Reorganisation of Complex Ciliary Flows Around Regenerating Stentor

Total Page:16

File Type:pdf, Size:1020Kb

Reorganisation of Complex Ciliary Flows Around Regenerating Stentor bioRxiv preprint doi: https://doi.org/10.1101/681908; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Reorganisation of complex ciliary flows around 2 regenerating Stentor coeruleus 1,8 3 Kirsty Y. Wan* , Sylvia K. Hürlimann2,8, Aidan M. Fenix4,5,8, 4 Rebecca M. McGillivary3,8, Tatyana Makushok3,8, Evan Burns6,9, 5 Janet Y. Sheung7,9, Wallace F. Marshall*3,8 6 1. Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK 7 2. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA 8 3. Department of Biochemistry and Biophysics, UCSF, San Francisco, CA, USA 9 4. Department of Pathology, University of Washington, WA, USA 10 5. Center for Cardiovascular Biology, University of Washington, WA, USA 11 6. Department of Biology, Vassar College, NY, USA 12 7. Department of Physics and Astronomy, Vassar College, NY, USA 13 8. Marine Biological Laboratory, Physiology Course, Woods Hole, MA, USA 14 9. Marine Biological Laboratory, Whitman Center, Woods Hole, MA, USA 15 16 Keywords: Cilia coordination, metachronal waves, regeneration, development, ciliary flows, Stentor 17 18 19 Summary 20 21 The phenomenon of ciliary coordination has garnered increasing attention in recent decades, with multiple 22 theories accounting for its emergence in different contexts. The heterotrich ciliate Stentor coeruleus is a 23 unicellular organism which boasts a number of features which present unrivalled opportunities for 24 biophysical studies of cilia coordination. With their cerulean colour and distinctive morphology, these large 25 protists possess a characteristic differentiation between cortical rows of short body cilia used for swimming, 26 and an anterior ring structure of fused oral cilia forming a membranellar band. The oral cilia beat 27 metachronously to produce strong feeding currents. In addition to this complex body plan, Stentor have 28 remarkable regenerative capabilities. Minute fragments of single cells can over the period of hours or days, 29 regenerate independently into new, proportional individuals. Certain environmental perturbations elicit a 30 unique programmed response known as oral regeneration wherein only the membranellar band is shed and 31 a new, ciliated oral primordium formed on the side of the body. Here, we target oral regeneration induced by 32 sucrose-shock to reveal the complex interplay between ciliary restructuring and hydrodynamics in Stentor, 33 which accompanies the complete developmental sequence from band formation, elongation, curling, and 34 migration toward the cell anterior. 35 36 “When the anterior part is open, one may perceive about its Edges a very lively Motion; and when the Polyps 37 presents itself in a certain manner, it discovers, on either side of these edges of its anterior part, somewhat 38 very much resembling the wheels of a little Mill, that move with great velocity.” 39 40 A. Trembley F.R.S describing the membranellar band of Stentor, 41 Phil. Soc. Trans. Royal Society (London), 1744. 42 1. Introduction 43 1.1. Stentor - the trumpet animalcule 44 The first recorded account of these fascinating funnel-shaped creatures was made by Abraham Trembley F.R.S, 45 who in a letter to the president of the Royal Society [1], wrote “I have herewith the honour of transmitting to 46 you the particulars of several observations I have made, during the course of the last summer, upon some 47 species of very minute Water-Animals…” [2]. (In fact, at 1the time Trembley had misidentified these organisms *Authors for correspondence ([email protected], [email protected]) bioRxiv preprint doi: https://doi.org/10.1101/681908; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 as Hydra.) These unicellular ciliates, which are easily visible to the naked eye, are named Stentor for their 2 trumpet-like morphology, in honour of a loud-voiced Greek hero who fought in the Trojan War. Stentor are 3 widely-occurring in both freshwater and marine habitats, exhibiting both free-swimming and sedentary 4 characteristics depending on environmental circumstance. Individual cells undergo dynamic and extensive 5 shape changes due to a highly-contractile cortical structure, assuming a pear or tear-drop shape when free- 6 swimming, contracting into a ball when disturbed, or else extending up 1mm in a rest state in which cells 7 become attached to substrates via a posterior holdfast (Figure 1a). In the latter state, a large number of ciliated 8 feeding organelles are visible at the anterior end of the organism, which stir the fluid collectively to produce 9 strong feeding currents, drawing food and other particulates towards the mouth of the organism. Not only is 10 the oral apparatus the site of a remarkable degree of ciliary coordination and highly-coupled fluid-structure 11 interactions, it is the most differentiated cortical landmark of a Stentor, which can also be regenerated in 12 response to injury or damage. The present study solicits this dramatic regenerative capability to investigate 13 ciliary organisation and coordination - which remains an open and confounding problem in ciliary biology. 