UC Irvine Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Irvine Electronic Theses and Dissertations UC Irvine UC Irvine Electronic Theses and Dissertations Title Understanding of Nitrifying and Denitrifying Bacterial Population Dynamics in an Activated Sludge Process Permalink https://escholarship.org/uc/item/1bd53495 Author Wang, Tongzhou Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE DISSERTATION Submitted in Partial Satisfaction of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in Engineering by Tongzhou Wang Dissertation Committee Professor Betty H. Olson, Chair Professor Diego Rosso Professor Sunny C. Jiang 2014 © 2014 Tongzhou Wang ii To My Family ii Table of Contents Page LIST OF FIGURES .................................................................................................................. ix LIST OF TABLES .................................................................................................................... xi ACKNOWLEDGEMENTS ..................................................................................................... xii CURRICULUM VITAE ......................................................................................................... xiv ABSTRACT OF THE DISSERTATION ............................................................................... xvii Chapter 1. ................................................................................................................................ Introduction .................................................................................................................................................... 1 1.1 Background ...................................................................................................................... 1 1.2 Research Motivation ........................................................................................................ 4 1.3 Objectives and Hypothesis ............................................................................................... 6 1.4 Research Methodology .................................................................................................... 8 1.5 Organization of the dissertation ....................................................................................... 9 Chapter 2. ...................................................................................................................... Literature Review .................................................................................................................................................... 1 2.1 Nitrogen cycle ................................................................................................................ 11 2.2 Nitrification in Activated Sludge Process ...................................................................... 14 2.2.1 Nitrifiers .................................................................................................................. 14 2.3 Denitrification ................................................................................................................ 17 2.3.1 Denitrifying Enzyme ............................................................................................... 17 2.3.2 Dominant denitrifying populations in nitrifying-denitrifying activated sludge processes .......................................................................................................................... 18 2.4 Quantitative polymerase chain reaction (qPCR)............................................................ 21 Chapter 3. ... Understanding the role of Nitrifying Populations, Total Bacterial Populations and their effect on ammonia removal and denitrification in an Activated Sludge Process under Warm-Climate Condition ......................................................................................................... 23 3.1 Abstract .......................................................................................................................... 23 3.2 Introduction .................................................................................................................... 24 3.3 Materials and Methods ................................................................................................... 27 3.3.1 Plant Description and Sample Collection ............................................................... 27 3.3.2 DNA Extraction ...................................................................................................... 29 iii 3.3.3 Quantitative Polymerase Chain Reaction ............................................................... 29 3.3.4 Positive control for TB, AOB, NIS, and NB ........................................................... 31 3.3.5 Pearson’s correlation and principal component analysis ........................................ 31 3.4 Results ............................................................................................................................ 32 3.4.1 Biological and physicochemical parameters on overall ammonia removal and denitrification ................................................................................................................... 32 3.4.2 Determination of the most important physicochemical parameters affecting nitrifying bacteria using Pearson’s correlation ................................................................ 40 3.4.3 Principal component analysis ................................................................................. 42 3.4.4 The need for further research in finding denitrification indicators ......................... 47 3.5 Conclusions .................................................................................................................... 47 Chapter 4. .. Investigation on the effect of physicochemical parameters on denitrifying bacteria and denitrification process in a full-scale water reclamation plant .......................................... 49 4.1 Abstract .......................................................................................................................... 49 4.2 Introduction .................................................................................................................... 50 4.3 Materials and Methods ................................................................................................... 55 4.3.1 Plant Description and Sampling.............................................................................. 