Full Text (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AN INVESTIGATION of the ROLE of PAK6 in TUMORIGENESIS By
AN INVESTIGATION OF THE ROLE OF PAK6 IN TUMORIGENESIS by JoAnn Roberts A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Medicine In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 ACKNOWLEDGMENTS This material is based upon work supported by the National Science Foundation under Grant No. DGE: 0638662. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. I would like to thank and acknowledge my thesis advisor, Dr. Michael Lu, for his support and guidance throughout the writing of this thesis and design of experiments in this manuscript. I would also like to thank my colleagues for assistance in various trouble-shooting circumstances. Last, but certainly not least, I would like to thank my family and friends for their support in the pursuit of my graduate studies. iii ABSTRACT Author: JoAnn Roberts Title: An Investigation of the Role of PAK6 in Tumorigenesis Institution: Florida Atlantic University Thesis Advisor: Dr. Michael Lu Degree: Master of Science Year: 2012 The function and role of PAK6, a serine/threonine kinase, in cancer progression has not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Based on the membrane localization of PAK6 in prostate and breast cancer cells, we speculated that PAK6 plays a role in cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation. -
PIK3C2G (NM 004570) Human Mutant ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC402758 PIK3C2G (NM_004570) Human Mutant ORF Clone Product data: Product Type: Mutant ORF Clones Product Name: PIK3C2G (NM_004570) Human Mutant ORF Clone Mutation Description: P146L Affected Codon#: 146 Affected NT#: 437 Nucleotide Mutation: PIK3C2G Mutant (P146L), Myc-DDK-tagged ORF clone of Homo sapiens phosphoinositide-3- kinase, class 2, gamma polypeptide (PIK3C2G) as transfection-ready DNA Effect: Dibees, ype 2, ssoiion wih Symbol: PIK3C2G Synonyms: PI3K-C2-gamma; PI3K-C2GAMMA Vector: pCMV6-Entry (PS100001) Tag: Myc-DDK ACCN: NM_004570 ORF Size: 4335 bp ORF Nucleotide >RC402758 representing NM_004570 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCATATTCTTGGCAAACGGATCCAAATCCTAATGAATCACACGAAAAGCAGTATGAACACCAAGAAT TTCTCTTTGTAAATCAACCCCATTCTTCTAGCCAAGTCAGTCTGGGTTTTGATCAGATAGTAGATGAGAT CAGTGGCAAAATTCCACACTACGAGAGTGAAATTGATGAAAACACCTTTTTTGTGCCCACTGCACCAAAA TGGGACTCAACAGGGCATTCATTAAATGAAGCACACCAAATATCCTTGAATGAATTCACTTCTAAAAGCC GTGAACTCTCCTGGCATCAAGTTAGCAAAGCACCAGCAATTGGTTTTAGTCCTTCTGTGTTACCAAAACC TCAAAATACGAATAAAGAATGCTCCTGGGGAAGCCCCATAGGAAAACATCATGGTGCTGATGATTCCAGA TTCAGTATTTTAGCTCTATCATTCACAAGTTTGGATAAAATTAATCTAGAGAAAGAATTAGAAAATGAAA ATCATAACTACCATATAGGATTTGAAAGTAGCATTCCTCCAACAAATTCATCCTTCTCAAGTGACTTCAT GCCGAAAGAAGAGAATAAAAGGAGTGGACATGTGAACATTGTGGAACCATCTTTGATGCTTTTGAAAGGC -
Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. -
The DNA Methylation Landscape of Glioblastoma Disease Progression Shows Extensive Heterogeneity in Time and Space
bioRxiv preprint doi: https://doi.org/10.1101/173864; this version posted August 9, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space Johanna Klughammer1*, Barbara Kiesel2,3*, Thomas Roetzer3,4, Nikolaus Fortelny1, Amelie Kuchler1, Nathan C. Sheffield5, Paul Datlinger1, Nadine Peter3,4, Karl-Heinz Nenning6, Julia Furtner3,7, Martha Nowosielski8,9, Marco Augustin10, Mario Mischkulnig2,3, Thomas Ströbel3,4, Patrizia Moser11, Christian F. Freyschlag12, Jo- hannes Kerschbaumer12, Claudius Thomé12, Astrid E. Grams13, Günther Stockhammer8, Melitta Kitzwoegerer14, Stefan Oberndorfer15, Franz Marhold16, Serge Weis17, Johannes Trenkler18, Johanna Buchroithner19, Josef Pichler20, Johannes Haybaeck21,22, Stefanie Krassnig21, Kariem Madhy Ali23, Gord von Campe23, Franz Payer24, Camillo Sherif25, Julius Preiser26, Thomas Hauser27, Peter A. Winkler27, Waltraud Kleindienst28, Franz Würtz29, Tanisa Brandner-Kokalj29, Martin Stultschnig30, Stefan Schweiger31, Karin Dieckmann3,32, Matthias Preusser3,33, Georg Langs6, Bernhard Baumann10, Engelbert Knosp2,3, Georg Widhalm2,3, Christine Marosi3,33, Johannes A. Hainfellner3,4, Adelheid Woehrer3,4#§, Christoph Bock1,34,35# 1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 2 Department of Neurosurgery, Medical University of Vienna, Vienna, Austria. 3 Comprehensive Cancer Center, Central Nervous System Tumor Unit, Medical University of Vienna, Austria. 4 Institute of Neurology, Medical University of Vienna, Vienna, Austria. 5 Center for Public Health Genomics, University of Virginia, Charlottesville VA, USA. 6 Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vi- enna, Vienna, Austria. -
