Early History of Microbiology and Microbiological Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review Pili in Gram-Negative and Gram-Positive Bacteria – Structure
Cell. Mol. Life Sci. 66 (2009) 613 – 635 1420-682X/09/040613-23 Cellular and Molecular Life Sciences DOI 10.1007/s00018-008-8477-4 Birkhuser Verlag, Basel, 2008 Review Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease T. Profta,c,* and E. N. Bakerb,c a School of Medical Sciences, Department of Molecular Medicine & Pathology, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand), Fax: +64-9-373-7492, e-mail: [email protected] b School of Biological Sciences, University of Auckland, Auckland (New Zealand) c Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland (New Zealand) Received 08 August 2008; received after revision 24 September 2008; accepted 01 October 2008 Online First 27 October 2008 Abstract. Many bacterial species possess long fila- special form of bacterial cell movement, known as mentous structures known as pili or fimbriae extend- twitching motility. In contrast, the more recently ing from their surfaces. Despite the diversity in pilus discovered pili in Gram-positive bacteria are formed structure and biogenesis, pili in Gram-negative bac- by covalent polymerization of pilin subunits in a teria are typically formed by non-covalent homopo- process that requires a dedicated sortase enzyme. lymerization of major pilus subunit proteins (pilins), Minor pilins are added to the fiber and play a major which generates the pilus shaft. Additional pilins may role in host cell colonization. be added to the fiber and often function as host cell This review gives an overview of the structure, adhesins. Some pili are also involved in biofilm assembly and function of the best-characterized pili formation, phage transduction, DNA uptake and a of both Gram-negative and Gram-positive bacteria. -
General Microbiology (11:680:390) Syllabus
COURSE SYLLABUS General Microbiology - 11:680:390 COURSE OVERVIEW General Microbiology 11:680:390 Fall, Spring, Summer Meeting times TBD Meeting Location Lecture: Sychronous Lecture Hall Cook/Douglas and Wright Labs Busch Meeting Location Lab: Food Science 209 CONTACT INFORMATION: Course Coordinator: Dr. Ines Rauschenbach Office Location: Lipman Hall, Room 215 Phone: 848-932-5635 Email: [email protected] Office Hours: By Appointment COURSE WEBSITE, RESOURCES AND MATERIALS: • Canvas • Text: Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. 2020. Brock Biology of Microorganisms. 16th edition. Pearson, New York, NY. • Lab Manual o The lab manual (departmental publication) will be available for free through RUCore. • Electronic Notebook o We will be sending you a link to LabArchives. You must sign up before the start of your first lab. COURSE DESCRIPTION: This course offers a comprehensive study of the field of microbiology to science majors. The course will give detailed insights into five major themes: Structure and function of microbes (cellular structures, metabolism, and growth);,microbial genetics, microbial ecology, microbial diversity (prokaryotes, eukaryotes, viruses) and clinical microbiology (immunity, pathogenicity, epidemiology, control of microbes, and diseases). The course is taught in the synchronous lecture halls on Cook/Douglass and Busch campuses. Students are expected to participate in active learning activities and participate in class discussion to deepen their understanding of the microbial world and apply their knowledge to various concepts. LEARNING GOALS: Learning Goals for General Microbiology Lecture: After completion of the lecture component of the course, successful students will: 1. Demonstrate an understanding of the structural similarities and differences among microbes and the unique structure/function relationships of prokaryotic cells. -
Career Guide Biological Sciences Concentration in Microbiology
MAJOR TO BACHELOR OF SCIENCE IN CAREER GUIDE BIOLOGICAL SCIENCES CONCENTRATION IN MICROBIOLOGY Majoring in biological sciences with a concentration in microbiology provides students with intellectual and technical skills required for success in the broad area of microbiology, which includes clinical, environmental, ecological, evolutionary, molecular, metabolic, and physiological perspectives of microbes, including aspects of virology and immunology. Students concentrating in microbiology should also be able to explain the diversity and ABOUT THE MAJOR/ similarity of microbes, including their physiology, mechanisms of pathogenesis and host CONCENTRATION defenses, and unique ecology. SKILLS Research Problem-Solving Ability to Operate Critical Thinking Scientific Equipment Agricultural and Food Scientist Environmental Scientist Quality Control Analyst Bacteriologist Lab Technician* Regulatory Affairs Specialist Biomedical Scientist* Medical Device Specialist Research Microbiologist Biotechnologist* Mycologist Science Educator* Cell Biologist Parasitologists Virologist POTENTIAL CAREER Clinical Microbiologist Public Health Professional OPPORTUNITIES *Additional education/certification may be required COMMON CAREER AREAS FOR THIS MAJOR Organismal/ Research & Biomedical Healthcare Ecological Education Biotechnology Bioinformatics Development Sciences Biology Do volunteer work Get part-time job or internship Did you know UNLV has programs, student A part-time, temporary, and summer job or groups, and academic service-learning internship can -
