Do YOU See in 3D?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stereo Capture and Display At
Creation of a Complete Stereoscopic 3D Workflow for SoFA Allison Hettinger and Ian Krassner 1. Introduction 1.1 3D Trend Stereoscopic 3D motion pictures have recently risen to popularity once again following the success of films such as James Cameron’s Avatar. More and more films are being converted to 3D but few films are being shot in 3D. Current available technology and knowledge of that technology (along with cost) is preventing most films from being shot in 3D. Shooting in 3D is an advantage because two slightly different images are produced that mimic the two images the eyes see in normal vision. Many take the cheaper route of shooting in 2D and converting to 3D. This results in a 3D image, but usually nowhere near the quality as if the film was originally shot in 3D. This is because a computer has to create the second image, which can result in errors. It is also important to note that a 3D image does not necessarily mean a stereo image. 3D can be used to describe images that have an appearance of depth, such as 3D animations. Stereo images refer to images that make use of retinal disparity to create the illusion of objects going out of and into the screen plane. Stereo images are optical illusions that make use of several cues that the brain uses to perceive a scene. Examples of monocular cues are relative size and position, texture gradient, perspective and occlusion. These cues help us determine the relative depth positions of objects in an image. Binocular cues such as retinal disparity and convergence are what give the illusion of depth. -
Robust Watermarking for Anaglyph 3D Images Using DWT Techniques
International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-6, June 2015 Robust Watermarking for Anaglyph 3D images Using DWT Techniques Ruchika Patel, Parth Bhatt 3D images section IV deals with proposed method of Abstract— In recent years the trend of 3D movies & watermarking, section V presents proposed method results. projection took a very intensive attention. Anaglyph images are Finally a conclusion will be presented in section VI. easily obtained by super impressive left and right eye images in different color planes of single image for subsequent viewing II. ANAGLYPH 3D IMAGE through colored glasses. Digital watermarking is a popular tool for copyright protection, content authentication, detection of Anaglyph 3D is the name given to the stereoscopic 3D illegal duplication and alteration, and secret communication. In outcome accomplished by means of converting each eye's this paper discrete wavelet transform (DWT) watermarking image using filters of different colors, typically red and cyan. algorithm is used for embedding an image as digital watermark Anaglyph 3D images contain two differently filtered colored on one of the stereo pair images and then combine with the other images, one for each eye. image to form a 3D anaglyph watermarked image. In the reverse process, Deanaglyph is used to separate the two stereoscopic images from which watermark is extracted. Embedding To create an anaglyph image, it is essential to have two watermark either in right image or left image yields more photos taken at the same time the photos should focus the security compared to embedding watermark directly into an same object, moving the camera laterally between 3 and 5 cm anaglyph image. -
Spatial Design Principles in Digital Animation
Copyright by Laura Beth Albright 2009 ABSTRACT The visual design phase in computer-animated film production includes all decisions that affect the visual look and emotional tone of the film. Within this domain is a set of choices that must be made by the designer which influence the viewer's perception of the film’s space, defined in this paper as “spatial design.” The concept of spatial design is particularly relevant in digital animation (also known as 3D or CG animation), as its production process relies on a virtual 3D environment during the generative phase but renders 2D images as a final product. Reference for spatial design decisions is found in principles of various visual arts disciplines, and this thesis seeks to organize and apply these principles specifically to digital animation production. This paper establishes a context for this study by first analyzing several short animated films that draw attention to spatial design principles by presenting the film space non-traditionally. A literature search of graphic design and cinematography principles yields a proposed toolbox of spatial design principles. Two short animated films are produced in which the story and style objectives of each film are examined, and a custom subset of tools is selected and applied based on those objectives. Finally, the use of these principles is evaluated within the context of the films produced. The two films produced have opposite stylistic objectives, and thus show two different viewpoints of applying the toolbox. Taken ii together, the two films demonstrate application and analysis of the toolbox principles, approached from opposing sides of the same system. -
Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358 Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation Sunita Devi Research Associate, Haryana Space Application Centre (HARSAC), Department of Science & Technology, Government of Haryana, CCS HAU Campus, Hisar – 125 004, India , Abstract: Stereoscope is to deflect normally converging lines of sight, so that each eye views a different image. For deriving maximum benefit from photographs they are normally studied stereoscopically. Instruments in use today for three dimensional studies of aerial photographs. If instead of looking at the original scene, we observe photos of that scene taken from two different viewpoints, we can under suitable conditions, obtain a three dimensional impression from the two dimensional photos. This impression may be very similar to the impression given by the original scene, but in practice this is rarely so. A pair of photograph taken from two cameras station but covering some common area constitutes and stereoscopic pair which when viewed in a certain manner gives an impression as if a three dimensional model of the common area is being seen. Keywords: Remote Sensing (RS), Aerial Photograph, Pocket or Lens Stereoscope, Mirror Stereoscope. Stereopair, Stere. pair’s orientation 1. Introduction characteristics. Two eyes must see two images, which are only slightly different in angle of view, orientation, colour, A stereoscope is a device for viewing a stereoscopic pair of brightness, shape and size. (Figure: 1) Human eyes, fixed on separate images, depicting left-eye and right-eye views of same object provide two points of observation which are the same scene, as a single three-dimensional image. -
Scalable Multi-View Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays
Scalable Multi-view Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays Samuel L. Hill B.S. Imaging and Photographic Technology Rochester Institute of Technology, 2000 M.S. Optical Sciences University of Arizona, 2002 Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences at the Massachusetts Institute of Technology June 2004 © 2004 Massachusetts Institute of Technology. All Rights Reserved. Signature of Author:<_- Samuel L. Hill Program irlg edia Arts and Sciences May 2004 Certified by: / Dr. V. Michael Bove Jr. Principal Research Scientist Program in Media Arts and Sciences ZA Thesis Supervisor Accepted by: Andrew Lippman Chairperson Department Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHNOLOGY Program in Media Arts and Sciences JUN 172 ROTCH LIBRARIES Scalable Multi-view Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays Samuel L. Hill Submitted to the Program in Media Arts and Sciences School of Architecture and Planning on May 7, 2004 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences Abstract The number of three-dimensional displays available is escalating and yet the capturing devices for multiple view content are focused on either single camera precision rigs that are limited to stationary objects or the use of synthetically created animations. In this work we will use the existence of inexpensive digital CMOS cameras to explore a multi- image capture paradigm and the gathering of real world real-time data of active and static scenes. -
Spacespex™ Anaglyph—The Only Way to Bring 3Dtv to the Masses
SPACESPEX™ ANAGLYPH—THE ONLY WAY TO BRING 3DTV TO THE MASSES By Michael Starks © M. Starks 2009 May be reproduced provided nothing is added, omitted or changed-- including this copyright notice. SpaceSpex™ is the name I applied to my versions of the orange/blue anaglyph technique in 1993. In fact the Gang Li/ColorCode and some models of SpaceSpex use amber or orange/brown rather than yellow, but they are on a continuum. Like all the bicolor anaglyph methods it is compatible with all video equipment and displays and I think it’s the best of the methods using inexpensive paper glasses with colored lenses. Until someone comes up with a way to put hundreds of millions of new 3D TV’s in homes which can use polarized glasses or LCD shutter glasses, anaglyph is going to be the only way for mass distribution of full color high quality 3D over cable, satellite, the web or on DVD. However the solution I have proposed for Set Top Boxes, PC’s, TV sets and DVD players for the last 20 years is to have user controls, so those with display hardware that permits polarized or shutter glasses or even autostereo viewing or who want 2D can make that choice from the single 3D video file. This is the method of the TDVision codec, Next3D, and of Peter Wimmer’s famous StereoScopic Player (a new version due end of 2009), (all of which should appear in hardware soon) and probably the best stereoplayer of all in Masuji Suto’s StereoMovie Maker, and is being incorporated in most well known software DVD and media players. -
Best Enjoyed As Property, Shoe and Hairdo Porn.”
