Download Author Version (PDF)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
291533611.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice Mukesh Jain, Akhilesh K. Tyagi and Jitendra P. Khurana Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, India Keywords Homeobox genes play a critical role in regulating various aspects of plant abiotic stress; homeobox genes; microarray growth and development. In the present study, we identified a total of 107 analysis; reproductive development; rice homeobox genes in the rice genome and grouped them into ten distinct (Oryza sativa) subfamilies based upon their domain composition and phylogenetic analy- Correspondence sis. A significantly large number of homeobox genes are located in the J. P. Khurana, Department of Plant duplicated segments of the rice genome, which suggests that the expansion Molecular Biology, University of Delhi South of homeobox gene family, in large part, might have occurred due to Campus, Benito Juarez Road, New Delhi segmental duplications in rice. Furthermore, microarray analysis was 110021, India performed to elucidate the expression profiles of these genes in different Fax: +91 011 24115270 tissues and during various stages of vegetative and reproductive develop- Tel: +91 011 24115126 ment. Several genes with predominant expression during various stages of E-mail: [email protected] panicle and seed development were identified. At least 37 homeobox genes (Received 6 November 2007, revised 3 were found to be differentially expressed significantly (more than two-fold; March 2008, accepted 31 March 2008) P < 0.05) under various abiotic stress conditions. -
Cell Type–Dependent Effects of Polo-Like Kinase 1 Inhibition Compared with Targeted Polo Box Interference in Cancer Cell Lines
3189 Cell type–dependent effects of Polo-like kinase 1 inhibition compared with targeted polo box interference in cancer cell lines Jenny Fink, Karl Sanders, Alexandra Rippl, certain cell lines but highly contrasting effects in others. Sylvia Finkernagel, Thomas L. Beckers, This may point to subtle differences in the molecular and Mathias Schmidt machinery of mitosis regulation in cancer cells. [Mol Cancer Ther 2007;6(12):3189–97] Nycomed GmbH, Konstanz, Germany Introduction Abstract Polo-like kinase 1 (Plk1) has been identified as key player Multiple critical roles within mitosis have been assigned for G2-M transition and mitotic progression in both normal to Polo-like kinase 1 (Plk1), making it an attractive and tumor cells (1). Multiple roles have been assigned to candidate for mitotic targeting of cancer cells. Plk1 Plk1 at the entry into M phase, mitotic spindle formation, contains two domains amenable for targeted interference: condensation and separation of chromosomes, exit from a kinase domain responsible for the enzymatic function mitosis by activation of the anaphase-promoting complex, and a polo box domain necessary for substrate recogni- and in cytokinesis (reviewed in ref. 2). Moreover, recent tion and subcellular localization. Here, we compare two reports implicated an involvement of Plk1 in the resump- approaches for targeted interference with Plk1 function, tion of cell cycle reentry after checkpoint activation through either by a Plk1 small-molecule enzyme inhibitor or by DNA-damaging agents (3). It is therefore not surprising inducible overexpression of the polo box in human cancer that targeted interference with Plk1, primarily by anti- cell lines. -
Supplemental Table S1
Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 -
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R. -
Review Article Mitotic Kinases and P53 Signaling
Hindawi Publishing Corporation Biochemistry Research International Volume 2012, Article ID 195903, 14 pages doi:10.1155/2012/195903 Review Article Mitotic Kinases and p53 Signaling Geun-Hyoung Ha1 and Eun-Kyoung Yim Breuer1, 2 1 Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA 2 Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA Correspondence should be addressed to Eun-Kyoung Yim Breuer, [email protected] Received 6 April 2012; Accepted 18 May 2012 Academic Editor: Mandi M. Murph Copyright © 2012 G.-H. Ha and E.-K. Y. Breuer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. -
Download the Abstract Book
1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing. -
Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections
viruses Review Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections Zamaneh Hajikhezri 1, Mahmoud Darweesh 1,2, Göran Akusjärvi 1 and Tanel Punga 1,* 1 Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; [email protected] (Z.H.); [email protected] (M.D.); [email protected] (G.A.) 2 Department of Microbiology and Immunology, Al-Azhr University, Assiut 11651, Egypt * Correspondence: [email protected]; Tel.: +46-733-203-095 Received: 28 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection. Keywords: human adenovirus; zinc finger protein; CCCH-type; ZC3H11A; MKRN1; U2AF1 1. Zinc Finger Proteins Zinc finger proteins are a big family of proteins with characteristic zinc finger (ZnF) domains present in the protein sequence. The ZnF domains consists of various ZnF motifs, which are short 30–100 amino acid sequences, coordinating zinc ions (Zn2+). -
Α-Synuclein-Sy-Synucleinnuclein Phosphorylationphosphorylation Andand Re Relatedlated Kinaseskinases Inin Parkinsonparkinson’S Diseasedisease