Genetic, Cytogenetic and Physical Refinement of the Autosomal Recessive CMT Linked to 5Q31ð Q33: Exclusion of Candidate Genes I
European Journal of Human Genetics (1999) 7, 849–859 © 1999 Stockton Press All rights reserved 1018–4813/99 $15.00 t http://www.stockton-press.co.uk/ejhg ARTICLE Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1 Ang`ele Guilbot1, Nicole Ravis´e1, Ahmed Bouhouche6, Philippe Coullin4, Nazha Birouk6, Thierry Maisonobe3, Thierry Kuntzer7, Christophe Vial8, Djamel Grid5, Alexis Brice1,2 and Eric LeGuern1,2 1INSERM U289, 2F´ed´eration de Neurologie and 3Laboratoire de Neuropathologie R Escourolle, Hˆopital de la Salpˆetri`ere, Paris 4Laboratoire de cytog´en´etique, Villejuif 5G´en´ethon, Evry, France 6Service de Neurologie, Hˆopital des Sp´ecialit´es, Rabat, Morocco 7Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 8Service D’EMG et de pathologie neuromusculaire, Hˆopital neurologique Pierre Wertheimer, Lyon, France Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23–q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31–q33. -
Related ESCRT-III Subunit CHMP2B
The Journal of Neuroscience, February 18, 2015 • 35(7):3155–3173 • 3155 Cellular/Molecular Regulation of Postsynaptic Function by the Dementia- Related ESCRT-III Subunit CHMP2B X Romain Chassefeyre,1,2* Jose´ Martínez-Herna´ndez,1,2* Federica Bertaso,3,4,5 Nathalie Bouquier,3,4,5 Be´atrice Blot,1,2 Marine Laporte,1,2 Sandrine Fraboulet,1,2 Yohann Coute´,6,7 Anny Devoy,8 Adrian M. Isaacs,8 Karin Pernet-Gallay,1,2 Re´my Sadoul,1,2 XLaurent Fagni,3,4,5 and Yves Goldberg1,2,9 1Institut National de la Sante´ et de la Recherche Me´dicale (INSERM), Unite´ 836, F-38042 Grenoble, France, 2Universite´ Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France, 3CNRS, UMR-5203, Institut de Ge´nomique Fonctionnelle, F-34094 Montpellier, France, 4Universite´s de Montpellier 1 & 2, UMR-5203, F-34094 Montpellier, France, 5INSERM, Unite´ 661, F-34094 Montpellier, France, 6INSERM, Unite´ 1038, F-38054 Grenoble, France, 7Commissariat a` l’Energie Atomique (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Laboratoire de Biologie a` Grande Echelle, F-38054 Grenoble, France, 8Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom, and 9CEA, iRTSV, Groupe Physiopathologie du Cytosquelette (GPC), F-38054 Grenoble, France The charged multivesicular body proteins (Chmp1–7) are an evolutionarily conserved family of cytosolic proteins that transiently assembles into helical polymers that change the curvature of cellular membrane domains. Mutations in human CHMP2B cause fronto- temporal dementia, suggesting that this protein may normally control some neuron-specific process. -
In This Table Protein Name, Uniprot Code, Gene Name P-Value
Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2- -
DBN1 Monoclonal Antibody (M03), Clone 2E11
DBN1 monoclonal antibody (M03), clone 2E11 Catalog # : H00001627-M03 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a full-length recombinant Western Blot (Recombinant protein) Description: DBN1. Sandwich ELISA (Recombinant Immunogen: DBN1 (AAH00283, 1 a.a. ~ 649 a.a) full-length recombinant protein with protein) GST tag. MW of the GST tag alone is 26 KDa. Sequence: MAGVSFSGHRLELLAAYEEVIREESAADWALYTYEDGSDDLKLAASGEG GLQELSGHFENQKVMYGFCSVKDSQAALPKYVLINWVGEDVPDARKCA CASHVAKVAEFFQGVDVIVNASSVEDIDAGAIGQRLSNGLARLSSPVLHR LRLREDENAEPVGTTYQKTDAAVEMKRINREQFWEQAKKEEELRKEEER KKALDERLRFEQERMEQERQEQEERERRYREREQQIEEHRRKQQTLEA enlarge EEAKRRLKEQSIFGDHRDEEEETHMKKSESEVEEAAAIIAQRPDNPREFF KQQERVASASAGSCDVPSPFNHRPGSHLDSHRRMAPTPIPTRSPSDSST ELISA ASTPVAEQIERALDEVTSSQPPPLPPPPPPAQETQEPSPILDSEETRAAA PQAWAGPMEEPPQAQAPPRGPGSPAEDLMFMESAEQAVLAAPVEPAT ADATEVHDAADTIETDTATADTTVANNVPPAATSLIDLWPGNGEGASTLQ GEPRAPTPPSGTEVTLAEVPLLDEVAPEPLLPAGEGCATLLNFDELPEPP ATFCDPEEVEGEPLAAPQTPTLPSALEELEQEQEPEPHLLTNGETTQKE GTQASEGYFSQSQEEEFAQSEELCAKAPPPVFYNKPPEIDITCWDADPV PEEEEGFEGGD Host: Mouse Reactivity: Human Isotype: IgG2a Kappa Quality Control Antibody Reactive Against Recombinant Protein. Testing: Western Blot detection against Immunogen (97.13 KDa) . Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Page 1 of 2 2016/5/20 Western Blot (Recombinant protein) Protocol Download Sandwich ELISA (Recombinant -
