of genes involved haemoglobinisation (9). Lmo2 might en- localisation in the nucleus and associated in tissue differentiation. able a population of early erythroid cells with the actin cytoskeleton. Group 3 LIM LIM proteins have been associated with to continue proliferating by inhibiting ter- proteins contain 1-5 predominantly C- both congenital and acquired human dis- minal differentiation. This may explain why terminal Type D and E LIM domains in eases. Mutations of the gene encoding the unregulated Lmo2 expression in T- association with other signalling domains LIM-homeodomain protein, Lmx1b, which lymphocytes causes leukaemia. such as PDZ or proline-rich motifs. regulates dorsal limb patterning, cause Group 3 LIM proteins are predominantly Nail-patella syndrome (6). Heterozygos- LIM proteins in cell signalling cytoplasmic, many interacting with the ity of the LIM-kinase1 gene is responsible Non-nuclear LIM proteins bind cyto- cytoskeleton. They include the important for the visual cognition defects occurring solic signalling and cytoskeletal proteins. focal adhesion proteins, paxillin and zyxin. in Williams syndrome (7). Lmo2, a nuclear In a manner analogous to transcription It has been proposed that LIM proteins, LIM protein containing only two LIM do- factor complexes, cytosolic LIM proteins which contain up to 5 LIM domains, form mains, is associated with the most com- enable the interaction of proteins impor- a scaffold upon which the coordinated mon translocations in T-cell acute lym- tant for signal transduction and regula- assembly of signalling proteins occurs (4). phoblastic leukaemia (T-ALL). Lmo2 is also tion of the cytoskeleton. In the cytoplasm, LIM-homeodomain proteins bind DNA essential for normal erythopoiesis; knock- LIM domain binding may regulate intrac- via their homeodomain, whilst their as- out mice die in utero due to severe anae- ellular localisation or link different signal- sociated LIM domains bind other protein mia (8). ling pathways. transcription factors. The LIM domain ap- The LIM domains of Lmo2 enable the For example, individual LIM domains of pears to have an inhibitory effect on the synergistic interaction of erythroid tran- PINCH, comprised of five LIM domains, associated homeodomain’s ability to bind scription factors. Although Lmo2 knock- bind integrin-linked kinase and the adap- DNA. Nuclear LIM-homeodomain and out mice fail to develop red cells, over- tor protein Nck-2, comprised of SH2 and LIM-only proteins regulate the interaction expression of Lmo2 in a proerythroblast SH3 domains (10). Nck-2, binds activated tyrosine kinase growth factor receptors such as the platelet-derived growth fac- tor (PDGF) receptor. PINCH is able to form a complex between ILK and Nck-2, and therefore links integrin and growth factor receptor signalling. LIM-domains do not appear to bind a single consensus sequence. Instead, a number of binding partners with no over- ? all common sequence or structural mo- tifs have been identified. The highly con- served cysteine and histidine confer the overall structure and stability of the do- mains but the intervening amino acids are more variable. These intervening amino acids deter- mine the protein binding specificity of the domain, thus explaining the wide range of binding partners. LIM domains have been shown to homodimerise and heterodimerise, and to bind various ty- rosine-containing sequences, PDZ do- mains, ankyrin type repeats, PKC isoforms and kinase domains. The factors influenc- ing LIM domain binding and the role of LIM-mediated interactions in signal trans- duction are starting to be elucidated. LIM-tyrosine motif binding Fig. 2. Classification of LIM proteins. Group 1 LIM proteins contain paired type A and B LIM domains either alone or in association with a homeodomain (labelled-HD) or PDZ and kinase domains . Phosphorylated tyrosine motifs are a Group 2 LIM proteins contain type C LIM domains followed by a glycine-rich region (labelled-G). Group 3 widely utilised signalling mechanism for LIM domains contain C-terminal type D and E LIM domains, in association with other signalling domains such as PDZ domains. mediating protein-protein interactions, binding both SH2 and PTB (phospho- 8 Volume 32, No. 1, April 2001 S h o w c a s e o n R e s e a r c h The Role of LIM Proteins in Signal Transduction (contin.) tyrosine binding) domains. Other tyro- As for the interaction with Ret, kinase lar to the LIM protein association, differ- sine-containing motifs, which do not re- activity and phosphorylation of the tyro- ent RACKs bind certain PKC isoforms. quire phosphorylation, have been shown sine motif are not required for LIM bind- However the association of PKC with to interact with LIM domains. ing. Wu and co-workers noted that the RACKs is altered by cell stimulation, Such interactions have been demon- LIM-binding sequence of Ret may also whereas the association with ENH is not. strated for the LIM protein Enigma, which form a tyrosine