14 Here, state-of-the-art imaging and flow field tracking is combined for the first time, to explore the extreme 15 restructuring of cilia and extracellular flows during Stentor oral regeneration. 16 While diverse species of Stentor exist, we focus exclusively on S. coeruleus Ehrenberg 1830 -- a widely 17 distributed species, notable for their striking cerulean pigmentation. S. coeruleus, also called the Blue Stentor [2, 18 3], was favoured historically for cytological studies due to its large size and moniliform macronucleus [4], and 19 has been the subject of recent genomic studies [5]. The conical surface of the organism bears longitudinal 20 stripes of distinctive colouration 21 extending from the anterior all the 22 way down to the tapered holdfast: 23 cortical rows of constant width, 24 alternate with pigmented stripes of 25 graded width – thereby breaking 26 the patterning symmetry (Figure 27 1b). The pigmented bands increase 28 in width from left to right around 29 the cell, culminating in a special 30 region called the locus of stripe 31 contrast (LSC) or “ramifying zone”. 32 This region demarcates the location 33 where the new oral primordium 34 and a new field of basal bodies will 35 form. 36 The body cilia are inserted 37 in rows along the clear stripes all 38 over the body; the anterior body 39 cilia are somewhat shorter than 40 those at the posterior [4]. 41 Contractile fibres called myonemes 42 subtend each row of body cilia, and 43 are involved in whole-body 44 contractions. The broad anterior 45 end of the organism is encircled by 46 an adoral zone of external cilia that 47 are fused into rows of transverse 48 plates termed membranelles (sensu 49 Sterki 1878). In SEM studies, Figure 1a) Schematic of a single Stentor cell with key features highlighted. Inset - 50 Randall and Jackson showed [6] ultrastructure of membranellar band [6] showing rows of oral cilia arranged in 51 that these adoral structures were parallel stacks (each approximately 7.5µm x1.5µm); b) confocal immunofluorescence 52 not individual large cilia but rather images showing the structure and organisation of the membranellar band (M), cortical 53 two or three rows of tightly-packed striation patterns (notice the sharp change in width at the locus of stripe contrast: 54 cilia (20-25 cilia per row), so that LSC), and associated rows of short body cilia, c) top view of the frontal field and gullet region (G). [Scalebars = 10 µm.] 55 each membranelle maintains 56 functional unity as an intercalated ciliary sheath (Figure 1a, inset). The entire membranellar band, also known 57 as the peristome, contains around 250 such stacked membranelles; one end terminates freely, while the other 58 end spirals into a funnel-shaped invagination or gullet (Figure 1c). The region enclosed by the membranellar 59 band is the frontal field, which is distinguished by a change in stripe orientation – the frontal field stripes are 60 also narrower since they originated as ventral stripes that have been shifted forward over the course of oral 61 primordium formation (see section 2), together with the new stripes which will go on to develop in this zone. 62 bioRxiv preprint doi: https://doi.org/10.1101/681908; this version posted June 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1.2. Regenerative prowess of Stentor 2 Regeneration of ciliated structures provides a unique way of probing the emergence and reorganisation of 3 ciliary interactions over developmental timescales. A hallmark of life is its ability to repair, heal wounds, or 4 replenish lost or damaged cellular structures [7, 8]. Single cells are of special interest, for regeneration must 5 necessarily take place entirely within the same cell. One classic example is flagellar regeneration in the 6 biflagellate alga Chlamydomonas, where amputated flagella can be regrown to full length in about 1.5 hours [9, 7 10], whereupon biflagellar coordination also recovers [11, 12]. Early researchers demonstrated the versatility 8 of Stentor as a model system for studies of regeneration, made possible by their large size and manoeuvrability, 9 as well as remarkable regenerative capabilities [13, 14].
