Universidad Autónoma De Aguascalientes. Centro De Ciencias Básicas. Doctorado En Ciencias Biológicas. “Pathogens in Biofilm
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSIDAD AUTÓNOMA DE AGUASCALIENTES. CENTRO DE CIENCIAS BÁSICAS. DOCTORADO EN CIENCIAS BIOLÓGICAS. “PATHOGENS IN BIOFILMS IN FARM DRINKING WATER IN AGUASCALIENTES”. Thesis submitted for obtaining the degree of "Ph.D. in Biological Sciences" for the student Abraham Loera Muro. Advisors: Ph.D. Alma Lilián Guerrero Barrera. Ph.D. Francisco Javier Avelar González. Universidad Autónoma de Aguascalientes. Ph.D. Mario Jacques. Université de Montréal. Aguascalientes, Ags., June, 2014. UNIVERSIDAD AUTÓNOMA DE AGUASCALIENTES. CENTRO DE CIENCIAS BÁSICAS. DOCTORADO EN CIENCIAS BIOLÓGICAS. TESIS. PATÓGENOS ASOCIADOS A BIOPELÍCULAS EN AGUA DE CONSUMO EN GRANJAS PORCÍCOLAS EN EL ESTADO DE AGUASCALIENTES. PRESENTA. Abraham Loera Muro. PARA OBTENER EL GRADO DE DOCTORADO EN CIENCIAS BIOLÓGICAS. TUTOR(ES). Dra. Alma Lilián Guerrero Barrera. Dr. Francisco Javier Avelar González. COMITÉ TUTORAL. Dr. Mario Jacques. Université de Montréal. Aguascalientes, Ags., Junio, 2014. ACKNOWLEDGEMENTS. To Ph.D. Alma Lilián Guerrero Barrera, for her time, supervision, encouragement and support throughout all these years. As well as, for teaching the importance of teamwork and collaboration, because as she says, "is more important to have friends than money." To Ph.D. Francisco Javier Avelar González, for his supervision, encouragement and support throughout all these years. As well as, by the confidence since we started this adventure. To Ph.D. Mario Jacques, for the fruitful supervision, discussions and his helpful suggestions during all these years. As well as, for all the support received during all the thesis and when I stayed in his laboratory in Canda. To Ph.D. Ricardo Oropeza Navarro, for the fruitful collaboration and critical comments during all these years. As well as, his help in resolving several of the problems encountered during the investigation. All my friends from the “Laboratorio de Biología Celular y Tisular” (Flor, Adriana, Mónica, Guadalupe, Victor, Mónica, Guadalupe, Samanta, Alejandra, Romi and Laurita), from “Laboratoire de Microbiologie-Pathologie, Université de Montréal” (Josée, Skander, Yannick and Jeremy) and from Ph.D. in Biological Sciences (Carmen, Alondra, Rosalía and Manuel). To UAA, represented by Mr. Rector M. in C. Mario Andrade, for all the support received from all in this institution. To CONACYT, for its financial support through the scholarship for postgraduate studies. DEDICATIONS. Dedicated to Sandra Hernández Camacho, my friend, my wife and my love, for all the support and confidence that she always had me, and because without all the support and unconditionally love, I could have never have finished this Ph.D. My parents Victor Manuel Loera Solís and María Lourdes Muro Lizárraga, for all teaching and support that they have given me throughout my life, and because they have taught me to work with honesty and perseverance to achieve any objetive in life. My brother Victor Manuel Loera Muro, for all the moments of joy that we shared and for being a role model as a brother. "As the richest soil it can not bear fruit unless it is cultivated, the mind without cultivation can not produce." Seneca. “In scientific matters, the authority of a thousand is not merit against the humble reasoning of a single individual. " Galileo Galilei. DEDICATORIA. Dedicada a Sandra Hernández Camacho, mi compañera, mi esposa y mi amor, por todo el apoyo y confianza que siempre me tuvo, y porque sin todo ese apoyo y amor que incondicionalmente me entrega a diario, jamás hubiera podido haber terminado este doctorado. A mis padres Victor Manuel Loera Solís y María Lourdes Muro Lizárraga, por todas las enseñanzas y el apoyo que me han otorgado durante toda mi vida, y porque me han enseñado a trabajar con honestidad y constancia para lograr cualquier objetivo en la vida. A mi hermano Victor Manuel Loera Muro, por todos los momentos de alegría que hemos compartido y por ser un ejemplo a seguir como hermano. “Como el suelo por más rico que sea, no puede dar fruto si no se cultiva; la mente sin cultivo tampoco puede producir”. Séneca. “En cuestiones científicas, la autoridad de un millar no es mérito frente al humilde razonamiento de un solo individuo”. Galileo Galilei. Winner photography of the fourth place in the National Scientific Photography Contest 2013 organized by CONACYT. INDEX. INDEX 1 INDEX TABLES. 5 INDEX FIGURES. 7 ABSTRACT 20 RESUMEN 23 1. ANTECEDENTS. 26 1.1 Bacterial Biofilms. 26 1.2 Development of Biofilms. 27 1.3 Structure of Biofilm. 30 1.4 Interactions in Biofilms. 35 1.5 Associations in Multi-species Biofilms. 38 1.6 Advantages of Biofilms. 39 1.7 Porcine Respiratory Disease Complex (PRDC). 44 1.8 Actinobacillus pleuropneumoniae. 44 1.9 Streptococcus suis. 49 1.10 Pasteurella multocida. 52 1.11 Bordetella bronchiseptica. 54 1.12 Haemophilus parasuis. 