tight-turn because its se- LIM protein binding of PKC may stabilise contains an N-terminal PDZ domain and quence is similar to the endocytic se- the interaction between PKC and its an- three C-terminal LIM domains. LIM2 of quence of the LDL receptor which itself choring RACK protein. Enigma binds Ret (11) and LIM3 binds the forms a tight-turn (13). insulin receptor (12). The respective LIM A consensus tyrosine tight-turn se- LIM-serine/threonine kinases domains bind tyrosine-containing se- quence containing two copies of Asn-Asn- LIM domains have been shown to as- quences, which although similar, are not Ala-Tyr-Phe arranged in a helix-turn-he- sociate with other serine/threonine interchangeable. lix, which mediates receptor endocyto- kinases. For example, LIM1 of PINCH LIM2 of Enigma interacts with an Asn- sis, interacts with a broader range of LIM binds the ankyrin repeats of integrin- Lys-Leu-Tyr sequence at the C-terminus domains, possibly indicating a more gen- linked kinase (ILK), a serine/threonine ki- of the tyrosine kinase receptor Ret (11). eral interaction between specific LIM pro- nase, implicated in integrin signalling (10). Germline mutations which inactivate Ret teins and tyrosine tight-turn motifs. The LIM domains of the focal adhesion kinase cause Hirchsprung’s disease, result- protein paxillin bind a serine/threonine ing in defective parasympathetic innerva- LIM-Protein kinase C interaction kinase.
Recommended publications
  • Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
    International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. Large-scale quantitative phosphoproteomic profiling was performed on paired vehicle- and hormone-treated mTAL-enriched suspensions (n=3). A total of 654 unique phosphopeptides corresponding to 374 unique phosphoproteins were identified. The peptide sequence, phosphorylation site(s), and the corresponding protein name, gene symbol, and RefSeq Accession number are reported for each phosphopeptide identified in any one of three experimental pairs. For those 414 phosphopeptides that could be quantified in all three experimental pairs, the mean Hormone:Vehicle abundance ratio and corresponding standard error are also reported. Peptide Sequence column: * = phosphorylated residue Site(s) column: ^ = ambiguously assigned phosphorylation site Log2(H/V) Mean and SE columns: H = hormone-treated, V = vehicle-treated, n/a = peptide not observable in all 3 experimental pairs Sig. column: * = significantly changed Log 2(H/V), p<0.05 Log (H/V) Log (H/V) # Gene Symbol Protein Name Refseq Accession Peptide Sequence Site(s) 2 2 Sig. Mean SE 1 Aak1 AP2-associated protein kinase 1 NP_001166921 VGSLT*PPSS*PK T622^, S626^ 0.24 0.95 PREDICTED: ATP-binding cassette, sub-family A 2 Abca12 (ABC1), member 12 XP_237242 GLVQVLS*FFSQVQQQR S251^ 1.24 2.13 3 Abcc10 multidrug resistance-associated protein 7 NP_001101671 LMT*ELLS*GIRVLK T464, S468 -2.68 2.48 4 Abcf1 ATP-binding cassette sub-family F member 1 NP_001103353 QLSVPAS*DEEDEVPVPVPR S109 n/a n/a 5 Ablim1 actin-binding LIM protein 1 NP_001037859 PGSSIPGS*PGHTIYAK S51 -3.55 1.81 6 Ablim1 actin-binding
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Spatial and Temporal Aspects of Signalling 6 1
    r r r Cell Signalling Biology Michael J. Berridge Module 6 Spatial and Temporal Aspects of Signalling 6 1 Module 6 Spatial and Temporal Aspects of Signalling Synopsis The function and efficiency of cell signalling pathways are very dependent on their organization both in space and time. With regard to spatial organization, signalling components are highly organized with respect to their cellular location and how they transmit information from one region of the cell to another. This spatial organization of signalling pathways depends on the molecular interactions that occur between signalling components that use signal transduction domains to construct signalling pathways. Very often, the components responsible for information transfer mechanisms are held in place by being attached to scaffolding proteins to form macromolecular signalling complexes. Sometimes these macromolecular complexes can be organized further by being localized to specific regions of the cell, as found in lipid rafts and caveolae or in the T-tubule regions of skeletal and cardiac cells. Another feature of the spatial aspects concerns the local Another important temporal aspect is timing and signal and global aspects of signalling. The spatial organization of integration, which relates to the way in which functional signalling molecules mentioned above can lead to highly interactions between signalling pathways are determined localized signalling events, but when the signalling mo- by both the order and the timing of their presentations. lecules are more evenly distributed, signals can spread The organization of signalling systems in both time and more globally throughout the cell. In addition, signals space greatly enhances both their efficiency and versatility.