”Best enjoyed as property, shoe and hairdo porn.” Creating New Vocabulary in Present-Day English: A Study on Film-Related Neologisms in Total Film Rauno Sainio Tampere University School of Language, Translation and Literary Studies English Philology Pro Gradu Thesis May 2011 ii Tampereen yliopisto Englantilainen filologia Kieli-, käännös- ja kirjallisuustieteiden yksikkö SAINIO, RAUNO: ”Best enjoyed as property, shoe and hairdo porn.” Creating New Vocabulary in Present-Day English: A Study on Film-Related Neologisms in Total Film Pro gradu -tutkielma, 135 sivua + liite (6 sivua) Kevät 2011 Tämän pro gradu -tutkielman tarkoituksena oli tutustua eri menetelmiin, joiden avulla englannin kielen sanastoa voidaan laajentaa. Lähdekirjallisuudesta kerättyä tietoa käsiteltiin tutkielman teoriaosuudessa, minkä jälkeen empiirinen osuus selvitti, kuinka kyseisiä menetelmiä sovelletaan käytännössä nykyenglannissa. Tämän selvittämiseksi käytiin manuaalisesti läpi korpusaineisto, joka koostui isobritannialaisen Total Film -elokuvalehden yhden vuoden aikana julkaistuista numeroista. Elokuvajournalismissa käytettävä kieli valittiin tutkimuksen kohteeksi kirjoittajan henkilökohtaisen kiinnostuksen vuoksi sekä siksi, että elokuva on paitsi merkittävä, myös jatkuvasti kehittyvä taiteen ja populaarikulttuurin muoto. Niinpä tämän tutkielman tarkoitus on myös tutustuttaa lukija sellaiseen sanastoon, jota alaa käsittelevä lehdistö nykypäivänä Isossa-Britanniassa käyttää. Korpuksen pohjalta koottu, 466 elokuva-aiheista uudissanaa käsittävä sanaluettelo analysoitiin -
CS 534: Computer Vision Stereo Imaging Outlines
CS 534 A. Elgammal Rutgers University CS 534: Computer Vision Stereo Imaging Ahmed Elgammal Dept of Computer Science Rutgers University CS 534 – Stereo Imaging - 1 Outlines • Depth Cues • Simple Stereo Geometry • Epipolar Geometry • Stereo correspondence problem • Algorithms CS 534 – Stereo Imaging - 2 1 CS 534 A. Elgammal Rutgers University Recovering the World From Images We know: • 2D Images are projections of 3D world. • A given image point is the projection of any world point on the line of sight • So how can we recover depth information CS 534 – Stereo Imaging - 3 Why to recover depth ? • Recover 3D structure, reconstruct 3D scene model, many computer graphics applications • Visual Robot Navigation • Aerial reconnaissance • Medical applications The Stanford Cart, H. Moravec, 1979. The INRIA Mobile Robot, 1990. CS 534 – Stereo Imaging - 4 2 CS 534 A. Elgammal Rutgers University CS 534 – Stereo Imaging - 5 CS 534 – Stereo Imaging - 6 3 CS 534 A. Elgammal Rutgers University Motion parallax CS 534 – Stereo Imaging - 7 Depth Cues • Monocular Cues – Occlusion – Interposition – Relative height: the object closer to the horizon is perceived as farther away, and the object further from the horizon is perceived as closer. – Familiar size: when an object is familiar to us, our brain compares the perceived size of the object to this expected size and thus acquires information about the distance of the object. – Texture Gradient: all surfaces have a texture, and as the surface goes into the distance, it becomes smoother and finer. – Shadows – Perspective – Focus • Motion Parallax (also Monocular) • Binocular Cues • In computer vision: large research on shape-from-X (should be called depth from X) CS 534 – Stereo Imaging - 8 4 CS 534 A. -
Teacher Guide
Neuroscience for Kids http://faculty.washington.edu/chudler/neurok.html. Our Sense of Sight: Part 2. Perceiving motion, form, and depth Visual Puzzles Featuring a “Class Experiment” and “Try Your Own Experiment” Teacher Guide WHAT STUDENTS WILL DO · TEST their depth perception using one eye and then two · CALCULATE the class averages for the test perception tests · DISCUSS the functions of depth perception · DEFINE binocular vision · IDENTIFY monocular cues for depth · DESIGN and CONDUCT further experiments on visual perception, for example: · TEST people’s ability to interpret visual illusions · CONSTRUCT and test new visual illusions · DEVISE a “minimum difference test” for visual attention 1 SETTING UP THE LAB Supplies For the Introductory Activity Two pencils or pens for each student For the Class Experiment For each group of four (or other number) students: Measuring tools (cloth tape or meter sticks) Plastic cups, beakers or other sturdy containers Small objects such as clothespins, small legos, paper clips For “Try Your Own Experiment!” Visual illusion figures, found at the end of this Teacher Guide Paper and markers or pens Rulers Other Preparations · For the Class Experiment and Do Your Own Experiment, students can write results on a plain sheet of paper. · Construct a chart on the board where data can be entered for class discussion. · Decide the size of the student groups; three is a convenient number for these experiments—a Subject, a Tester, and a Recorder. Depending on materials available, four or five students can comprise a group. · For “Try Your Own Experiment!,” prepare materials in the Supply list and put them out on an “Explore” table. -
Analysis and Development Film Legend of the Galela Using Three Dimensional Animation
