History Through the Stereoscope: Stereoscopy and Virtual Travel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358 Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation Sunita Devi Research Associate, Haryana Space Application Centre (HARSAC), Department of Science & Technology, Government of Haryana, CCS HAU Campus, Hisar – 125 004, India , Abstract: Stereoscope is to deflect normally converging lines of sight, so that each eye views a different image. For deriving maximum benefit from photographs they are normally studied stereoscopically. Instruments in use today for three dimensional studies of aerial photographs. If instead of looking at the original scene, we observe photos of that scene taken from two different viewpoints, we can under suitable conditions, obtain a three dimensional impression from the two dimensional photos. This impression may be very similar to the impression given by the original scene, but in practice this is rarely so. A pair of photograph taken from two cameras station but covering some common area constitutes and stereoscopic pair which when viewed in a certain manner gives an impression as if a three dimensional model of the common area is being seen. Keywords: Remote Sensing (RS), Aerial Photograph, Pocket or Lens Stereoscope, Mirror Stereoscope. Stereopair, Stere. pair’s orientation 1. Introduction characteristics. Two eyes must see two images, which are only slightly different in angle of view, orientation, colour, A stereoscope is a device for viewing a stereoscopic pair of brightness, shape and size. (Figure: 1) Human eyes, fixed on separate images, depicting left-eye and right-eye views of same object provide two points of observation which are the same scene, as a single three-dimensional image. -
Scalable Multi-View Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays
Scalable Multi-view Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays Samuel L. Hill B.S. Imaging and Photographic Technology Rochester Institute of Technology, 2000 M.S. Optical Sciences University of Arizona, 2002 Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences at the Massachusetts Institute of Technology June 2004 © 2004 Massachusetts Institute of Technology. All Rights Reserved. Signature of Author:<_- Samuel L. Hill Program irlg edia Arts and Sciences May 2004 Certified by: / Dr. V. Michael Bove Jr. Principal Research Scientist Program in Media Arts and Sciences ZA Thesis Supervisor Accepted by: Andrew Lippman Chairperson Department Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHNOLOGY Program in Media Arts and Sciences JUN 172 ROTCH LIBRARIES Scalable Multi-view Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays Samuel L. Hill Submitted to the Program in Media Arts and Sciences School of Architecture and Planning on May 7, 2004 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences Abstract The number of three-dimensional displays available is escalating and yet the capturing devices for multiple view content are focused on either single camera precision rigs that are limited to stationary objects or the use of synthetically created animations. In this work we will use the existence of inexpensive digital CMOS cameras to explore a multi- image capture paradigm and the gathering of real world real-time data of active and static scenes. -
Algorithms for Single Image Random Dot Stereograms
Displaying 3D Images: Algorithms for Single Image Random Dot Stereograms Harold W. Thimbleby,† Stuart Inglis,‡ and Ian H. Witten§* Abstract This paper describes how to generate a single image which, when viewed in the appropriate way, appears to the brain as a 3D scene. The image is a stereogram composed of seemingly random dots. A new, simple and symmetric algorithm for generating such images from a solid model is given, along with the design parameters and their influence on the display. The algorithm improves on previously-described ones in several ways: it is symmetric and hence free from directional (right-to-left or left-to-right) bias, it corrects a slight distortion in the rendering of depth, it removes hidden parts of surfaces, and it also eliminates a type of artifact that we call an “echo”. Random dot stereograms have one remaining problem: difficulty of initial viewing. If a computer screen rather than paper is used for output, the problem can be ameliorated by shimmering, or time-multiplexing of pixel values. We also describe a simple computational technique for determining what is present in a stereogram so that, if viewing is difficult, one can ascertain what to look for. Keywords: Single image random dot stereograms, SIRDS, autostereograms, stereoscopic pictures, optical illusions † Department of Psychology, University of Stirling, Stirling, Scotland. Phone (+44) 786–467679; fax 786–467641; email [email protected] ‡ Department of Computer Science, University of Waikato, Hamilton, New Zealand. Phone (+64 7) 856–2889; fax 838–4155; email [email protected]. § Department of Computer Science, University of Waikato, Hamilton, New Zealand. -
Stereoscopic Therapy: Fun Or Remedy?