    [Show full text]
  • Actin Bundling Via LIM Domains
    [Plant Signaling & Behavior 3:5, 320-321; May 2008]; ©2008 Landes Bioscience Article Addendum Actin bundling via LIM domains Clément Thomas,* Monika Dieterle, Sabrina Gatti, Céline Hoffmann, Flora Moreau, Jessica Papuga and André Steinmetz Centre de Recherche Public-Santé; Val Fleuri 84; L-1526; Luxembourg Key words: Actin-binding proteins, actin-bundling, cysteine-rich proteins, cytoskeleton, LIM domain. The LIM domain is defined as a protein-protein interaction module involved in the regulation of diverse cellular processes including gene expression and cytoskeleton organization. We distribute. have recently shown that the tobacco WLIM1, a two LIM domain-containing protein, is able to bind to, stabilize and bundle actin filaments, suggesting that it participates to the regulation of actin cytoskeleton structure and dynamics. In the December issue of the Journal of Biological Chemistry we report a domain analysis not that specifically ascribes the actin-related activities of WLIM1 to its two LIM domains. Results suggest that LIM domains func- Figure 1. Domain maps for wild-type WLIM1 (A) and GFP-fused chimeric tion synergistically in the full-length protein to achieve optimal 3xWLIM1 (B). A. WLIM1 basically comprises a short N-terminal domain (Nt), two LIM domains (LIM1Do and LIM2), an interLIM spacer (IL) and a C-terminal activities. Here we briefly summarize relevant data regarding the domain (Ct). B. 3xWLIM1 consists of three tandem WLIM1 copies. This chi- actin-related properties/functions of two LIM domain-containing meric protein has been fused in C-terminus to GFP and transiently expressed proteins in plants and animals. In addition, we provide further in tobacco BY2 cells.
    [Show full text]
  • Early Evolution of the LIM Homeobox Gene Family
    Srivastava et al. BMC Biology 2010, 8:4 http://www.biomedcentral.com/1741-7007/8/4 RESEARCH ARTICLE Open Access Early evolution of the LIM homeobox gene family Mansi Srivastava1*, Claire Larroux2, Daniel R Lu1, Kareshma Mohanty1, Jarrod Chapman3, Bernard M Degnan2, Daniel S Rokhsar1,3 Abstract Background: LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results: We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra.