56 1.13 Mycoplasma hyopneumoniae. 58 2. JUSTIFICATION. 61 3. HYPHOTESIS. 63 4. OBJECTIVES. 63 4.1 General Objective. 63 4.2 Specific Objectives. 63 5. MATERIALS AND METHODS. 64 5.1 General scheme of work. 64 5.2 Protocol for sampling of swine farms. 66 1 5.2.1 Sampling of swine farms. 67 5.2.2 Statistical calculation for sampling nasal swabs. 67 5.3 Bacterial Viability Live/Dead BacLight Bacterial Viability Kit (Molecular 69 Probes). 5.4 Extraction of DNA (Sambrook & Russell (2001), with modifications). 70 5.5 Bacterial strains used for amplification, CAMP test, and growth conditions. 71 5.6 Protocol for detection of porcine respiratory pathogens by PCR 72 (Polymerase chain reaction). 5.6.1 Protocol for PCR against Actinobacillus pleuropneumoniae apxIV gene. 72 5.6.2 Protocol for PCR against Pasteurella multocida. 72 5.6.3 Protocol for PCR for Streptococcus suis. 73 5.6.4 Protocol for PCR against Bordetella bronchiseptica. 73 5.6.5 Protocol for PCR against Mycoplasma hyopneumoniae. 74 5.6.6 Protocol for PCR against Haemophilus parasuis. 74 5.6.7 Protocol for PCR with universal primers against 16S rDNA. 74 5.6.8 PCRs again 16S rDNA and apx toxin genes. 75 5.7 Protocol for Isolation of different pathogens in drinking water in swine 76 farms. 5.7.1 Isolation of A. pleuropneumoniae. 76 5.7.2 Isolation of S. suis. 77 5.7.3 Isolation of P. multocida. 77 5.7.4 Isolation of E. coli. 78 5.7.4.1 Confirmation of E. coli by PCR. 78 5.8 Antimicrobial Susceptibility Testing. 79 5.8.1 Interpretation of Results. 80 5.9 Biofilms formation. 81 5.9.1 Biofilms formation assay for drinking water samples. 81 5.9.2 Biofilms formation for FISH assay for drinking water samples. 82 5.9.3 FISH assay for drinking water samples. 82 2 5.9.4 Biofilms formation for staining with Crystal Violet for drinking water 83 samples. 5.9.5 Biofilms formation directly in drinkers. 83 5.10 Scanning Electron Microscopy (SEM). 84 5.11 Swine respiratory pathogen A. pleuropneumoniae in multi-species biofilm. 84 5.11.1 Bacterial strain. 84 5.11.2 Multi-specie biofilms assay. 85 5.11.3 Colony Forming Units Assay (CFU). 87 5.11.4 Fluorescent in situ hybridization (FISH). 87 5.11.5 Confocal laser scanning microscopy (CLSM). 88 5.11.6 Enzymatic treatments of multi-species biofilms. 88 5.11.7 Measurement of NAD production by the mono and multi-species 89 biofilms. 5.11.8 A. pleuropneumoniae biofilm formation with crude cell-free 89 supernatants. 5.11.9 Scanning electron microscopy. 90 5.12 Statistical analysis. 90 6. RESULTS. 91 6.1 General screening of swine farms in the state of Aguascalientes. 91 6.2 Viability tests on samples of drinking water from swine farms. 98 6.3 General scanning and isolation of pathogens from drinking water samples 99 from swine farms. 6.4 Positive samples of A. pleuropneumoniae. 101 6.5 16S rDNA and Apx toxin sequencing of isolates of A. pleuropneumoniae 102 ApxIV positive. 6.6 Detection of A. pleuropneumoniae in biofilms in vitro and in vivo. 104 6.7Antimicrobial susceptibility testing. 109 6.8 EM analysis of biofilms formed by isolated from drinking water. 112 6.9 Analysis nonpathogenic or commensal bacteria in drinking water of swine 114 farms. 3 6.10 Multi-species biofilms analysis. 117 6.10.1 Multi-species biofilms formation with NAD supplementation. 117 6.10.2 Multi-species biofilms matrix composition with NAD supplementation. 119 6.10.3 Effect of enzymatic treatment on multi-species biofilms with NAD 120 supplementation. 6.10.4 Multi-species biofilms formation without NAD supplementation. 129 6.10.5 Multi-species biofilms matrix composition without NAD 130 supplementation. 6.10.6 Effect of enzymatic treatment on multi-species biofilms without NAD 137 supplementation. 6.10.7 Confirmation of the presence of A. pleuropneumoniae in multi-species 141 biofilms by FISH. 6.10.8 Scanning electron microscopy. 143 6.10.9 Incorporation of A. pleuropneumoniae in pre-formed biofilms in 145 conditions for S. aureus, S. suis and E. coli. 6.10.10 Measurement of NAD production by the mono and multi-species 149 biofilms. 6.10.11 A. pleuropneumoniae biofilm formation with crude cell-free 151 supernatants. 6.10.12 Multi-species biofilms formed by A. pleuropneumoniae with the E. coli 152 isolated from drinking water of swine farm. 6.11 Mobile device for obtaining biofilms directly from the environment. 154 7. DISCUSION. 156 CONCLUSIONS. 164 GLOSSARY. 166 REFERENCES. 167 APPENDIX. 189 4 TABLES INDEX. Table 1: Farms selected for analysis of associated pathogens in multispecies 66 biofilms in drinking water in the state of Aguascalientes. Table 2: Primers sequences used again apx toxins genes in this study. 75 Table 3: Primers sequences used for E. coli confirmation and phylogroup in 79 this study. Table 4: Interpretation of results for antimicrobial susceptibility testing. 81 Table 5: Total nasal swabs samples obtained in this study, total positive 92 results (per farm and total) by PCR for each pathogen searched and the percentages observed in the same.