STEREOSCOPIC THERAPY: FUN OR REMEDY? SARA RAPOSO Abstract (INDEPENDENT SCHOLAR , PORTUGAL ) Once the material of playful gatherings, stereoscop ic photographs of cities, the moon, landscapes and fashion scenes are now cherished collectors’ items that keep on inspiring new generations of enthusiasts. Nevertheless, for a stereoblind observer, a stereoscopic photograph will merely be two similar images placed side by side. The perspective created by stereoscop ic fusion can only be experienced by those who have binocular vision, or stereopsis. There are several caus es of a lack of stereopsis. They include eye disorders such as strabismus with double vision. Interestingly, stereoscopy can be used as a therapy for that con dition. This paper approaches this kind of therapy through the exploration of North American collections of stereoscopic charts that were used for diagnosis and training purposes until recently. Keywords. binocular vision; strabismus; amblyopia; ste- reoscopic therapy; optometry. 48 1. Binocular vision and stone (18021875), which “seem to have access to the visual system at the same stereopsis escaped the attention of every philos time and form a unitary visual impres opher and artist” allowed the invention sion. According to the suppression the Vision and the process of forming im of a “simple instrument” (Wheatstone, ory, both similar and dissimilar images ages, is an issue that has challenged 1838): the stereoscope. Using pictures from the two eyes engage in alternat the most curious minds from the time of as a tool for his study (Figure 1) and in ing suppression at a low level of visual Aristotle and Euclid to the present day. -
Design, Assembly, Calibration, and Measurement of an Augmented Reality Haploscope
Design, Assembly, Calibration, and Measurement of an Augmented Reality Haploscope Nate Phillips* Kristen Massey† Mohammed Safayet Arefin‡ J. Edward Swan II§ Mississippi State University Mississippi State University Mississippi State University Mississippi State University Figure 1: The Augmented Reality (AR) haploscope. (a) A front view of the AR haploscope with labeled components [10]. (b) A user participating in perceptual experiments. (c) The user’s view through the haploscope. With finely adjusted parameters such as brightness, binocular parallax, and focal demand, this object appears to have a definite spatial location. ABSTRACT This investment and development is stymied by an incomplete knowledge of key underlying research. Among this unfinished re- A haploscope is an optical system which produces a carefully con- search, our lab has focused on addressing questions of AR percep- trolled virtual image. Since the development of Wheatstone’s origi- tion; in order to accomplish the ambitious goals of business and nal stereoscope in 1838, haploscopes have been used to measure per- industry, a deeper understanding of the perceptual phenomena under- ceptual properties of human stereoscopic vision. This paper presents lying AR is needed [8]. All current commercial AR displays have an augmented reality (AR) haploscope, which allows the viewing certain limitations, including fixed focal distances, limited fields of of virtual objects superimposed against the real world. Our lab has view, non-adjustable optical designs, and limited luminance ranges, used generations of this device to make a careful series of perceptual among others. These limitations hinder the ability of our field to ask measurements of AR phenomena, which have been described in certain research questions, especially in the area of AR perception. -
3D-TV R&D Activities in Europe
408 IEEE TRANSACTIONS ON BROADCASTING, VOL. 57, NO. 2, JUNE 2011 3D-TV R&D Activities in Europe Oliver Grau, Member, IEEE, Thierry Borel, Peter Kauff, Aljoscha Smolic, and Ralf Tanger, Member, IEEE Abstract—3D-TV is a topic that has been studied for many years depth-based and model-based stereo representations. These rep- in Europe. Through the research frameworks of the European resentations allow for adjustments in post-production and at the Commission in particular, a number of long-term issues have been user side. Moreover, they enable usage of more advanced dis- addressed to overcome limitations of the traditional two-view stereoscopy. This article gives a brief overview of the goals and play techniques, in particular auto-stereoscopic and holographic achievements of some completed European projects starting in displays. the 1990s. It then reviews the topics related to 3D-TV in recent European research. Finally an overview with a selection of recent A. Scope projects is presented. This paper aims to give an overview of some of the research Index Terms—Digital video broadcasting, multimedia systems, and development (R&D) activities on subjects related to 3D-TV stereo vision, TV broadcasting. in Europe. Again, Europe has a long history of both research and implementation of these results by industry. However, such an overview can never be complete. We aim to give a brief overview I. INTRODUCTION of past research and a snap-shot of recent activities. The projects UROPE has a long history in three-dimensional television or working groups mentioned represent only a sample of the E (3D-TV), starting from the first demonstration of stereo- overall R&D effort and further literature is referenced where scopic television by Baird in 1928. -