αα-Synuclein-Sy-Synucleinnuclein phosphorylationphosphorylation andand relatedrelated kinaseskinases inin ParkinsonParkinson’s diseasedisease Jin-XiaJin-Xia ZhouZhou A thesis submitted in fulfillment of the requirement of the degree of Doctor of Philosophy School of Medical Sciences, Faculty of Medicine and Neuroscience Research Australia November 2013 I PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Zhou First name: Jin-Xia Other name/s: I Abbreviation for degree as given in the University calendar: PhD School: School of Medical Sciences Faculty: Medicine lation and related kinases in Parkinson's disease Abstract 350 words maximum: (PLEASE TYPE) ' Parkinson's disease (PO) is the most common neurodegenerative movement disorder pathologically identified by degeneration of the nigrostriatal system and the presence of Lcwy bodies (LBs) and neurites. structuTal pathologies largely made from insoluble a-synuclein phosphorylated at serine 129 (S 129P). Several kinases have been suggested to facilitate a-synuciein phosphorylation in PD, but without significant human data the changes that precipitate such pathology remain conjecture. The major aims of this pr~ject were to assess the dynamic changes of a -synuclein phosphorylation and related kinases in the progression of PD and in animal models of PD. and to determine whether Tenuigenin (TEN), a Chinese medicinal herb, can prevent cc-synucleln-induc.?d toxicity in a cell model. The levels of non-phosphorylated a-synuclein decreased over the course ofPD, becoming increasingly phosphorylated and insoluble. There was a dramatic increase in phosphorylated a-synuclein that preceded LB formation. Importantly, three a-synuc!ein-relatec ki nases [polo-like kinase 2 {PLK2), lcuc.:inc- rich repeat kinase 2 (LRRK2l and cyclin G-~tssoc i ated kinase (GAK)] were found to be involved at different times in the evolution of LB formation in P.O. -
Dissecting Mechanisms Controlling Neural Network Formation in Drosophila Melanogaster
Dissecting mechanisms controlling neural network formation in Drosophila melanogaster Hong Long Department of Neurology and Neurosurgery McGill University Montreal, Quebec, Canada August 2009 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the Ph.D. degree in Neuroscience © Hong Long, 2009 1 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-66458-2 Our file Notre référence ISBN: 978-0-494-66458-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
PLK-1 Promotes the Merger of the Parental Genome Into A
RESEARCH ARTICLE PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly Griselda Velez-Aguilera1, Sylvia Nkombo Nkoula1, Batool Ossareh-Nazari1, Jana Link2, Dimitra Paouneskou2, Lucie Van Hove1, Nicolas Joly1, Nicolas Tavernier1, Jean-Marc Verbavatz3, Verena Jantsch2, Lionel Pintard1* 1Programme Equipe Labe´llise´e Ligue Contre le Cancer - Team Cell Cycle & Development - Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France; 2Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria; 3Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France Abstract Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN- 1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development. *For correspondence: [email protected] Introduction Competing interests: The After fertilization, the haploid gametes of the egg and sperm have to come together to form the authors declare that no genome of a new diploid organism. -
The PAS Domain Confers Target Gene Specificity of Drosophila Bhlh/PAS Proteins
Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press The PAS domain confers target gene specificity of Drosophila bHLH/PAS proteins Elazar Zelzer, Pablo Wappner, and Ben-Zion Shilo1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel Trachealess (Trh) and Single-minded (Sim) are highly similar Drosophila bHLH/PAS transcription factors. They activate nonoverlapping target genes and induce diverse cell fates. A single Drosophila gene encoding a bHLH/PAS protein homologous to the vertebrate ARNT protein was isolated and may serve as a partner for both Trh and Sim. We show that Trh and Sim complexes recognize similar DNA-binding sites in the embryo. To examine the basis for their distinct target gene specificity, the activity of Trh–Sim chimeric proteins was monitored in embryos. Replacement of the Trh PAS domain by the analogous region of Sim was sufficient to convert it into a functional Sim protein. The PAS domain thus mediates all the features conferring specificity and the distinct recognition of target genes. The normal expression pattern of additional proteins essential for the activity of the Trh or Sim complexes can be inferred from the induction pattern of target genes and binding-site reporters, triggered by ubiquitous expression of Trh or Sim. We postulate that the capacity of bHLH/PAS heterodimers to associate, through the PAS domain, with additional distinct proteins that bind target-gene DNA, is essential to confer specificity. [Key Words: Gene expression; bHLH/PAS; Trachealess; Single minded; HIF1a; ARNT; trachea; midline] Received February 20, 1997; revised version accepted July 1, 1997. -
TRAF5, a Novel Tumor Necrosis Factor Receptor-Associated Factor Family
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9437-9442, September 1996 Biochemistry TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling (signal transduction/protein-protein interaction/yeast two-hybrid system) TAKAoMI ISHIDA*, TADASHI ToJo*, TSUTOMU AOKI*, NORIHIKO KOBAYASHI*, TSUKASA OHISHI*, TOSHIKI WATANABEt, TADASHI YAMAMOTO*, AND JUN-ICHIRO INOUE*t Departments of *Oncology and tPathology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan Communicated by David Baltimore, Massachusetts Institute of Technology, Cambridge, MA, May 22, 1996 (received for review March 8, 1996) ABSTRACT Signals emanating from CD40 play crucial called a death domain, suggesting that these receptors could roles in B-cell function. To identify molecules that transduce have either common or similar signaling mechanisms (13). CD40 signalings, we have used the yeast two-hybrid system to Biochemical purification of receptor-associated proteins or the clone cDNAs encoding proteins that bind the cytoplasmic tail recently developed cDNA cloning system that uses yeast of CD40. A cDNA encoding a putative signal transducer genetic selection led to the discovery of two groups of signal protein, designated TRAF5, has been molecularly cloned. transducer molecules. Members of the first group are proteins TRAF5 has a tumor necrosis factor receptor-associated factor with a TRAF domain for TNFR2 and CD40 such as TRAF1, (TRAF) domain in its carboxyl terminus and is most homol- TRAF2 (17), and TRAF3, also known as CD40bp, LAP-1, or ogous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, CRAF1 or CD40 receptor-associated factor (18-20).