Zum 50Jährigen Bestehen Der Tropenmedizin an Der Universität Rostock
Zum 50jährigen Bestehen der Tropenmedizin an der Universität Rostock Von Kurt Ziegler Rostocker Studien zur Universitätsgeschichte Band 5 Universität Rostock 2008 Bibliografische Information der Deutschen Bibliothek Die deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliografische Angaben sind im Internet über http://dnb.ddb.de abrufbar. Herausgeber: Der Rektor der Universität Rostock Redaktion: Prof. Dr. Kersten Krüger Druckvorlage: Prof. Dr. Kersten Krüger Einband: Medienzentrum der Universität Rostock Druck und Herstellung: Universitätsdruckerei Rostock 499-08 Copyright 2008 by Universität Rostock ISBN 978-3-86009-030-5 Bezugsmöglichkeiten: Universität Rostock Universitätsarchiv Universitätsplatz 1 18051 Rostock Telefon: +49-381 498 8621 Fax: +49-381 498 8622 3 Inhalt Vorwort 5 Tropenmedizin in der Kolonialzeit 7 Ein Institut für Schiffs-und Tropenkrankheiten 7 Die Weltgesundheitsorganisation nach dem Zweiten Weltkrieg 9 Die medizinische Ausgangssituation in Rostock nach 1945 9 Die Einführung der Tropenmedizin an der Universität Rostock 13 Die Realisierung der ersten staatlichen Fördermaßnahmen 15 Erste tropenmedizinisch-klinische Erfahrungen 19 Unsere enge Zusammenarbeit mit dem Medizinischen Dienst des Verkehrswesens der DDR, Direktion Schiffahrt 21 Rasche Zunahme tropenmedizinischer Aufgaben und Anforderungen in den 60-er Jahren 22 Aus-und Weiterbildung auf dem Gebiet der Tropenmedizin und die Entwicklung des wissenschaftlichen Nachwuchses 26 Der neu eingerichtete Lehrstuhl -
Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I. -
Diphtheria Serum and Serotherapy. Development, Production and Regulation in Fin De Siècle Germany
Diphtheria serum and serotherapy. Development, Production and regulation in fin de siècle Germany Axel C. Hüntelmann Institute for the History of Medicine, Ruprecht-Karls-University Heidelberg. [email protected] Dynamis Fecha de recepción: 3 de enero de 2007 [0211-9536] 2007; 27: 107-131 Fecha de aceptación: 8 de marzo de 2007 SUMMARY: 1.—Introduction. 2.—The socio-cultural context of science in fin de siècle Germany. 3.— The development of diphtheria serum in Germany. 4.—The production of diphtheria serum in the German Empire. 5.—State control of diphtheria serum. 6.—Serum networks and indirect state regulation. ABSTRACT: The development, production and state regulation of diphtheria serum is outlined against the background of industrialisation, standardization, falling standards of living and rising social conflict in fin de siècle Germany. On one hand, diphtheria serum offered a cure for an infectious disease and was a major therapeutic innovation in modern medicine. On the other hand, the new serum was a remedy of biological origin and nothing was known about its side effects or long-term impact. Moreover, serum therapy promised high profits for manufacturers who succeeded in stabilizing the production process and producing large quantities of serum in so-called industrial production plants. To minimize public health risks, a broad system of state regulation was installed, including the supervision of serum production and distribution. The case of diphtheria serum illustrates the indirect forms of government supervision and influence adopted in the German Empire and the cooperation and networking among science, state and industry. PALABRAS CLAVE: suero antidiftérico, Alemania, regulacion estatal, seroterapia, redes entre ciencia, estado e industria, Emil Behring. -
Commencement1991.Pdf (8.927Mb)
TheJohns Hopkins University Conferring of Degrees At the Close of the 1 1 5th Academic Year MAY 23, 1991 Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation http://archive.org/details/commencement1991 Contents Order of Procession 1 Order of Events 2 Johns Hopkins Society of Scholars 10 Honorary Degree Citations 12 Academic Regalia 15 Awards 17 Honor Societies 21 Student Honors 23 Degree Candidates 25 As final action cannot always be taken by the time the program is printed, the lists of candidates, recipients of awards and prizes, and designees for honors are tentative only. The University reserves the right to withdraw or add names. Order ofProcession MARSHALS Sara Castro-Klaren Peter B. Petersen Eliot A. Cohen Martin R. Ramirez Bernard Guyer Trina Schroer Lynn Taylor Hebden Stella M. Shiber Franklin H. Herlong Dianne H. Tobin Jean