Recommended publications
  • Tardigrades: an Imaging Approach, a Record of Occurrence, and A
    TARDIGRADES: AN IMAGING APPROACH, A RECORD OF OCCURRENCE, AND A BIODIVERSITY INVENTORY By STEVEN LOUIS SCHULZE A thesis submitted to the Graduate School-Camden Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Biology Written under the direction of Dr. John Dighton And approved by ____________________________ Dr. John Dighton ____________________________ Dr. William Saidel ____________________________ Dr. Emma Perry ____________________________ Dr. Jennifer Oberle Camden, New Jersey May 2020 THESIS ABSTRACT Tardigrades: An Imaging Approach, A Record of Occurrence, and a Biodiversity Inventory by STEVEN LOUIS SCHULZE Thesis Director: Dr. John Dighton Three unrelated studies that address several aspects of the biology of tardigrades— morphology, records of occurrence, and local biodiversity—are herein described. Chapter 1 is a collaborative effort and meant to provide supplementary scanning electron micrographs for a forthcoming description of a genus of tardigrade. Three micrographs illustrate the structures that will be used to distinguish this genus from its confamilials. An In toto lateral view presents the external structures relative to one another. A second micrograph shows a dentate collar at the distal end of each of the fourth pair of legs, a posterior sensory organ (cirrus E), basal spurs at the base of two of four claws on each leg, and a ventral plate. The third micrograph illustrates an appendage on the second leg (p2) of the animal and a lateral appendage (C′) at the posterior sinistral margin of the first paired plate (II). This image also reveals patterning on the plate margin and the leg.
    [Show full text]
  • 2-Microbe-Hunters-Paul-De-Kruif.Pdf
    Microbe Hunters Paul de Kruif To RHEA A Harvest/HBJ Book Harcourt Brace Jovanovich, Publishers San Diego New York London Copyright 1926 by Paul de Kruif Copyright renewed 1954 by Paul de Kruif All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Table of Contents 1. LEEUWENHOEK: First of the Microbe Hunters 2. SPALLANZANI: Microbes Must Have Parents! 3. PASTEUR: Microbes Are a Menace! 4. KOCH: The Death Fighter 5. PASTEUR: And the Mad Dog 6. ROUX AND BEHRING: Massacre the Guinea-Pigs 7. METCHNIKOFF: The Nice Phagocytes 8. THEOBALD SMITH: Ticks and Texas Fever 9. BRUCE: Trail of the Tsetse 10. ROSS VS. GRASSI: Malaria 11. WALTER REED: In the Interest of Science-and for Humanity! 12. PAUL EHRLICH: The Magic Bullet Footnotes Books by Paul de Kruif 1. LEEUWENHOEK: First of the Microbe Hunters 1 Two hundred and fifty years ago an obscure man named Leeuwenhoek looked for the first time into a mysterious new world peopled with a thousand different kinds of tiny beings, some ferocious and deadly, others friendly and useful, many of them more important to mankind than any continent or archipelago. Leeuwenhoek, unsung and scarce remembered, is now almost as unknown as his strange little animals and plants were at the time he discovered them. This is the story of Leeuwenhoek, the first of the microbe hunters. It is the tale of the bold and persistent and curious explorers and fighters of death who came after him.
