Download Full Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download Full Article in PDF Format A new actinopterygian fauna from the latest Cretaceous of Quintanilla la Ojada (Burgos, Spain) Ana BERRETEAGA Universidad del País Vasco/EHU, Facultad de Ciencia y Tecnología, Departamento de Estratigrafía y Paleontología, Apartado 644, SP-48080 Bilbao (Spain) and Universidad de Alcalá de Henares, Facultad de Ciencias, Departamento de Geología, Plaza San Diego s/n, SP-28801 Alcalá de Henares (Spain) [email protected] Francisco José POYATO-ARIZA Universidad Autónoma de Madrid, Departamento de Biología, Unidad de Paleontología, Cantoblanco, SP-28049 Madrid (Spain ) [email protected] Xabier PEREDA-SUBERBIOLA Universidad del País Vasco/EHU, Facultad de Ciencia y Tecnología, Departamento de Estratigrafía y Paleontología, Apartado 644, SP-48080 Bilbao (Spain) [email protected] Berreteaga A., Poyato-Ariza F. J. & Pereda-Suberbiola X. 2011. — A new actinopterygian fauna from the latest Cretaceous of Quintanilla la Ojada (Burgos, Spain). Geodiversitas 33 (2): 285-301. DOI: 10.5252/g2011n2a6. ABSTRACT We describe a new actinopterygian fauna from the uppermost Cretaceous of Quintanilla la Ojada (Burgos, Spain), in the Villarcayo Sinclynorium of the Basque-Cantabrian Region. It consists mostly of isolated teeth of pycnodon- tiforms (cf. Anomoeodus sp., Pycnodontoidea indet.), amiiforms (cf. Amiidae indet.) and teleosteans (elopiforms: Phyllodontinae indet., Paralbulinae indet.; KEY WORDS aulopiforms: Enchodontidae indet., plus fragmentary fi n spines of Acantho- Osteichthyes, Pycnodontiformes, morpha indet.). Paralbulinae teeth are the most abundant elements in the fossil Amiiformes, assemblage. All the remains are disarticulated and show intense post-mortem Elopiformes, Aulopiformes, abrasion. Th e fossil association has been found in dolomite sandstones that are Acanthomorpha, laterally correlated with the Valdenoceda Formation (Lower to basal Upper Maastrichtian, Maastrichtian) of the Castilian Ramp. Th e observed taphonomic features are Iberian Peninsula, Basque-Cantabrian coherent with the sedimentological interpretation of the fossiliferous beds as Region. coastal deltaic deposits. GEODIVERSITAS • 2011 • 33 (2) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris. www.geodiversitas.com 285 Berreteaga et al. RÉSUMÉ Une nouvelle faune d’actinoptérygiens du Crétacé supérieur de Quintanilla la Ojada (Burgos, Espagne). Une nouvelle faune d’actinoptérygiens du Crétacé supérieur de Quintanilla la Ojada (Burgos, Espagne), localité située dans le Synclinorium de Villarcayo dans la région basco-cantabrique, est décrite ici. La plupart du matériel correspond à des dents isolées de pycnodontiformes (cf. Anomoeodus sp., Pycnodontoidea indet.), d’amiiformes (cf. Amiidae indet.) et de téléostéens (Elopiformes : Phyllo- dontinae indet., Paralbulinae indet. ; Aulopiformes : Enchodontidae indet., ainsi que des fragments d’épines d’Acanthomorpha indet.). Les dents de Paralbulinae MOTS CLÉS Osteichthyes, sont les éléments les plus abondants de l’association fossile. Tous les restes sont Pycnodontiformes, désarticulés et ont subi une abrasion post-mortem intense. Les fossiles ont été Amiiformes, Elopiformes, trouvés dans des dolomies sableuses qui sont corrélées latéralement avec la For- Aulopiformes, mation Valdenoceda (Maastrichtien inférieur à base du Maastrichtien supérieur) Acanthomorpha, de la Rampe Norcastillane. Les caractéristiques taphonomiques observées sont Maastrichtian, péninsule Ibérique, cohérentes avec l’interprétation sédimentologique des couches fossilifères comme région basco-cantabrique. ayant été déposées dans un milieu deltaïque côtier. INTRODUCTION work in progress). Th e present paper aims to describe the