Analysis of Inherited and Somatic Variants to Decipher Canine Complex Traits
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1454 Analysis of inherited and somatic variants to decipher canine complex traits KATE MEGQUIER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0310-9 UPPSALA urn:nbn:se:uu:diva-347165 2018 Dissertation presented at Uppsala University to be publicly examined in B:22, BMC, Husargatan 3, Uppsala, Monday, 21 May 2018 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: David Sargan (University of Cambridge). Abstract Megquier, K. 2018. Analysis of inherited and somatic variants to decipher canine complex traits. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1454. 67 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0310-9. This thesis presents several investigations of the dog as a model for complex diseases, focusing on cancers and the effect of genetic risk factors on clinical presentation. In Papers I and II, we performed genome-wide association studies (GWAS) to identify germline risk factors predisposing US golden retrievers to hemangiosarcoma (HSA) and B- cell lymphoma (BLSA). Paper I identified two loci predisposing to both HSA and BLSA, approximately 4 megabases (Mb) apart on chromosome 5. Carrying the risk haplotype at these loci was associated with separate changes in gene expression, both relating to T-cell activation and proliferation. Paper II followed up on the HSA GWAS by performing a meta-analysis with additional cases and controls. This confirmed three previously reported GWAS loci for HSA and revealed three new loci, the most significant on chromosome 18. -
A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. -
Beyond Traditional Morphological Characterization of Lung
Cancers 2020 S1 of S15 Beyond Traditional Morphological Characterization of Lung Neuroendocrine Neoplasms: In Silico Study of Next-Generation Sequencing Mutations Analysis across the Four World Health Organization Defined Groups Giovanni Centonze, Davide Biganzoli, Natalie Prinzi, Sara Pusceddu, Alessandro Mangogna, Elena Tamborini, Federica Perrone, Adele Busico, Vincenzo Lagano, Laura Cattaneo, Gabriella Sozzi, Luca Roz, Elia Biganzoli and Massimo Milione Table S1. Genes Frequently mutated in Typical Carcinoids (TCs). Mutation Original Entrez Gene Gene Rate % eukaryotic translation initiation factor 1A X-linked [Source: HGNC 4.84 EIF1AX 1964 EIF1AX Symbol; Acc: HGNC: 3250] AT-rich interaction domain 1A [Source: HGNC Symbol;Acc: HGNC: 4.71 ARID1A 8289 ARID1A 11110] LDL receptor related protein 1B [Source: HGNC Symbol; Acc: 4.35 LRP1B 53353 LRP1B HGNC: 6693] 3.53 NF1 4763 NF1 neurofibromin 1 [Source: HGNC Symbol;Acc: HGNC: 7765] DS cell adhesion molecule like 1 [Source: HGNC Symbol; Acc: 2.90 DSCAML1 57453 DSCAML1 HGNC: 14656] 2.90 DST 667 DST dystonin [Source: HGNC Symbol;Acc: HGNC: 1090] FA complementation group D2 [Source: HGNC Symbol; Acc: 2.90 FANCD2 2177 FANCD2 HGNC: 3585] piccolo presynaptic cytomatrix protein [Source: HGNC Symbol; Acc: 2.90 PCLO 27445 PCLO HGNC: 13406] erb-b2 receptor tyrosine kinase 2 [Source: HGNC Symbol; Acc: 2.44 ERBB2 2064 ERBB2 HGNC: 3430] BRCA1 associated protein 1 [Source: HGNC Symbol; Acc: HGNC: 2.35 BAP1 8314 BAP1 950] capicua transcriptional repressor [Source: HGNC Symbol; Acc: 2.35 CIC 23152 CIC HGNC: -
TRIM24 As an Oncogene in the Mammary Gland
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2018 TRIM24 as an Oncogene in the Mammary Gland Aundrietta Duncan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons, Medicine and Health Sciences Commons, and the Other Genetics and Genomics Commons Recommended Citation Duncan, Aundrietta, "TRIM24 as an Oncogene in the Mammary Gland" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 845. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/845 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TRIM24 AS AN ONCOGENE IN THE MAMMARY GLAND by Aundrietta DeVan Duncan, M.S. APPROVED: ______________________________ Michelle C. Barton, Ph.D. Advisory Professor ______________________________ Richard