Eichelberger Ivey James W. Wagner Joseph L. Katz Steven Yantis THE GRADUATES * MARSHALS Grace S. Brush Warner E. Love THE FACULTIES **- MARSHALS Lucien M. Brush, Jr. Stewart Hulse, Jr. THE DEANS MEMBERS OF THE SOCIETY OF SCHOLARS OFFICERS OF THE UNIVERSITY THE TRUSTEES CHDZF MARSHAL Noel R. Rose THE VICE PRESIDENT OF THE JOHNS HOPKINS UNDTERSLTY ALUMNI ASSOCIATION THE CHAPLAINS THE PRESENTERS OF THE HONORARY DEGREE CANDIDATES THE HONORARY DEGREE CANDIDATES THE INTERIM PROVOST OF THE UNIVERSITY THE CHADIMAN OF THE BOARD OF TRUSTEES THE PRESIDENT OF THE UNDTERSLTY 1 Order ofEvents William (.. Richardson President of the University, presiding * * « PRELUDE Suite from the American Brass Band Journal G.W.E. Friederich (1821-1885) Suite from Funff— stimmigte blasenda Music JohannPezel (1639-1694) » PROCESSIONAL The audience is requested to stand as the Academic Procession moves into the area and to remain standing after the Invocation. -
Introduction to Microbiology: Then and Now
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC (right) Courtesy of Jed Alan Fuhrman, University of Southern University (right) Courtesy of Jed Alan Fuhrman, (left) Courtesy of JPL-Caltech/NASA. California. CHAPTER 1 NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Introduction© Jones & Bartlett Learning, LLC to © Jones & Bartlett Learning, LLC Microbiology:NOT FOR SALE OR DISTRIBUTION ThenNOT FOR and SALE OR DISTRIBUTIONNow © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALECHAPTER OR DISTRIBUTION KEY CONCEPTS NOT FOR SALE OR DISTRIBUTION 1-1 Microbial Communities Support and Affect All Life on Earth 1-2 The Human Body Has Its Own Microbiome 1-3 Microbiology Then: The Pioneers 1-4 The Microbial© WorldJones Is Cat& Bartlettaloged into Learning, Unique Groups LLC © Jones & Bartlett Learning, LLC 1-5 MicrobiologyNOT Now :FOR Challenges SALE Remain OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC Earth’s Microbiomes NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Space and the universe often appear to be an unlimited frontier. The chapter opener image on the left shows one of an estimated 350 billion large galaxies and more than 1024 stars in the known universe. However, there is another 30 invisible frontier here on Earth. This is the microbial universe, which consists of more than 10 microorganisms (or microbes for short). As the chapter opener image on the right shows, microbes might be microscopic in size, but, as we will see, they are magnificent in their evolutionary diversity and astounding in their sheer numbers. -
Voluntarily Cooperation and the Celestial Twinning Bond
Celestial Twins Voluntarily Cooperation and the Celestial Twinning Bond The Children’s Saviors: Emil Behring and Paul Ehrlich The Sign: Pisces Keyword: I believe Paul Ehrlich Emil Behring lthough today there is no precise definition of “twinning bond,” nobody denies its existence. This strong emotional or even telepathic bond is described in Aresearch of identical twins reared apart. The relationship between such twins is usually much more intense than that between unrelated people. They may share a closeness that would be hard to match in most other relationships, or they may compete with each other in a struggle to be first. Goering and Rosenberg seemed to belong to the latter category, their instinctive wish to be first dictated to them the desire to get rid of each other, yet even so, in the Nuremberg trials they did not blame each other. Was it just by chance that a kind of celestial twinning bond was observed in the previous stories, or is there a special system of relationships characteristic of celestial twins? Are celestial twins compelled to be in constant competition or do their joined efforts release unusually strong powers as are ascribed by mythology to some biological twins? Some of the answers to these intriguing questions I found in the comparative life stories of the Nobel Prize winners in Medicine, Emil von Behring and Paul Ehrlich. These celestial twins were, like Halem and Stauffenberg, born in Pisces. Though from birth separated by geography, religion and genes, they both found their life mission in Berlin, where both worked at the Institute of Hygiene. -
Microbiology Mary Jane Ferraro and Robert C