55 4.3.2 Sample Collection ................................................................................................... 55 4.3.3 DNA extraction ....................................................................................................... 55 4.3.4 Zoogloea- like bacteria spp. Culture ....................................................................... 56 4.3.5 Thauera- like bacteria Positive Control .................................................................. 56 4.3.6 qPCR Thauera-like bacteria and Zoogloea- Methyloversatilis-like bacteria Primers and Probes development .................................................................................................. 56 4.3.7 Quantitative Polymerase Chain Reaction (qPCR) .................................................. 57 4.3.8 Melt Curve .............................................................................................................. 60 4.3.9 PCR product purification, and DNA sequencing and Optimization of primer annealing temperature ...................................................................................................... 60 4.3.10 Statistical calculation ............................................................................................ 61 4.4 Results ............................................................................................................................ 62 4.4.1 Sequencing Results for Zoogloea-Methyloversatilis like bacteria and Thauera-like bacteria. ............................................................................................................................ 62 iv 4.4.2 Effect of Temperature on Zoogloea-Methyloversatilis-like bacteria and Thauera spp. bacteria communities ................................................................................................ 64 4.4.3 Relationship between substrate and Zoogloea- Methyloversatilis-like bacterial and Thauera-like bacterial populations in activated sludge ................................................... 67 4.4.4 Aerobic versus Anoxic Denitrification.................................................................... 71 4.6 Conclusions .................................................................................................................... 77 Chapter 5. .................................................. Denitrification, Competitions among Minor Organisms .................................................................................................................................................. 79 5.1 Abstract .......................................................................................................................... 79 5.2 Introduction .................................................................................................................... 80 5.3 Materials and Methods ................................................................................................... 83 5.3.1 Plant Description ....................................................................................................
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Thiobacillus Denitrificans
    Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate by Han Zhou A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Han Zhou 2014 ii Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate Han Zhou Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract This study explores the possibility of utilizing bioleaching techniques for nickel extraction from a mixed sulfide ore deposit with high magnesium content. Due to the ultramafic nature of this material, well-studied bioleaching technologies, which rely on acidophilic bacteria, will lead to undesirable processing conditions. This is the first work that incorporates nitrate-dependent bacteria under pH 6.5 environments for bioleaching of base metals. Experiments with both defined bacterial strains and indigenous mixed bacterial cultures were conducted with nitrate as the electron acceptor and sulfide minerals as electron donors in a series of microcosm studies. Nitrate consumption, sulfate production, and Ni released into the aqueous phase were used to track the extent of oxidative sulfide mineral dissolution; taxonomic identification of the mixed culture community was performed using 16S rRNA gene sequencing. Nitrate-dependent microcosms that contained indigenous sulfur- and/or iron-oxidizing microorganisms were cultured, characterized, and provided a proof-of-concept basis for further bioleaching studies. iii Acknowledgments I would like to extend my most sincere gratitude toward both of my supervisors Dr. Vladimiros Papangelakis and Dr. Elizabeth Edwards. This work could not have been completed without your brilliant and patient guidance.
    [Show full text]
  • Community and Whole Genome Analysis of Wastewater Bacteria
    Community and Whole Genome Analysis of Wastewater Bacteria By Daniel Rice BSc(Hons) A thesis submitted in total fulfilment of the requirements for the degree of Master of Science School of Life Sciences College of Science, Health and Engineering La Trobe University Victoria Australia February 2020 1 TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................ i LIST OF FIGURES ..................................................................................................................... iii LIST OF TABLES ....................................................................................................................... iv LIST OF ABBREVIATIONS .......................................................................................................... v STATEMENT OF AUTHORSHIP ................................................................................................vii ACKNOWLEDGEMENTS ......................................................................................................... viii SUMMARY ..............................................................................................................................ix SECTION 1: INTRODUCTION 1.1 Activated sludge process ................................................................................................... 2 1.2 Community profiling of activated sludge bacterial communities ....................................... 7 1.2.1 Phosphorous removal ..........................................................................................