A History and Future of Stereoscopy in Education
A History and Future of Stereoscopy in Education Jared E. Bendis [email protected] Creative Director of New Media http://www.case.edu/its/itac/nms/ Instructional Technology & Academic Computing Case Western Reserve University Introduction pre-1850 and, by 1854, stereoscopic cameras were commercially available (Darrah, World of Stereographs p.3). As I started to research the uses of stereoscopic imagery in education I came across a book of reprinted articles about The popularity of stereoscopic images during the 1850s is stereoscopy. The book cites three reasons for the importance of staggering. In the first two years of production, the London reprinting the articles, follows: Stereoscopic Company sold more than 500,000 Brewster Stereoscopes, and by 1858 over 100,000 images were available (1) To show the utter absurdity of many wide-spread for purchase (Darrah, World of Stereographs p.3-4). misconceptions, as, for instance, that stereoscopic photographs are of importance mainly as a means for The psychological (and educational) impact of these images did amusement and entertainment rather than for not go unnoticed. Dr. Holmes observes that: education. By means of these two different views of an object, (2) To give an example of intelligent appreciation of the mind, as it were, feels round it and get in idea of stereoscopic views as well as their possibilities to a solidity, We clasp an object with our eyes as with our person who does appreciate them. arms, or with our hands, or with our thumb and finger, and then we know it to be something more than a (3) To show, what few people know, - the correct way surface. -
Compiling Stereoscopic 3D Animations from 2D Video Sequences and Virtual Computer Models Exploiting Open Source Software
Compiling Stereoscopic 3D Animations from 2D Video Sequences and Virtual Computer Models Exploiting Open Source Software Guenter POMASKA University of Applied Sciences Bielefeld, Faculty of Architecture and Civil Engineering Artilleriestr. 9, 38179 Minden, Germany [email protected] Keywords Stereoscopy, 3D animation, 2D to 3D conversion, video cutting, script programming Abstract The year 2010 should see the breakthrough for 3D television. All major manufacturers in the computer and entertainment industry presented 3D products. Polarization still competes with shutter technology; auto- stereoscopic systems are furthermore under development. Due to the HDMI interface PC, TV and data- projection are connected together. This contribution covers the principles of current developments in hardware for recording and playback of stereoscopic animations. There is a demand for content creation in 3D formats. Software tools for the conversion from 2D to 3D video sequences are presented. Particular computer models are suitable for presentations as stereoscopic 3D animations. Attention is given to the modeling of a stereo camera rig for creating left and right animations and mounting them together for stereoscopic presentation. 1. INTRODUCTION The development of the stereoscope began in 1830 already. Viewing stereo cards was a popular pastime at the end of the 19th century. 1897 the Kaiserpanorama became an attraction in Germany. Further development caused today to auto stereoscopic video displays or virtual reality environments like caves and workbenches. Stereoscopy is used in photogrammetry and computer vision for applications in science and technology. Automatic matching algorithms generate depth maps for image based 3D modeling. The entertainment industry is reinventing stereoscopy from time to time in cinema, print media or game industry. -
A1the Eye in Detail
A. The Eye A1. Eye in detail EYE ANATOMY A guide to the many parts of the human eye and how they function. The ability to see is dependent on the actions of several structures in and around the eyeball. The graphic below lists many of the essential components of the eye's optical system. When you look at an object, light rays are reflected from the object to the cornea , which is where the miracle begins. The light rays are bent, refracted and focused by the cornea, lens , and vitreous . The lens' job is to make sure the rays come to a sharp focus on the retina . The resulting image on the retina is upside-down. Here at the retina, the light rays are converted to electrical impulses which are then transmitted through the optic nerve , to the brain, where the image is translated and perceived in an upright position! Think of the eye as a camera. A camera needs a lens and a film to produce an image. In the same way, the eyeball needs a lens (cornea, crystalline lens, vitreous) to refract, or focus the light and a film (retina) on which to focus the rays. If any one or more of these components is not functioning correctly, the result is a poor picture. The retina represents the film in our camera. It captures the image and sends it to the brain to be developed. The macula is the highly sensitive area of the retina. The macula is responsible for our critical focusing vision. It is the part of the retina most used. -
3D Television - Wikipedia