    [Show full text]
  • Anton Van Leeuwenhoek (1632–1723)
    9 HISTOIRE DE L'ANDROLOGIE Andrologie 2004, 14, N~ 336-342 Anton van Leeuwenhoek (1632-1723) et la premiere description du spermatozo'fde Georges ANDROUTSOS Histoire de la Medecine, Facult~ de M~decine, Universite d'loannina, Grece Ill lit ~~::; ,:.~: RESUME de travail entre sa boutique de tissus et le siege des Magistrats de Delft. II avait vingt-deux ans quand il epou- sa Barbara. Veuf douze ans plus tard, il ne se remaria pas Leeuwenhoek, p~re de la microscopie optique, est avant plusieurs annees. Des cinq enfants que lui laissait juste titre consid~r~ comme le fondateur de la bact~riolo- sa premiere femme, seule sa fille Maria surv6cut, demeu- gie et de la proto-zoologie. Son grand m~rite en mati~re ra aupres de lui et le soigna jusqu'a son dernier souffle, d'andrologie est d'avoir decouvert et ~tudi~ le spermato- apr~s la mort de sa seconde epouse. Leeuwenhoek mou- zo'ide. rut le 29 aoOt 1723. Sa fille lui fit elever un tombeau qu'on voit encore a Delft. Plusieurs annbes avant sa mort, Leeuwenhoek avait fabri- qu6 un joli cabinet de bois, comprenant plusieurs etage- res, destine a accueillir vingt six diffbrents modeles de microscopes, dont plusieurs portaient des lentilles mon- tees sur argent. Sa fille envoya le prbcieux meuble a la Royal Society oO il demeura pendant un siecle avant de disparaTtre mysterieusement. En dehors des microscopes partis pour Londres, Leeuwenhoek en possedait 247 aut- res, ainsi que 172 lentilles a monture d'or, d'argent ou de Mots clds : Leeuwenhoek, microscope, micro-organismes, cuivre [11].
    [Show full text]
  • General Morphology, Life-Cycles, Adaptations and Classification of Protozoan
    GENERAL MORPHOLOGY, LIFE-CYCLES, ADAPTATIONS AND CLASSIFICATION OF PROTOZOAN Module Objectives At the end of this module, students will be able to: 1. Identify different classes of protozoans 2. List those of parasitic importance 3. Describe the life cycle of at least 3 protozoans. PROTOZOA The term protozoa implies ‘first animals’ as (proto) 'animals' (zoa). Although molecular phylogenetic studies indicate that protozoa are among the earliest branching eukaryotes (see phylogenetic tree), such a definition does not provide much descriptive information. Protozoans are not easily defined because they are diverse and are often only distantly related to each other. As the primary hunters of the microbial world, protozoa help in continuing the equilibrium of bacterial, algal and other microbial life forms. Protozoa also means ‘little animal’. They are named so because many species act like small animals. They search for and collect other microbes as food. Previously, protozoa were specified as unicellular protists possessing animal-like characteristics such as the capability to move in water. Protists are a class of eukaryotic microorganisms which are a part of the kingdom Protista. Protozoa possess typical eukaryotic organelles and in general exhibit the typical features of other eukaryotic cells. For example, a membrane bound nucleus containing the chromosomes is found in all protozoan species. However, in many protozoan species some of the organelles may be absent, or are morphologically or functionally different from those found in other eukaryotes. In addition, many of the protozoa have organelles that are unique to a particular group of protozoa. The term ‘protozoan’ has become debatable. Modern science has shown that protozoans refer to a very complex group of organisms that do not form a clade or monophylum.
    [Show full text]
  • Unit 1: Protista, Perazoa and Metazoa:General Characters and Classification Upto Class
    CBCS 1ST SEM MAJOR : PAPER -1 UNIT 1: PROTISTA, PERAZOA AND METAZOA:GENERAL CHARACTERS AND CLASSIFICATION UPTO CLASS BY DR. LUNA PHUKAN PROTISTA, CHARACTERS AND CLASSIFICATION UPTO CLASS What are Protists? Protists are simple eukaryotic organisms that are neither plants nor animals or fungi. Protists are unicellular in nature but can also be found as a colony of cells. Most protists live in water, damp terrestrial environments, or even as parasites. The term ‘Protista’ is derived from the Greek word “protistos”, meaning “the very first“. These organisms are usually unicellular and the cell of these organisms contain a nucleus which is bound to the organelles. Some of them even possess structures that aid locomotion like flagella or cilia. KINGDOM PROTISTA Characteristics of Kingdom Protista The primary feature of all protists is that they are eukaryotic organisms. This means that they have a membrane-enclosed nucleus. Other characteristic features of Kingdom Protista are as follows: 1. These are usually aquatic, present in the soil or in areas with moisture. 2. Most protist species are unicellular organisms, however, there are a few multicellular protists such as kelp. Some species of kelp grow so large that they exceed over 100 feet in height. (Giant Kelp). 3. Just like any other eukaryotes, the cells of these species have a nucleus and membrane-bound organelles. 4. They may be autotrophic or heterotrophic in nature. An autotrophic organism can create their own food and survive. A heterotrophic organism, on the other hand, has to derive nutrition from other organisms such as plants or animals to survive.