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Bioflocculation of Wastewater Organic Matter at Short Retention Times
    Bioflocculation of Wastewater Organic Matter at Short Retention Times Lena Faust Thesis committee Promotor Prof. dr. ir. H.H.M. Rijnaarts Professor, Chair Environmental Technology Wageningen University Co-promotor Dr. ir. H. Temmink Assistant professor, Sub-department of Environmental Technology Wageningen University Other members Prof. Dr A.J.M. Stams, Wageningen University Prof. Dr. I. Smets, University of Leuven, Belgium Prof. Dr. B.-M. Wilen, Chalmers University of Technology, Sweden Prof. Dr. D.C. Nijmeijer, University of Twente, The Netherlands This research was conducted under the auspices of the Graduate School SENSE (Socio- Economic and Natural Sciences of the Environment) Bioflocculation of Wastewater Organic Matter at Short Retention Times Lena Faust Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 3rd of December 2014 at 1.30 p.m. in the Aula. Lena Faust Bioflocculation of Wastewater Organic Matter at Short Retention Times, 163 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in English and Dutch ISBN 978-94-6257-171-6 ˮDa steh ich nun, ich armer Tor, und bin so klug als wie zuvor.ˮ Dr. Faust (in Faust I written by Johann Wolgang von Goethe) Contents 1 GENERAL INTRODUCTION ....................................................................................................................1
    [Show full text]
  • Genome Analysis of Two Bacterial Strains Isolated from Diseased
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 September 2020 doi:10.20944/preprints202009.0144.v1 1 Article 2 Genome analysis of two bacterial strains isolated 3 from diseased freshwater sponge reveals the 4 probable cause of its joint domination in microbial 5 community 6 Ivan Petrushin 1,2,*, Sergei Belikov 1 and Lubov Chernogor 1, 7 1 Limnological institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; 8 [email protected] 9 2 Irkutsk State University, Irkutsk 664003, Russia; [email protected] 10 * Correspondence: [email protected]; 11 12 Abstract: Endemic freshwater sponges (Demosponges, Lubomirskiidae) dominate in Lake Baikal 13 and are multicellular filter-feeding animals represent a complex consortium of many species of 14 eukaryotes and prokaryotes. In recent years, mass disease and death of the L. baicalensis have been 15 an urgent problem of Lake Baikal. The etiology and ecology of these events remain unknown. 16 Bacteria in microbiomes of diseased sponges of the families Flavobacteriaceae and Oxalobacteraceae 17 were dominant. Both species are opportunistic pathogens common for freshwater ecosystems. The 18 aim of our study is to analyze the genomes of strains Janthinobacterium sp. SLB01 and Flavobacterium 19 sp. SLB02, isolated from diseased sponges to identify the reasons for their joint dominance. The first 20 one attacks the other cells using type VI secretion system, suppress gram-positive bacteria with 21 violacein pigment and regulate its own activity via quorum sensing. It makes the floc and strong 22 biofilm by exopolysaccharide biosynthesis and PEP‐CTERM proteins expression. The second one 23 utilizes the fragments of cell walls produced of polysaccharides.
    [Show full text]
  • Rpon (Σ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola Tertiaricarbonis Strain
    Lawrence Berkeley National Laboratory Recent Work Title RpoN (σ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain. Permalink https://escholarship.org/uc/item/9f26h2cp Journal Applied and environmental microbiology, 83(14) ISSN 0099-2240 Authors Yu, Dianzhen Xia, Ming Zhang, Liping et al. Publication Date 2017-07-01 DOI 10.1128/aem.00709-17 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RpoN (σσ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain Dianzhen Yu,a,b Ming Xia,a,b Liping Zhang,a Yulong Song,a You Duan,a,b Tong Yuan,d,f Minjie Yao,c Liyou Wu,d Chunyuan Tian,e Zhenbin Wu,a Xiangzhen Li,c Jizhong Zhou,d Dongru Qiua Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Chinaa ; University of Chinese Academy of Sciences, Beijing, Chinab; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Chinac ; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USAd; School of Life Sciences and Technology, Hubei Engineering University, Xiaogan, Chinae; College of Life Science, Henan Agricultural University, Zhengzhou, Chinaf ABSTRACT Some bacteria are capable of forming flocs, in which bacterial cells become self-flocculated by secreted extracellular polysaccharides and other biopolymers. The floc-forming bacteria play a central role in activated sludge, which has been widely utilized for the treatment of municipal sewage and industrial wastewater. Here, we use a floc-forming bacterium, Aquincola tertiaricarbonis RN12, as a model to explore the biosynthesis of extracellular polysaccharides and the regulation of floc formation.