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 6, Issue 7, July 2017, ISSN: 2278 – 1323 Analysis And Development Film Legend Of The Galela Using Three Dimensional Animation M. Kasyif Gufran Umar people [2]. Video or movie is known as one of the most Abstract— The animated movie is a growing industry in effective media to convey the message or information directly Indonesia. Animated film serves as a medium not only to humans [2]. The development of film in Indonesia has entertain, but also educate because it contains a moral message many versions, ranging from action movies, adventure, and didactic. Currently, the making of animated films in documentary, comedy and animated films [3]. Currently, addition to having an interesting story line, also has a specific animated films began to dominate the film market in purpose. There is an important message to be conveyed, such as Indonesia. Besides more the theme of education, created the presenting a legend or cultural heritage that became extinct from the public gaze. In fact, there are many people even animated film is able to attract people to watch it [4]. younger generation, have minimal knowledge about the legend Developing an animated film also has many types and their own areas. Society tends to like to enjoy other versions such as: 2D animation; 3D animation; Stop motion entertainment than on listening to the legend that is considered animation; and the Japanese Animation (Anime) [3] .In old-fashioned. The number of alternative technologies utilized addition, the animated film was developed by considering the by the loss of consciousness to be a factor for preserving election theme of the story that raised the local legend of both cultural heritage. -
Stereopsis and Stereoblindness
Exp. Brain Res. 10, 380-388 (1970) Stereopsis and Stereoblindness WHITMAN RICHARDS Department of Psychology, Massachusetts Institute of Technology, Cambridge (USA) Received December 20, 1969 Summary. Psychophysical tests reveal three classes of wide-field disparity detectors in man, responding respectively to crossed (near), uncrossed (far), and zero disparities. The probability of lacking one of these classes of detectors is about 30% which means that 2.7% of the population possess no wide-field stereopsis in one hemisphere. This small percentage corresponds to the probability of squint among adults, suggesting that fusional mechanisms might be disrupted when stereopsis is absent in one hemisphere. Key Words: Stereopsis -- Squint -- Depth perception -- Visual perception Stereopsis was discovered in 1838, when Wheatstone invented the stereoscope. By presenting separate images to each eye, a three dimensional impression could be obtained from two pictures that differed only in the relative horizontal disparities of the components of the picture. Because the impression of depth from the two combined disparate images is unique and clearly not present when viewing each picture alone, the disparity cue to distance is presumably processed and interpreted by the visual system (Ogle, 1962). This conjecture by the psychophysicists has received recent support from microelectrode recordings, which show that a sizeable portion of the binocular units in the visual cortex of the cat are sensitive to horizontal disparities (Barlow et al., 1967; Pettigrew et al., 1968a). Thus, as expected, there in fact appears to be a physiological basis for stereopsis that involves the analysis of spatially disparate retinal signals from each eye. Without such an analysing mechanism, man would be unable to detect horizontal binocular disparities and would be "stereoblind". -
Algorithms for Single Image Random Dot Stereograms
Displaying 3D Images: Algorithms for Single Image Random Dot Stereograms Harold W. Thimbleby,† Stuart Inglis,‡ and Ian H. Witten§* Abstract This paper describes how to generate a single image which, when viewed in the appropriate way, appears to the brain as a 3D scene. The image is a stereogram composed of seemingly random dots. A new, simple and symmetric algorithm for generating such images from a solid model is given, along with the design parameters and their influence on the display. The algorithm improves on previously-described ones in several ways: it is symmetric and hence free from directional (right-to-left or left-to-right) bias, it corrects a slight distortion in the rendering of depth, it removes hidden parts of surfaces, and it also eliminates a type of artifact that we call an “echo”. Random dot stereograms have one remaining problem: difficulty of initial viewing. If a computer screen rather than paper is used for output, the problem can be ameliorated by shimmering, or time-multiplexing of pixel values. We also describe a simple computational technique for determining what is present in a stereogram so that, if viewing is difficult, one can ascertain what to look for. Keywords: Single image random dot stereograms, SIRDS, autostereograms, stereoscopic pictures, optical illusions † Department of Psychology, University of Stirling, Stirling, Scotland. Phone (+44) 786–467679; fax 786–467641; email [email protected] ‡ Department of Computer Science, University of Waikato, Hamilton, New Zealand. Phone (+64 7) 856–2889; fax 838–4155; email [email protected]. § Department of Computer Science, University of Waikato, Hamilton, New Zealand.