    [Show full text]
  • Who Invented the First Microscope?
    Who Invented the first microscope? • Credit for the first microscope is usually given to Zacharias Jansen, in Middleburg, Holland, around the year 1595. Minor White 1 Magnification ~ 9x (barely qualifies as a microscope) 2 Robert Hooke Anton von Leeuwenhoek ~1670 Dutch tradesman 1632-1723 -no higher education Discovered the cell (looking at cork) Discovered: bacteria, sperm cells, blood cells… 3 4 1 Anton von Leeuwenhoek Anton von Leeuwenhoek • Single tiny lens an unbelievably great company of living "these little animals were, to my eye, more animalcules, a-swimming more nimbly than than ten thousand times smaller than the any I had ever seen up to this time. The animalcule which Swammerdam has biggest sort. bent their body into curves in portrayed, and called by the name of Water- going forwards. Moreover, the other flea, or Water-louse, which you can see alive animalcules were in such enormous numbers, and moving in water with the bare eyes.” that all the water. seemed to be alive. - letter to Royal Society 1678 Discovery of bacteria - In the mouth of old man who had never brushed his teeth! Magnification ~ 270X Magnification ~ 270X 5 6 Compound Microscope An example • Structure: Made of two lenses, • Suppose the focal length of the Objective and eyepiece objective is 12mm, and the object is – Objective: The object being viewed is placed at 13mm. The image is then placed just outside the focal length 156mm away from the lens and the of the objective lens. The magnification is intermediate image thus formed is 156/13 = 12 X real, inverted, and enlarged.
    [Show full text]
  • Early History of Microbiology and Microbiological Methods
    1 EARLY HISTORY OF MICROBIOLOGY AND MICROBIOLOGICAL METHODS Robert F. Guardino AAI Development Services Wilmington, N.C. USA INTRODUCTION The original title of this chapter was to be “History of Microbiological Methods.” This would seem to indicate that inquisitive minds were consciously attempting to develop new methods for a new field of science. Or perhaps they had a “for profit” motive as if they were working for a company driving them towards new markets or to increase their portfolio of patents from which to draw royalties. This could not be further from the truth. Rather, the history of microbiology is a story of some common folk and other rather peculiar individuals, janitors and hobbyists, amateur lens grinders and chemists, physicians and botanists, housewives and laboratory “slaves” with a quest for discovery. These explorers were sometimes driven by chance or curiosity, and sometimes by a problem for which no one had an answer. And, they were driven sometimes by pride or self-interest. But then there were those altruistic ones driven by the pure compassion for suffering humanity. With the topic being rather broad, and the space being somewhat limited, the scope had to be narrowed so this chapter has mutated into one that attempts to expose the minds behind the discoveries; 1 www.pda.org/bookstore 2 Encyclopedia of Rapid Microbiological Methods discoveries that necessitated the rather simple, though not always obvious, techniques that made revealing the world of microorganisms possible. The story that unfolds is first a history of events and phenomenon for which there was no understanding or explanation, followed by observations for which there was no obvious application, to the eventual association of cause and effect, on to a full blown field of inquiry.