actinopterygian fauna that occurs in this new ver- Upper Cretaceous marine localities that have yielded tebrate site, which consists mostly of teeth of pycno- actinopterygian remains are presently rather scarce dontiforms, amiiforms, elopiforms, and aulopiforms, in the sedimentary basins of Spain (see Poyato-Ariza plus fragmentary acanthomorph spines. et al. 1999a). One of the most important known sites is Albaina, located in the Laño quarry (Condado de Treviño; area situated within the Basque Country but MATERIAL AND METHODS administered by the province of Burgos), where pyc- nodontiform and teleostean fossils have been found Th e vertebrate fossil remains of Quintanilla la Ojada in Upper Maastrichtian marine levels (Poyato-Ariza (Burgos) have been collected since 2002. Some teeth et al. 1999b). In the same quarry, the Upper Campa- were picked up in the fi eld (or extracted from the nian to lowermost Maastrichtian fl uviatile deposits of matrix after bulk rock processing), but most of the the Laño site have yielded scarce lepisosteiform and remains were obtained by screen-washing of the teleostean remains (Cavin 1999). Th us, the osteich- sediment. About 300 kg of sediment were washed thyan fossils of the Laño quarry occur at two distinct through 2 mm, 1 mm and 0.5 mm stainless steel stratigraphic horizons and were accumulated in quite meshes with running water in order to search for diff erent circumstances; both Albaina and Laño are microremains. Th e fi ne fraction was washed again part of the Miranda-Treviño Synclinorium (Baceta using a hand sieve of 0.25 mm. Th e sorting of the et al. 1999). Recently, additional marine fi sh-bearing teeth and other microremains was made by means localities of Late Cretaceous age have been discovered of stereomicroscopes. Th e material is housed in the in the Basque-Cantabrian Region (López-Horgue & laboratory of the Departamento de Estratigrafía y Poyato-Ariza 2005, work in progress). Th e fossil as- Paleontología of the Universidad del País Vasco/ sociation of the Maastrichtian locality of Quintanilla Euskal Herriko Unibertsitatea (Bilbao) (EHUEP). la Ojada (Burgos) is composed of actinopterygian, About 200 actinopterygian isolated teeth and a few selachian, and reptile remains (Berreteaga et al. 2010, fi n spine fragments are known. 286 GEODIVERSITAS • 2011 • 33 (2) New actinopterygian fauna from Spain N Paleozoic Bay of Biscay Permian and Triassic Santander Bayonne Keuper (diapir) Hettangian- San Sebastián Kimmeridgian (Marine Jurassic megasequence) C Bilbao CM Upper Tithonian to Barremian (Purbeck & AM Weald megasequences) Ebro Aptian-Albian to Quintanilla la Ojada Reservoir Vitoria Lower Cenomanian * Pamplona Late Albian-Santonian Albaina P volcanics V * Tertiary Ebro U Middle Cenomanian to Tertiary Duero Basin Maastrichtian Basin Logroño Tertiary Iberian Burgos Peninsula Principal fault 50 km * Vertebrate sites C Cabuerniga fault P Pamplona fault Basque Massifs (emerged areas U Ubierna fault CM affected by erosion) V Villela fault AM Asturian Massif FIG. 1. — Geological map of the Basque-Cantabrian Region showing the location of the actinopterygian sites mentioned in the text. LOCATION AND GEOLOGICAL SETTING drichthyans and osteichthyans (López-Horgue & Quintanilla la Ojada is located in the northern part of Poyato-Ariza 2005, work in progress). Burgos province (Losa Valley), approximately 22 km Th e Cretaceous-Tertiary deposits in the northwest east and 14 km northeast of Villarcayo and Trespaderne limb of the Villarcayo Synclinorium show several localities, respectively. Geologically, it is situated in hundred meters of siliciclastic and carbonate materi- the northern limb of the Villarcayo Synclinorium, in als arranged in transgressive-regressive cycles (Floquet the northern part of the Basque-Cantabrian Region. 