    [Show full text]
  • 55Th Annual W.W.O.A. Conference October 5-8, 2021 La Crosse Convention Center, La Crosse Inside This Issue… 2021- 2022 W.W.O.A
    VOL. 241, JUNE 2021 WISCONSIN WASTEWATER OPERATORS’ ASSOCIATION, INC. Aerial view of Jefferson Wastewater Treatment Plant, Jefferson, Wisconsin 55th Annual W.W.O.A. Conference October 5-8, 2021 La Crosse Convention Center, La Crosse Inside This Issue… 2021- 2022 W.W.O.A. OFFICIAL DIRECTORY • Presidents message / Page 3 Don Lintner Jenny Pagel President Director (2021) N2511 State Rd 57 Wastewater Foreman • Tribute to Tim Nennig / Page 4 New Holstein, WI 53061 City of Clintonville Cell: 920-418-3869 N9055 Cty Road M [email protected] Shiocton WI 54170 • City of Jefferson Wastewater / Page 6 Work: 715-823-7675 Rick Mealy Cell: 920-606-4634 President Elect [email protected] Independent Contractor Lab • Board meeting minutes & Regulatory Assistance April 2 and 3, 2020 / Page 17 319 Linden Lane Marc Stephanie Delavan WI 53115 Director (2020) Cell: 608-220-9457 Director of Public Works • Collection System seminars / Page 24 [email protected] Village of Valders 1522 Puritan Rd New Holstein WI 53061 Jeremy Cramer Work: 920-629-4970 • Board meeting minutes Vice President Wastewater Treatment Cell: 920-251-8100 March 19, 2020 / Page 25 Director [email protected] City of Sun Prairie Joshua Voigt 300 E Main Street • Reminder: Director (2022) Sun Prairie WI 53590 Direct Sales Representative Awards nominations / Page 26 Work: 608-825-0731 Flygt a Xylem Brand Cell: 608-235-9280 3894 Lake Drive jcramer@ Hartford WI 53027 • Troubleshooting Corner: cityofsunprairie.com Work: 262-506-2343 Zoogloea and Thauera / Page 27 Cell: 414-719-5567 [email protected] Jeff Smudde • Index of advertisers / Page 30 Past President Nate Tillis Director of Environmental Director (2022) Programs Maintenance Supervisor NEW Water (GBMSD) City of Waukesha 2231 N Quincy St.
    [Show full text]
  • DGGE) and PGR Cloning of 16S Rrna Genes
    THE UNIVERSITY OF NEW SOUTH thesis/Dissertation Sheet Surname or Family name:LE Rrst ^ I Other narne/s: Abbreviation for degree as given in the University calendar: MSc | ScliooliBiotechnolo^^^^^^ and Biomolecular ScienoBS Faculty: Science Title:Community analysis and physiological characterisation of bacterial isolates from a nitrifying membrane bioreactor Abstract This thesis focuses on the identification of early colonisers on membrane surfaces used in wastewater treatment, as well as the physiological characterisation of bacterial cultures isolated from different micro- environments of a membrane bioreactor (MBR). The bacterial community composition of early biofilms on membrane surfaces under different hydrodynamic conditions (pressurised and non-pressurised) and of the activated sludge in an MBR were examined by culture-independent, molecular-based methods of PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and PGR cloning of 16S rRNA genes. A bench-scale, nitrifying MBR treating artificial waste was employed. The hollow fibre ultrafiltration membrane was made of polypropylene with an average pore diameter of 0.04 \im. Analysis of DGGE profiles of the sessile communities on membrane surfaces revealed that Tetrasphaera elongata species were important colonisers due to their ability to bind to membrane surfaces irrespective of the hydrodynamic context and exposure time. Interactions between isolates from the bioreactor and membrane surfaces were further investigated by characterising the physiological traits important in biofilm initiation and proliferation on membrane surfaces such as motility, auto-aggregation, co-aggregation, hydrophobicity and quorum sensing. Bacterial strains were isolated from floes and supernatant phases of the activated sludge as well as from pressurised membrane surfaces. Microbacterium sp. were prevalent in all culture collections.