    [Show full text]
  • A Review. Historical Evolution of Preformistic Versus Neoformistic (Epigenetic) Thinking in Embryology
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228667377 A review. Historical evolution of preformistic versus neoformistic (epigenetic) thinking in embryology Article in Belgian Journal of Zoology · February 2008 CITATIONS READS 4 240 1 author: Callebaut Marc University of Antwerp 104 PUBLICATIONS 935 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Callebaut Marc letting you access and read them immediately. Retrieved on: 14 September 2016 Belg. J. Zool., 138 (1) : 20-35 January 2008 A review Historical evolution of preformistic versus neoformistic (epigenetic) thinking in embryology Marc Callebaut UA, Laboratory of Human Anatomy & Embryology, Groenenborgerlaan 171, B-2020 Antwerpen Belgium To the memory of Professor Doctor Lucien Vakaet sr Corresponding author : Prof. Dr Marc Callebaut, Laboratory of Human Anatomy and Embryology UA, 171 Groenenborgerlaan, B- 2020 Antwerpen. Phone: ++3232653390; fax: ++3232653398; e-mail. [email protected]. ABSTRACT. In the classical embryology there exist two main concepts to explain the rising of a living being. At one hand there exists the theory of preformation i.e. all the parts of the future embryo would already exist preformed during the preembryonic or early embryonic period. On the other hand there is the epigenetic view in which it is propounded that all parts arise by neoforma- tion from interacting (induction) previously existing, apparently simpler structures. We found evidence that initially a kind of pre- formation (or pre-existence), disposed in concentric circular layers, exists in the full grown oocyte and early germ. After normal development these circular layers will settle successively, from the centrum to the periphery, into the central nervous system, the notochord, somites, lateral plates (coelom) definitive endoderm.
    [Show full text]
  • Microbe Hunters Paul De Kruif
    Microbe Hunters Paul de Kruif To RHEA A Harvest/HBJ Book Harcourt Brace Jovanovich, Publishers San Diego New York London Copyright 1926 by Paul de Kruif Copyright renewed 1954 by Paul de Kruif All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Table of Contents 1. LEEUWENHOEK: First of the Microbe Hunters 1 2 3 4 2. SPALLANZANI: Microbes Must Have Parents! 1 2 3 4 5 6 7 3. PASTEUR: Microbes Are a Menace! 1 2 3 4 5 6 7 8 4. KOCH: The Death Fighter 1 2 3 4 5 6 7 8 5. PASTEUR: And the Mad Dog 1 2 3 4 5 6 7 6. ROUX AND BEHRING: Massacre the Guinea-Pigs 1 2 3 4 7. METCHNIKOFF: The Nice Phagocytes 1 2 3 4 5 6 7 8 8. THEOBALD SMITH: Ticks and Texas Fever 1 2 3 4 5 6 7 9. BRUCE: Trail of the Tsetse 1 2 3 4 5 6 7 8 9 10. ROSS VS. GRASSI: Malaria 1 2 3 4 5 6 7 8 11. WALTER REED: In the Interest of Science-and for Humanity! 1 2 3 4 5 6 7 12. PAUL EHRLICH: The Magic Bullet 1 2 3 4 5 6 Footnotes Books by Paul de Kruif 1. LEEUWENHOEK: First of the Microbe Hunters 1 Two hundred and fifty years ago an obscure man named Leeuwenhoek looked for the first time into a mysterious new world peopled with a thousand different kinds of tiny beings, some ferocious and deadly, others friendly and useful, many of them more important to mankind than any continent or archipelago.
    [Show full text]
  • Thoughts on Animalcules; Or, a Glimpse of the Invisible World
    [ss{k^ i J' ^ ■f Library of the University of Toronto ■ ^ rv J J ;-t' f * “< ,1 ♦ ;j THOUGHTS ON ANIMALCULES OR, A GLIMPSE OF THE INVISIBLE WORLD REVEALED BY THE MICROSCOPE. THOUGHTS ON ANIMALCULES; OR, A GLIMPSE OF THE INVISIBLE WORLD REVEALED RY THE MICROSCOPE. BY GIDEON ALGERNON MANTELL, ESQ., LL.D., E.R.S., AUTHOR OF THE “WONDERS OF GEOLOGY,” ETC. THE PHYS.iLIA PELAGICA, page 83. “ In the leaves of every forest—in the flowers of every garden—in the waters of every rivulet—there are worlds teeming with life, and numberless as are the glories of the firmament.” Dr. Chalmers. LONDON: JOHN MURRAY, ALBExMARLE STREET. 1846 iONDON: W. M'DOWALL, printer, PEMBERTON ROW, GOEGH SOEARE. TO THE MOST NOBLE THE MARQUESS OE NORTHAMPTON, PRESIDENT OF THE ROYAL SOCIETY, ie. &c. &c., THIS WORK IS MOST RESPECTFULLY INSCRIBED, IN GRATEFUL ACKNOWLEDGMENT OF Ifis ZEALOUS EXERTIONS FOR THE ADVANCEMENT OF SCIENCE AND ART, AND AS A TESTIMONY OF THE HIGH RESPECT AND REGARD OF THE AUTHOR. Chester Square, Pimlico; February, 1846. Digitized by the Internet Archive in 2018 with funding from University of Toronto https://archive.org/detaiis/thoughtsonanimai00mant_0 “ To the Natural Philosopher there is no natural object that is unim¬ portant or trifling: from the least of Nature’s works he may learn the greatest lessons.” Sir J. F. W. Herschel. “ The likeliest method of discovering Truth is by the observations and experiments of many upon the same subject: and the most probable way of engaging people in such investigations, is by rendering such obser¬ vations and experiments easy, attractive, and intelligible.” Baker on the Microscope.