1991, 1998; Berreteaga 2008). Time-equivalent Actinopterygian remains have been found in a quarry materials in the Miranda-Treviño Synclinorium are near the village of Quintanilla la Ojada. also arranged in comparable transgressive-regressive Th e Villarcayo and Miranda-Treviño synclinoria cycles (Baceta 1996; Baceta et al. 1999). Th e Maas- belong to the southern part of the Basque-Cantabrian trichtian deposits of both synclinoria have yielded Basin (Fig. 1). During the Late Cretaceous and abundant actinopterygian remains. Early Paleogene, the sedimentation throughout the study area comprised varied depositional environ- FACIES DESCRIPTION ments ranging from inner self to coastal and even Th e lower part of the Quintanilla la Ojada section continental ones (Floquet 1991; Pluchery 1995). consists of bioclastic calcarenites that include: bivalves, In Campanian-Maastrichtian time interval the gastropods, brachiopods, green and red algae, sponges, regression trend in the Basque-Cantabrian Basin oysters, echinoderms, bryozoans, serpulids, foramini- resulted in the progradation of deltaic siliciclastic fers, ostracods, and crustaceans (Floquet 1991). Th ese systems and the development of shallow marine calcarenites correspond to the top of the Tubilla del environments, inhabited by a fauna rich in chon- Agua Formation, as defi ned by Floquet et al. (1982). GEODIVERSITAS • 2011 • 33 (2) 287 Berreteaga et al. Th is formation is dated from the fi nal Santonian to (Sobrepeña Formation, Floquet 1991; Berreteaga probably early Campanian by foraminifera and am- et al. 2008a) (Fig. 2). monites (Floquet 1991, 1998; Gräfe 2005). Th e Tubilla del Agua Formation shows a gradual FACIES INTERPRETATION facies-transition to the overlaying siliciclastic unit. Th e Th e Rioseco Member is interpreted as an easterly latter is nearly 60 m in thickness in the Quintanilla progradational deltaic system (Floquet 1991; Ber- la Ojada site; it consists of well-rounded conglomer- reteaga 2008). Th e boundary between the Rioseco ates and sandstones of mainly quartz composition
Recommended publications
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Zootaxa, a New Species of Ladyfish, of the Genus Elops
    Zootaxa 2346: 29–41 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A new species of ladyfish, of the genus Elops (Elopiformes: Elopidae), from the western Atlantic Ocean RICHARD S. MCBRIDE1, CLAUDIA R. ROCHA2, RAMON RUIZ-CARUS1 & BRIAN W. BOWEN3 1Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Avenue SE, St. Petersburg, FL 33701 USA. E-mail: [email protected]; [email protected] 2University of Texas at Austin - Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78374 USA. E-mail: [email protected] 3Hawaii Institute of Marine Biology, P.O. Box 1346, Kaneohe, HI 96744 USA. E-mail: [email protected] Abstract This paper describes Elops smithi, n. sp., and designates a lectotype for E. saurus. These two species can be separated from the five other species of Elops by a combination of vertebrae and gillraker counts. Morphologically, they can be distinguished from each other only by myomere (larvae) or vertebrae (adults) counts. Elops smithi has 73–80 centra (total number of vertebrae), usually with 75–78 centra; E. saurus has 79–87 centra, usually with 81–85 centra. No other morphological character is known to separate E. smithi and E. saurus, but the sequence divergence in mtDNA cytochrome b (d = 0.023–0.029) between E. smithi and E. saurus is similar to or greater than that measured between recognized species of Elops in different ocean basins. Both species occur in the western Atlantic Ocean, principally allopatrically but with areas of sympatry, probably via larval dispersal of E.