Chapter Microbiology Mary Jane Ferraro and Robert C. Moellering Jr. he history of Microbiology (or Bacte- abrupt departure the following year, Dr. Law- Triology, as it was originally known) at the rence Kunz, who had come to the MGH as an Massachusetts General Hospital (MGH) is a Assistant Bacteriologist in 1952, assumed de facto complex one. Although Dr. Reginald Heber responsibility for the laboratory until he was offi - Fitz’s pioneering work established the pathogen- cially appointed chief in 1956. During his tenure esis of appendicitis in 1886 (15, 41; and see chapter the Department of Bacteriology developed close 2), the laboratory specialty of microbiology owes ties with the Infectious Diseases Division and the its origins to Dr. James Homer Wright, who was Department of Medicine. Th is was also a time appointed Pathologist at MGH in 1896. Wright during which a number of “boutique” clinical was involved in a number of landmark studies laboratories sprang up throughout the hospital. in the etiology of parasitic and other infections, Microbiology and Infectious Diseases were no established the fi rst diagnostic bacteriology labo- exception, and in rapid order independent labo- ratory functions at the MGH, and hired several ratories of Antibiotic Blood Levels, Parasitology, physicians to undertake bacteriological work in and Virology were established in the Infectious the department. In 1925, just before the end of Dr. Diseases Unit. All these had close relationships Wright’s tenure as chief, the offi cial position of with the Bacteriology Laboratory as well. In 1989 Bacteriologist was established in the Department the activities of the Bacteriology/Clinical Micro- of Pathology, and this was held in succession by biology Laboratory were once again returned to Drs. -
Microbe Hunters Revisited Yale University School of Medicine, New Haven, Connecticut, USA
INTERNATL MICROBIOL (1998) 1: 65-68 65 © Springer-Verlag Ibérica 1998 PERSPECTIVES William C. Summers Microbe Hunters revisited Yale University School of Medicine, New Haven, Connecticut, USA Correspondence to: William C. Summers. Yale University School of Medicine. 333 Cedar St. New Haven, CT 06520-8040. USA. Tel.: +1-203-785 2986. Fax: +1-203-785 6309. E-mail: [email protected] It was the mid-1950s and I was a teenager when I first Indeed, Microbe Hunters is a book about success: tales of read Microbe Hunters by Paul Henry De Kruif (Zealand, MI, brilliant research, incisive investigations, and heroic 1890–Holland, MI, 1971). It was the right time and the right personalities. Yet it is far from “history-objectively written.” age; I was fascinated. Here were heros enough to satisfy any The formula that De Kruif hit upon in Microbe Hunters served bookish young man interested in the natural world. Microbe him well: between 1928 and 1957 he wrote eleven more books Hunters was a book that inspired a generation or more of on medical and scientific topics, all with the same “exciting budding young microbiologists [4]. Not only that, however. narrative” and sense of drama. Some of these books were best- It established a metaphor and a genre of science writing that sellers and selected by the popular Book-of-the-Month Club. has often been imitated. None, however, matched the popularity and appeal of Microbe Microbe Hunters is a series of 12 stories that describe major Hunters. events in the history of microbiology, from microscopic De Kruif’s stories are full-scale dramatizations, complete observations of animalcules (literally “little animals”) by with fictional dialog of the historical subjects, and first person Leeuwenhoek (“First of the Microbe Hunters”) to Paul Ehrlich’s interjections of the voice of the narrator, De Kruif. -
Introduction to Plant Diseases
An Introduction to Plant Diseases David L. Clement, Regional Specialist - Plant Pathology Maryland Institute For Agriculture And Natural Resources Modified by Diane M. Karasevicz, Cornell Cooperative Extension Cornell University, Department of Plant Pathology Learning Objectives 1. Gain a general understanding of disease concepts. 2. Become familiar with the major pathogens that cause disease in plants. 3. Gain an understanding of how pathogens cause disease and their interactions with plants.· 4. Be able to distinguish disease symptoms from other plant injuries. 5. Understand the basic control strategies for plant diseases. Introduction to Plant Diseases The study of plant disease is covered under the science of Phytopathology, which is more commonly called Plant Pathology. Plant pathologists study plant diseases caused by fungi, bacteria. viruses and similar very small microbes (mlos. viroids, etc.), parasitic plants and nematodes. They also study plant disorders caused by abiotic problems. or non-living causes, associated with growing conditions. These include drought and freezing damage. nutrient imbalances, and air pollution damage. A Brief History of Plant Disea~es Plant diseases have had profound effects on mankind through the centuries as evidenced by Biblical references to blasting and mildew of plants. The Greek philosopher Theophrastus (370-286 BC) was the first to describe maladies of trees,. cereals and legumes that we today classify as leaf scorch, rots, scab, and cereal rust. The Romans were also aware of rust diseases of their grain crops. They celebrated lhe holiday of Robigalia that involved sacrifices of reddish colored dogs and catde in an attempt to appease the rust god Robigo. With the invention of the microscope in th~ seventeenth century fungi and bacteria associated with plants were investigated.