    [Show full text]
  • Cooperative Interaction of Janthinobacterium Sp. SLB01 and Flavobacterium Sp
    International Journal of Molecular Sciences Article Cooperative Interaction of Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02 in the Diseased Sponge Lubomirskia baicalensis Ivan Petrushin 1,2,* , Sergei Belikov 1 and Lubov Chernogor 1 1 Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; [email protected] (S.B.); [email protected] (L.C.) 2 Faculty of Business Communication and Informatics, Irkutsk State University, Irkutsk 664033, Russia * Correspondence: [email protected] Received: 31 August 2020; Accepted: 25 October 2020; Published: 30 October 2020 Abstract: Endemic freshwater sponges (demosponges, Lubomirskiidae) dominate in Lake Baikal, Central Siberia, Russia. These sponges are multicellular filter-feeding animals that represent a complex consortium of many species of eukaryotes and prokaryotes. In recent years, mass disease and death of Lubomirskia baicalensis has been a significant problem in Lake Baikal. The etiology and ecology of these events remain unknown. Bacteria from the families Flavobacteriaceae and Oxalobacteraceae dominate the microbiomes of diseased sponges. Both species are opportunistic pathogens common in freshwater ecosystems. The aim of our study was to analyze the genomes of strains Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02, isolated from diseased sponges to identify the reasons for their joint dominance. Janthinobacterium sp. SLB01 attacks other cells using a type VI secretion system and suppresses gram-positive bacteria with violacein, and regulates its own activity via quorum sensing. It produces floc and strong biofilm by exopolysaccharide biosynthesis and PEP-CTERM/XrtA protein expression. Flavobacterium sp. SLB02 utilizes the fragments of cell walls produced by polysaccharides. These two strains have a marked difference in carbohydrate acquisition.
    [Show full text]
  • Microbial Diversity of a Remote Aviation Fuel Contaminated
    ntal & A me na n ly o t ir ic v a Udotong et al., J Environ Anal Toxicol 2015, 5:6 n l T E o Journal of f x o i l c DOI: 10.4172/2161-0525.1000320 o a n l o r g u y o J Environmental & Analytical Toxicology ISSN: 2161-0525 ResearchResearch Article Article OpenOpen Access Access Microbial Diversity of a Remote Aviation Fuel Contaminated Sediment of a Lentic Ecosystem in Ibeno, Nigeria Udotong IR1*, Uko MP1 and Udotong JIR2 1Department of Microbiology, University of Uyo, Uyo, Akwa Ibom State, Nigeria 2Department of Biochemistry, University of Uyo, Uyo, Akwa Ibom State, Nigeria Abstract Environmental pollution from Oil & Gas Exploration & Production (O&G E&P) activities remains one of the major problems in the oil-producing communities of Nigeria. This results from improper oily wastes disposal as well as incessant oil spills in the region. The operator’s lack of responsible business practices in wastes management and the over-dependence of the economy on oil and gas earnings, in the most part, exacerbate the problems of environmental pollution. Government's lack of political will power which treats issues on oil pollution with levity and long period of neglect of these polluted sites leave the environment ecologically destabilized. Studies to ascertain the ecological status of remote aviation fuel-contaminated sediment of a lentic ecosystem in Inua Eyet Ikot village, Ibeno, Nigeria, have been carried out using conventional microbiological culture-dependent methods. This methodology is known to reveal only <1% of the microbial diversity present. These results were therefore considered inaccurate and grossly misleading.
    [Show full text]