    [Show full text]
  • Using Empirical and Simulated Data to Study the Influence Of
    Using empirical and simulated data to study the influence of environmental heterogeneity on fish species richness in two biogeographic provinces Supporting Information Philippe Massicotte1, Rapha¨elProulx1, Gilbert Cabana1, and Marco A. Rodr´ıguez1 1Centre de Recherche sur les Interactions Bassins Versants- Ecosyst`emesaquatiques´ (RIVE). Universit´edu Qu´ebec `aTrois-Rivi`eres,Trois-Rivi`eres,Canada October 20, 2014 1 Appendix S1 Summary of fish species sampled in the two biogeographic provinces. Table 1: Summary of fish species sampled in the two biogeographic provinces. Mean Mean fork Order Family Genus Species abundance length (catch per (cm) unit effort) Acipenseriformes Acipenseridae Acipenser brevirostrum 3.67 59.90 oxyrinchus 2.50 27.81 Polyodontidae Polyodon spathula 1.50 14.25 Anguilliformes Anguillidae Anguilla rostrata 1.38 43.64 Congridae Conger oceanicus 1.00 20.10 Atheriniformes Atherinopsidae Membras martinica 12.33 6.69 Menidia menidia 2.50 6.72 Aulopiformes Synodontidae Synodus foetens 1.90 15.92 Batrachoidiformes Batrachoididae Opsanus beta 2.58 15.30 pardus 1.50 16.52 tau 4.05 19.29 Porichthys plectrodon 1.20 28.51 Beloniformes Belonidae Strongylura marina 6.00 20.15 Carcharhiniformes Carcharhinidae Carcharhinus isodon 1.00 38.00 limbatus 1.00 39.20 porosus 1.00 50.50 Sphyrnidae Sphyrna tiburo 1.00 37.47 Triakidae Mustelus canis 4.67 53.95 Clupeiformes Clupeidae Alosa aestivalis 3.62 7.95 pseudoharengus 6.38 7.35 sapidissima 7.33 10.43 Brevoortia gunteri 35.17 7.99 patronus 20.81 8.79 smithi 1.00 12.20 tyrannus 5.69 13.19
    [Show full text]
  • Acipenseriformes, Elopiformes, Albuliformes, Notacanthiformes
    Early Stages of Fishes in the Western North Atlantic Ocean Species Accounts Acipenseriformes, Elopiformes, Albuliformes, Notacanthiformes Selected meristic characters in species belonging to the above orders whose adults or larvae have been collected in the study area. Classification sequence follows Eschmeyer, 1990. Vertebrae and anal fin rays are generally not reported in the No- tacanthiformes. Most notacanthiform larvae are undescribed. Sources: McDowell, 1973; Sulak, 1977; Castle, 1984; Snyder, 1988; Smith, 1989b. Order–Family Total vertebrae Species (or myomeres) Dorsal fin rays Anal fin rays Caudal fin rays Acipenseriformes-Acipenseridae Acipenser brevirostrum 60–61 myo 32–42 18–24 60 Acipenser oxyrhynchus 60–61 myo 30–46 23–30 90 Elopiformes-Elopidae Elops saurus 74–86 18–25 8–15 9–11+10+9+7–8 Elopiformes-Megalopidae Megalops atlanticus 53–59 10–13 17–23 7+10+9+6–7 Albuliformes-Albulidae Albula vulpes 65–72 17–19 8–10 8+10+9+6 Order–Family Total vertebrae Species (or myomeres) Dorsal fin rays Anal fin rays Pelvic fin rays Notacanthiformes-Halosauridae Aldrovandia affinis No data 11–13 No data I, 7–9 Aldrovandia oleosa No data 10–12 No data I, 8 Aldrovandia gracilis No data 10–12 No data I, 7–9 Aldrovandia phalacra No data 10–12 No data I, 7–8 Halosauropsis macrochir No data 11–13 No data I, 9 Halosaurus guentheri No data 10–11 158–209 I, 8–10 Notacanthiformes-Notacanthidae Notacanthus chemnitzii 225–239 9–12 spines XIII–IV,116–130 I, 8–11 Polyacanthonotus challengeri 242–255 36–40 spines XXXIX–LIX, 126–142 I–II, 8–9 Polyacanthonotus merretti No data 28–36 spines No data I–II, 6–8 Polyacanthonotus rissoanus No data 26–36 spines No data I, 7–11 Notacanthiformes-Lipogenyidae Lipogenys gillii 228–234 9–12 116–136 II, 6–8 Meristic data from California Current area (Moser and Charter, 1996a); data from western Atlantic may differ Early Stages of Fishes in the Western North Atlantic Ocean 3 Acipenseriformes, Elopiformes, Albuliformes, Notacanthiformes Acipenseriformes Sturgeons are anadromous and freshwater fishes restricted to the northern hemisphere.