    [Show full text]
  • Type-Paramecium
    Type-Paramecium Habit and habitat Paramecium caudatum is commonly found in freshwater ponds, pools, ditches, streams, lakes, reservoirs and rivers. It is specially found in abundance in stagnant ponds rich in decaying matter, in organic infusions, and in the sewage water. Paramecium caudatum is a free-living organism and this species is worldwide in distribution. Nutrition • In Paramecium caudatum, nutrition is holozoic. The food comprises chiefly bacteria and minute Protozoa. Paramecium does not wait for the food but hunts for it actively. • It is claimed that Paramecium caudatum shows a choice in the selection of its food, but there seems to be no basis for this though it engulfs only certain types of bacteria; available data suggest that 2 to 5 million individuals of Bacillus coli are devoured by a single Paramecium in 24 hours. It also feeds on unicellular plants like algae, diatoms, etc., and small bits of animals and vegetables. External features of Paramecium Size: Paramecium is a unicellular microscopic protozoan. The largest species of this genus is Paramecium caudatum and it measures about 170-290 µ. It is visible to naked eye as whitish or grayish spot. The greatest diameter of the cylindrical body is about two-thirds of its entire length. Shape: It is elongated, slipper-shaped animal and is commonly called as slipper animalcule due to its shape. The anterior end is rounded and the posterior end is cone-shaped. Ventral or oral surface is flat and the dorsal or aboral surface is convex. Pellicle • The body is covered by a thin, double layered, elastic and firm pellicle made of gelatin.
    [Show full text]
  • Bacterial Biofilms: a Confrontation to Medical Science
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Bacterial Biofilms: A Confrontation to Medical Science Sorabh Singh Sambyal1, Preeti Sharma2, Divya Srivastava3 1Ph.D Scholar, Jaipur National University 2Ph.D Scholar, Jaipur National University 3Joint Director, Life Sciences, Jaipur National University Abstract: Biofilms is a consortia of microorganisms in which microorganism adhere to a substratum in an irreversible manner and are enclosed in self – produced matrix of extracellular polymeric substance. Common example of biofilm are dental plaque, device associated infection. Mostly biofilms are infective in nature and can be a source of Nosocomial infection. According to a report published by national institute of Health about 65% of all microbial infections and 80% of all chronic infections are associated with biofilms. The structural anatomy of biofilms protects microbial cells from antimicrobial agents, UV rays. These biofilms act as a barrier; antibiotics cannot reach to these microbes hindering the killing of the microbes thus posing a serious threat to public health. Management of these bacterial biofilms requires an early detection method and development of novel and efficient control measures for treating patients improving patient care and timely management. Keywords: Biofilm, Biofilm-matrix Antimicrobial resistance, Polymeric Substances, Tissue-culture plate 1. Introduction London[9] In year 1933, Henrici presented his recorded observations concerning biofilms in which he observed that In nature, microorganism subsist primarily by adhering to water bacteria were not free floating, but they submerged and growing upon biotic and inanimate surfaces. These surface[8]. In year 1940, H.
    [Show full text]