3D television - Wikipedia https://en.wikipedia.org/wiki/3D_television From Wikipedia, the free encyclopedia 3D television (3DTV) is television that conveys depth perception to the viewer by employing techniques such as stereoscopic display, multi-view display, 2D-plus-depth, or any other form of 3D display. Most modern 3D television sets use an active shutter 3D system or a polarized 3D system, and some are autostereoscopic without the need of glasses. According to DisplaySearch, 3D televisions shipments totaled 41.45 million units in 2012, compared with 24.14 in 2011 and 2.26 in 2010.[1] As of late 2013, the number of 3D TV viewers An example of three-dimensional television. started to decline.[2][3][4][5][6] 1 History 2 Technologies 2.1 Displaying technologies 2.2 Producing technologies 2.3 3D production 3TV sets 3.1 3D-ready TV sets 3.2 Full 3D TV sets 4 Standardization efforts 4.1 DVB 3D-TV standard 5 Broadcasts 5.1 3D Channels 5.2 List of 3D Channels 5.3 3D episodes and shows 5.3.1 1980s 5.3.2 1990s 5.3.3 2000s 5.3.4 2010s 6 World record 7 Health effects 8See also 9 References 10 Further reading The stereoscope was first invented by Sir Charles Wheatstone in 1838.[7][8] It showed that when two pictures 1 z 17 21. 11. 2016 22:13 3D television - Wikipedia https://en.wikipedia.org/wiki/3D_television are viewed stereoscopically, they are combined by the brain to produce 3D depth perception. The stereoscope was improved by Louis Jules Duboscq, and a famous picture of Queen Victoria was displayed at The Great Exhibition in 1851. -
Stereoscopic Media
Stereoscopic media Digital Visual Effects Yung-Yu Chuang 3D is hot today 3D has a long history • 1830s, stereoscope • 1920s, first 3D film, The Power of Love projected dual-strip in the red/green anaglyph format • 1920s, teleview system Teleview was the earliest alternate-frame seqqguencing form of film ppjrojection. Through the use of two interlocked projectors, alternating left/right frames were projected one after another in rapid succession. Synchronized viewers attached to the arm-rests of the seats in the theater open and closed at the same time, and took advantage of the viewer's persistence of vision, thereby creating a true stereoscopic image. 3D has a long history • 1950s, the "golden era" of 3-D • The attempts filfaile d because immature technology results in viewer discomfort. • 1980s, rebirth of 3D, IMAX Why could 3D be successful today? • It finally takes off until digital processing makes 3D films both easier to shoot and watch. • New technology for more comfortable viewing experiences – Accurately-adjustable 3D camera rigs – Digital processing and post-shooting rectification – Digital projectors for accurate positioning – Polarized screen to reduce cross-talk 3D TVs Computers Notebooks Game consoles Nintendo 3DS HTC EVO 3D 3D contents (()games) 3D contents (()films) 3D contents (()broadcasting) 3D cameras Fu ji R eal3D W1 and W3 ($600) Sony HDR-TD10E Outline • Human depth perception • 3D disp lays • 3D cinematography • Stereoscopic media postprocessing Human depth perception Space perception • The ability to perceive and interact with the structure of space is one of the fundamental goals of the visual system. • Our visual system reconstructs the world from two non- Euclidean inputs, the two distinct retinal images. -
Near-Eye Display and Tracking Technologies for Virtual and Augmented Reality
EUROGRAPHICS 2019 Volume 38 (2019), Number 2 A. Giachetti and H. Rushmeier STAR – State of The Art Report (Guest Editors) Near-Eye Display and Tracking Technologies for Virtual and Augmented Reality G. A. Koulieris1 , K. Ak¸sit2 , M. Stengel2, R. K. Mantiuk3 , K. Mania4 and C. Richardt5 1Durham University, United Kingdom 2NVIDIA Corporation, United States of America 3University of Cambridge, United Kingdom 4Technical University of Crete, Greece 5University of Bath, United Kingdom Abstract Virtual and augmented reality (VR/AR) are expected to revolutionise entertainment, healthcare, communication and the manufac- turing industries among many others. Near-eye displays are an enabling vessel for VR/AR applications, which have to tackle many challenges related to ergonomics, comfort, visual quality and natural interaction. These challenges are related to the core elements of these near-eye display hardware and tracking technologies. In this state-of-the-art report, we investigate the background theory of perception and vision as well as the latest advancements in display engineering and tracking technologies. We begin our discussion by describing the basics of light and image formation. Later, we recount principles of visual perception by relating to the human visual system. We provide two structured overviews on state-of-the-art near-eye display and tracking technologies involved in such near-eye displays. We conclude by outlining unresolved research questions to inspire the next generation of researchers. 1. Introduction it take to go from VR ‘barely working’ as Brooks described VR’s technological status in 1999, to technologies being seamlessly inte- Near-eye displays are an enabling head-mounted technology that grated in the everyday lives of the consumer, going from prototype immerses the user in a virtual world (VR) or augments the real world to production status? (AR) by overlaying digital information, or anything in between on the spectrum that is becoming known as ‘cross/extended reality’ The shortcomings of current near-eye displays stem from both im- (XR).