    [Show full text]
  • Order ELOPIFORMES
    click for previous page Elopiformes: Elopidae 1619 Class ACTINOPTERYGII Order ELOPIFORMES ELOPIDAE Tenpounders (ladyfishes) by D.G. Smith A single species occurring in the area. Elops hawaiiensis Regan, 1909 Frequent synonyms / misidentifications: Elops australis Regan, 1909 / Elops saurus Linnaeus, 1766. FAO names: En - Hawaiian ladyfish. branchiostegal gular rays plate Diagnostic characters: Body elongate, fusiform, moderately compressed. Eye large. Mouth large, gape ending behind posterior margin of eye; mouth terminal, jaws approximately equal; a gular plate present between arms of lower jaw. Teeth small and granular. Branchiostegal rays numerous, approximately 20 to 25. All fins without spines; dorsal fin begins slightly behind midbody; anal fin short, with approximately 14 to 17 rays, begins well behind base of dorsal fin; caudal fin deeply forked; pectoral fins low on side of body, near ventral outline; pelvic fins abdominal, below origin of dorsal fin. Scales very small, approxi- mately 100 in lateral line. Colour: blue or greenish grey above, silvery on sides; fins sometimes with a faint yellow tinge. ventral view of head Similar families occurring in the area Clupeidae: lateral line absent; gular plate absent; most species have scutes along midline of belly. Megalopidae (Megalops cyprinoides): scales much larger, about 30 to 40 in lateral line; last ray of dorsal fin elongate and filamentous. no lateral line filament scutes Clupeidae Megalopidae (Megalops cyprinoides) 1620 Bony Fishes Albulidae (Albula spp.): mouth inferior. Chanidae (Chanos chanos): mouth smaller, gape not extending behind eye; gular plate absent; bran- chiostegal rays fewer, approximately 4 or 5. mouth inferior mouth smaller Albulidae (Albula spp.) Chanidae (Chanos chanos) Size: Maximum standard length slightly less than 1 m, commonly to 50 cm; seldom reaches a weight of 5 kg (= “ten pounds”), despite the family’s common name.
    [Show full text]
  • Peng2009chap44.Pdf
    Teleost fi shes (Teleostei) Zuogang Penga,c, Rui Diogob, and Shunping Hea,* Until recently, the classiA cation of teleosts pioneered aInstitute of Hydrobiology, The Chinese Academy of Sciences, by Greenwood et al. (5) and expanded on by Patterson Wuhan, 430072, China; bDepartment of Anthropology, The George and Rosen (6) has followed the arrangement proposed c Washington University, Washington, DC, 20052, USA; Present by Nelson (7) and today is still reP ected in A sh textbooks address: School of Biology, Georgia Institute of Technology, Atlanta, and papers. In it, species were placed in four major GA 30332, USA *To whom correspondence should be addressed ([email protected]) groups: Osteoglossomorpha, Elopomorpha, Otocephala, and Euteleostei. 7 is division was based on multiple morphological characters and molecular evidence. Abstract Based on morphological characters, Osteoglossomor- pha was considered as the most plesiomorphic living tel- Living Teleost fishes (~26,840 sp.) are grouped into 40 eosts by several works (6, 7). However, the anatomical orders, comprising the Infraclass Teleostei of the Class studies of Arratia (8–10) supported that elopomorphs, Actinopterygii. With few exceptions, morphological and not osteoglossomorphs, are the most plesiomor- and molecular phylogenetic analyses have supported phic extant teleosts. 7 is latter view was supported by four subdivisions within Teleostei: Osteoglossomorpha, the results of the most extensive morphologically based Elopomorpha, Otocephala (= Ostarioclupeomorpha), and cladistic analysis published so far on osteichthyan high- Euteleostei. Despite the progress that has been made in er-level phylogeny, which included 356 osteological and recent years for the systematics of certain teleost groups, myological characters and 80 terminal taxa, including the large-scale pattern of teleost phylogeny remains open.