    [Show full text]
  • Characterization and Sequence Analysis of Cysteine and Glycine-Rich Protein 3 in Egyptian Native Cattle and River Native Buffalo Cdna Sequences
    African Journal of Biotechnology Vol. 10(16), pp. 3055-3061, 18 April, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1953 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Characterization and sequence analysis of cysteine and glycine-rich protein 3 in Egyptian native cattle and river native buffalo cDNA sequences Ahlam A. Abou Mossallam, Nevien M. Sabry, Eman R. Mahfouz*, Mona A. Bibars and Soheir M. El Nahas Department of Cell Biology, Genetic Engineering Division, National Research Center, Dokki, Giza, Egypt. Accepted 3 February, 2011 Cysteine and glycine rich protein, CSRP3 also referred to as the muscle LIM protein (MLP), has been investigated in native Egyptian cattle and buffalo (river buffalo). RNA extraction and cDNA synthesis were conducted from different tissue samples. Primers specific for CSRP3 were designed using known cDNA sequences of Bos taurus published in database with different accession numbers. Polymerase chain reaction (PCR) was performed and products were purified and sequenced. Sequence analysis and alignment were carried out using CLUSTAL W (1.83). Multiple nucleotide sequence alignment between CSRP3 cDNA amplicons of native buffalo and cattle revealed 89% identity. B. taurus CSRP3 mRNA (Cardiac LIM protein) [NM 001024689.2] showed 85 and 87% identity in nucleic acid sequences and 82 and 84% homology in amino acid sequences with native cattle and buffalo, respectively. A 90% homology was detected between the amino acid sequences of river buffalo and native cattle. Fourty nine translated amino acids out of 51 in both buffalo and cattle are found to be part of the conserved CSRP3 LIM1 domain protein which comprises 57 codons.
    [Show full text]
  • Genetic Basis of Hypertrophic Cardiomyopathy
    UvA-DARE (Digital Academic Repository) Genetic basis of hypertrophic cardiomyopathy Bos, J.M. Publication date 2010 Link to publication Citation for published version (APA): Bos, J. M. (2010). Genetic basis of hypertrophic cardiomyopathy. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 Chapter 4 Echocardiographic-Determined Septal Morphology in Z-Disc Hypertrophic Cardiomyopathy Jeanne L. Theis*, J. Martijn Bos *, Virginia B. Bartleson, Melissa L. Will, Josepha Binder, Matteo Vatta, Jeffrey A. Towbin, Bernard J. Gersh, Steve R. Ommen, Michael J. Ackerman * These authors contributed equally to this study Biochem Biophys Res Commun 2006; 351(4): 896 – 902 Abstract Hypertrophic cardiomyopathy (HCM) can be classified into at least 4 major anatomic subsets based upon the septal contour, and the location and extent of hypertrophy: reverse curvature-, sigmoidal-, apical-, and neutral contour-HCM.
    [Show full text]
  • The LIM-Only Protein FHL2 Is a Serum-Inducible Transcriptional Coactivator of AP-1
    The LIM-only protein FHL2 is a serum-inducible transcriptional coactivator of AP-1 Aurore Morlon and Paolo Sassone-Corsi* Institut de Ge´ne´ tique et de Biologie Mole´culaire et Cellulaire, B. P. 10142, 67404 Illkirch–Strasbourg, France Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved February 10, 2003 (received for review October 1, 2002) Proteins with LIM domains have been implicated in transcriptional in proliferation and differentiation of cardiomyocytes is AP-1 regulation. The four and half LIM domain (FHL) group of LIM-only (20, 21). Because the constituents of AP-1, the oncoproteins Fos proteins is composed of five members, some of which have been and Jun belong to the bZip class of transcription factors (22–26), shown to have intrinsic activation function. Here we show that as CREB and CREM (27, 28), the possibility that FHL2 could FHL2 is the only member of the family whose expression is interact with Fos and Jun is appealing. inducible upon serum stimulation in cultured cells. Induction of Here we show that the expression of the gene encoding FHL2 FHL2 is coordinated in time with the increased levels of two is inducible by serum. This characteristic is unique to FHL2 early-response products, the oncoproteins Fos and Jun. FHL2 as- because all of the other members of the FHL family are not sociates with both Jun and Fos, in vitro and in vivo. The FHL2-Jun inducible. This feature prompted us to explore the possibility interaction requires the Ser-63-Ser-73 JNK phosphoacceptor sites in that FHL2 could indeed modulate the activity of the serum- c-Jun, but not their phosphorylation.