    [Show full text]
  • Elops (Actinopterygii, Elopidae) from the Mediterranean
    BioInvasions Records (2020) Volume 9, Issue 2: 223–227 CORRECTED PROOF Rapid Communication Far from home....the first documented capture of the genus Elops (Actinopterygii, Elopidae) from the Mediterranean Alan Deidun1,* and Bruno Zava2,3 1Physical Oceanography Research Group, Department of Geosciences, University of Malta, Msida MSD 2080, Malta 2Museo Civico di Storia Naturale, via degli Studi 9, 97013 Comiso (RG), Italy 3Wilderness studi ambientali, via Cruillas 27, 90146 Palermo, Italy *Corresponding author E-mail: [email protected] Citation: Deidun A, Zava B (2020) Far from home....the first documented capture Abstract of the genus Elops (Actinopterygii, Elopidae) from the Mediterranean. The tenpounder fish genus Elops Linnaeus, 1766 was recorded for the first time BioInvasions Records 9(2): 223–227, from the Mediterranean in October 2019, as a single individual was caught in Maltese https://doi.org/10.3391/bir.2020.9.2.07 waters. The genus has a disparate global distribution consisting of west Atlantic Received: 10 January 2020 and west Pacific tropical and sub-tropical areas. A single individual was caught, but Accepted: 31 March 2020 not retained, during artificial lighting-assisted purse seining, and the identification Published: 25 April 2020 of the genus was determined based upon photographs submitted by the fisherman. The mechanisms of range expansion of the genus from the Atlantic into the Handling editor: Michel Bariche Mediterranean are discussed. Thematic editor: Amy Fowler Copyright: © Deidun and Zava Key words: range-expansion, first record, western Ionian Sea, Maltese Archipelago, This is an open access article distributed under terms Elops Linnaeus, 1766 of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0).
    [Show full text]
  • Near2009chap42.Pdf
    Ray-fi nned fi shes (Actinopterygii) Thomas J. Neara,* and Masaki Miyab have been raised regarding the phylogenetic a1 nities aDepartment of Ecology and Evolutionary Biology & Peabody of polypteriforms within Actinopterygii with an alter- Museum of Natural History, Yale University, New Haven, CT 06520, native hypothesis that they are more closely related to b USA; Natural History Museum and Institute, Chiba, 955-2 Aoba- sarcopterygians (4–6). Phylogenetic analyses of morpho- cho, Chuo-ku, Chiba 260-8682, Japan logical characters have supported the hypothesis that *To whom correspondence should be addressed (thomas.near@ yale.edu) Polypteriformes is most closely related to all other extant actinopterygians (1, 7–15). 7 e phylogenetic position of Polypteriformes consistently inferred from morpho- Abstract logical data has also been supported in phylogenetic ana- lyses of nuclear encoded 28S rRNA gene sequences (16, Extant Actinopterygii, or ray-fi nned fi shes, comprise fi ve 17), DNA sequences from whole mitochondrial genomes major clades: Polypteriformes (bichirs), Acipenseriformes (18, 19), and a combined data analysis of seven single- (sturgeons and paddlefi shes), Lepisosteiformes (gars), copy nuclear genes (20). Amiiformes (bowfi n), and Teleostei, which contains more 7 ere is little doubt that the A ve major actinoptery- than 26,890 species. Phylogenetic analyses of morph- gian clades are each monophyletic (Amiiformes contains ology and DNA sequence data have typically supported only a single extant species, Fig. 1). However, the hypoth- Actinopterygii as an evolutionary group, but have disagreed eses of relationships among these clades have diB ered on the relationships among the major clades. Molecular dramatically among analyses of both morphological divergence time estimates indicate that Actinopterygii and molecular data sets.
    [Show full text]
  • Comprehensive Phylogeny of Ray-Finned Fishes (Actinopterygii) Based on Transcriptomic and Genomic Data
    Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data Lily C. Hughesa,b,1,2, Guillermo Ortía,b,1,2, Yu Huangc,d,1, Ying Sunc,e,1, Carole C. Baldwinb, Andrew W. Thompsona,b, Dahiana Arcilaa,b, Ricardo Betancur-R.b,f, Chenhong Lig, Leandro Beckerh, Nicolás Bellorah, Xiaomeng Zhaoc,d, Xiaofeng Lic,d, Min Wangc, Chao Fangd, Bing Xiec, Zhuocheng Zhoui, Hai Huangj, Songlin Chenk, Byrappa Venkateshl,2, and Qiong Shic,d,2 aDepartment of Biological Sciences, The George Washington University, Washington, DC 20052; bNational Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cShenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute Academy of Marine Sciences, Beijing Genomics Institute Marine, Beijing Genomics Institute, 518083 Shenzhen, China; dBeijing Genomics Institute Education Center, University of Chinese Academy of Sciences, 518083 Shenzhen, China; eChina National GeneBank, Beijing Genomics Institute-Shenzhen, 518120 Shenzhen, China; fDepartment of Biology, University of Puerto Rico–Rio Piedras, San Juan 00931, Puerto Rico; gKey Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306 Shanghai, China; hLaboratorio de Ictiología y Acuicultura Experimental, Universidad Nacional del Comahue–CONICET, 8400 Bariloche, Argentina; iProfessional Committee of Native Aquatic Organisms and Water Ecosystem, China Fisheries Association, 100125 Beijing, China; jCollege of Life Science and Ecology, Hainan Tropical Ocean University, 572022 Sanya, China; kYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China; and lComparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673 Singapore Edited by Scott V.
    [Show full text]
  • Elopomorph Larvae Are Important Contributors to Fish Biodiversity in a Low-Latitude Oceanic Ecosystem
    fmars-07-00169 April 27, 2020 Time: 22:6 # 1 ORIGINAL RESEARCH published: 29 April 2020 doi: 10.3389/fmars.2020.00169 Hiding in Plain Sight: Elopomorph Larvae Are Important Contributors to Fish Biodiversity in a Low-Latitude Oceanic Ecosystem Jon A. Moore1,2*, Dante B. Fenolio3, April B. Cook4 and Tracey T. Sutton4 1 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States, 2 Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States, 3 Center for Conservation and Research, San Antonio Zoo, San Antonio, TX, United States, 4 Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, United States Leptocephalus larvae of elopomorph fishes are a cryptic component of fish diversity in nearshore and oceanic habitats. However, identifying those leptocephali can be important in illuminating species richness in a region. Since the Deepwater Horizon oil spill in 2010, sampling of offshore fishes in the epi-, meso-, and upper bathypelagic Edited by: depth strata of the northern Gulf of Mexico resulted in 8989 identifiable specimens of Michael Vecchione, leptocephalus larvae or transforming juveniles, in 118 taxa representing 83 recognized National Oceanic and Atmospheric Administration (NOAA), United States and established species and an additional 35 distinctive leptocephalus morphotypes Reviewed by: not yet linked to a known described species. Leptocephali account for ∼13% of the Mackenzie E. Gerringer, total species richness of fishes collected in the offshore region. A new morphotype SUNY Geneseo, United States Dave Johnson, of Muraenidae leptocephalus is also described. We compare this study with other National Museum of Natural History leptocephalus diversity studies in the western Atlantic.
    [Show full text]
  • Megalops Atlanticus (Tarpon Or Atlantic Tarpon)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Megalops atlanticus (Tarpon or Atlantic Tarpon) Family: Megalopidae (Tarpons) Order: Elopiformes (Tarpons and Ladyfish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Tarpon, Megalops atlanticus [http://en.wikipedia.org/wiki/Atlantic_tarpon, downloaded 28 March 2015] TRAITS. Megalops atlanticus, well-known as the tarpon or Atlantic tarpon, thrives best in tropical and subtropical regions, where they can weigh up to 161kg and can have a length of 2.5m with a life span of 55 years (Dawes and Campbell, 2009). Tarpon have large individual scales (that may measure more than 7cm in diameter) and are bluish in colour on top while the sides appear to be silver (Fig. 1). They possess a large mouth which is turned upwards together with a lower jaw comprising an extended bony plate as well as very large eyes (Snyderman and Wiseman, 1996). Midway on their body is the dorsal fin while at the posterior end the anal fin can be found (Marinebio, 2013). Attached to the oesophagus is a swim bladder that allows the tarpon to survive in oxygen depleted waters. Female tarpons are usually larger than males (Burnham, 2005). DISTRIBUTION. Atlantic tarpons are found generally in shallow warm coastal regions, along both the western and eastern sides of the Atlantic Ocean. On the western side they are present from coastal regions of the U.S., throughout the West Indies and along the coast of South America (Fig. 2). On the eastern side of the Atlantic they inhibit the west coast of Africa from Senegal to the Congo (Burnham, 2005).
    [Show full text]