    [Show full text]
  • Evolutionarily Diverse LIM Domain-Containing Proteins Bind Stressed Actin Filaments Through a Conserved Mechanism
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980649; this version posted March 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evolutionarily diverse LIM domain-containing proteins bind stressed actin filaments through a conserved mechanism Jonathan D. Winkelman1*, Caitlin A. Anderson2*, Cristian Suarez2, David R. Kovar2,3 and Margaret L. Gardel1,4 1Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA. 2Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. 3Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA 4James Franck Institute, Physics Department and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA. *Contributed equally #Correspondence should be addressed to: [email protected], [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980649; this version posted March 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY The actin cytoskeleton assembles into diverse load-bearing networks including stress fibers, muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1 & Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force-sensitivity.
    [Show full text]
  • The Ajuba LIM Domain Protein Is a Corepressor for SNAG Domain–Mediated Repression and Participates in Nucleocytoplasmic Shuttling
    Research Article The Ajuba LIM Domain Protein Is a Corepressor for SNAG Domain–Mediated Repression and Participates in Nucleocytoplasmic Shuttling Kasirajan Ayyanathan,1,4 Hongzhuang Peng,1 Zhaoyuan Hou,1 William J. Fredericks,1 Rakesh K. Goyal,3 Ellen M. Langer,2 Gregory D. Longmore,2 and Frank J. Rauscher III1 1The Wistar Institute, Philadelphia, Pennsylvania; 2Department of Medicine, Washington University School of Medicine, St.Louis, Missouri; 3Blood and Marrow Transplantation Program, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania; 4Center for Molecular Biology and Biotechnology, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida Abstract with the components of the basal transcription machinery, (b) ATP-dependent remodeling of chromatin, and (c) site-specific The SNAG repression domain is comprised of a highly modifications such as acetylation, phosphorylation, methylation, conserved 21–amino acid sequence, is named for its presence and ubiquitination of the nucleosomal histones, which serve as in the Snail/growth factor independence-1 class of zinc finger biochemical codes in the context of complex chromatin structure transcription factors, and is present in a variety of proto- (2).A widely accepted paradigm is that histone acetylation leads to oncogenic transcription factors and developmental regula- gene activation, whereas histone deacetylation results in repres- tors. The prototype SNAG domain containing oncogene, sion.Importantly, many repressors function through corepressor growth factor independence-1, is responsible for the develop- molecules as exemplified by DR-DRAP-1 (3), WRPW-Groucho (4), ment of T cell thymomas. The SNAIL proteins also encode the REST-Co-REST (5), and KRAB–KRAB-associated protein-1 (KAP-1; SNAG domain and play key roles in epithelial mesenchymal ref.6).
    [Show full text]
  • The LIM Protein Ajuba Influences Interleukin-1-Induced NF-Κb
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2005 The IML protein Ajuba influences interleukin-1-induced NF-κB activation by affecting the assembly and activity of the protein kinase Cζ/p62/TRAF6 signaling complex Yungfeng Feng Washington University School of Medicine in St. Louis Gregory D. Longmore Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Feng, Yungfeng and Longmore, Gregory D., ,"The LIM protein Ajuba influences interleukin-1-induced NF-κB activation by affecting the assembly and activity of the protein kinase Cζ/p62/TRAF6 signaling complex." Molecular and Cellular Biology.25,10. 4010-4022. (2005). https://digitalcommons.wustl.edu/open_access_pubs/2739 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. The LIM Protein Ajuba Influences Interleukin-1-Induced NF- κB Activation by Affecting the Assembly and Activity of the Protein Kinase Cζ/p62/TRAF6 Signaling Complex Downloaded from Yungfeng Feng and Gregory D. Longmore Mol. Cell. Biol. 2005, 25(10):4010. DOI: 10.1128/MCB.25.10.4010-4022.2005. http://mcb.asm.org/ Updated information and services can be found at: http://mcb.asm.org/content/25/10/4010 These include: SUPPLEMENTAL MATERIAL Supplemental material on January 6, 2014 by Washington University in St. Louis REFERENCES This article cites 45 articles, 23 of which can be accessed free at: http://mcb.asm.org/content/25/10/4010#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MOLECULAR AND CELLULAR BIOLOGY, May 2005, p.
    [Show full text]