Skin Practical Part

Total Page:16

File Type:pdf, Size:1020Kb

Skin Practical Part Skin Practical part Dr. Heba Kalbouneh Associate Professor ofAnatomy and Histology ##PLEASE NOTE: The doctor mentioned at the beginning that the lab slides required for the exam are those mentioned at the end of lec 2 Histology. Writer: Ghazal Al-Attiyat Skin of eyelids a and the back!!! Kalbouneh Heba Dr. Types of skin Kalbouneh Heba Dr. Thin skin Thick skin *4 layers *5 layers *less Prominent *Prominent stratum stratum corneum corneum * Less developed * Well developed stratum granulosum stratum granulosum *Dominant and *Palms of the hands lines most of the and soles of the feet body surface * Thinner dermis * Thicker dermis * No hair and * hair and sebaceous sebaceous glands glands The skin is composed of two layers: the outer epidermis and the deeper dermis, both of which rest on the hypodermis Kalbouneh Heba Dr. Stratum corneum Stratum granulosum Melanin granules Kalbouneh Stratum spinosum Dermal papilla Heba Stratum basale Epidermal ridge Dr. Stratum corneum Stratum granulosum Stratum spinosum Stratum basale Duct of eccrine sweat gland Kalbouneh Heba Dr. Stratum basale Stratum spinosum Kalbouneh Heba Dr. Stratum Spinosum→ the cells are connected by spines Epidermal (rete) ridges Dermal papillae Kalbouneh Heba Dr. **It is Thick skin →has stratum lucidum (light stained stratum) #When the prominent interdigitations are → prominent stratum corneum prominent, this causes friction ridges on the → No hair follicles outer skin → prominent granulosum layer → prominent papillae ** Thick skin Prominent stratum granulosum No apocrine sweat glands, sebaceous glands or hair follicles thick stratum corneum Dr. Heba Kalbouneh ** Thin skin Thin stratum corneum Not prominent stratum granulosum Can find sebaceous gland→ so there is a hair follicle not seen in this section The papillae are not prominent The normal histologic appearance of the skin is shown here. At the top is the epidermis.A thin layer of keratin overlies the epidermis. This layer of keratinization is thicker on the palms and soles and in areas where skin is rubbed or irritated. Beneath the epidermis is the dermis containing connective tissue with collagen and elastic fibers.At the center can be seen a hair follicle with surrounding sebaceous glands. Associated with the hair follicle is a small bundle of smooth muscle known as the Kalbouneh arrector pili that can cause the hair to "stand on end" and dimple the skin to form Heba "goose bumps". Dr. Skin section: keratin, epidermis The hair shaft isn’t seen because we lose it during section preparation Sebaceous glands → small cells, light stained because the sebum isn’t stained with H&E A small nucleus in the center of the cell Kalbouneh Heba Dr. Sebaceous gland Hair root Inner root sheath Arrector pili Outer root sheath Glassy membrane Dermis Dermal sheath Sweat gland Hair matrix (ducts) Dermal papilla Sweat gland (secretory cells) Hair bulb * ducts → dark stained, stratified cuboidal #It’s not required to differentiate between epithelium apocrine and eccrine sweat glands * secretory → light stained, single layer of **except if we’re given 2 histological section cuboidal epithelium next to each other A: Dermal papilla B: Hair matrix Melanocytes: Attached to basal lamina by hemidesmoses Not attached to neighboring keratinocytes Lightly stained cytoplasm > Found in stratum basale 1 melanocyte for every 10 basal keratinocytes Kalbouneh Heba Dr. Melanocyte Under the light microscope: The outline of the cell is rounded → because its processes don’t appear in histological preparation → It undergoes shrinkage during histological preparation → it is not attached to neighboring keratinocytes Dr. Heba Kalbouneh Freckles are clusters of concentrated melaninized cells Freckles do not have an increased number of the melanin-producing cells, or melanocytes, but instead have melanocytes that overproduce melanosomes changing the coloration of keratinocytes Kalbouneh Heba Dr. → larger and more active melanocytes Is there anything abnormal in the epidermis? If so, what might it indicate. Look for cells with pale cytoplasm in the epidermis. These cells are melanocytes and the large number of melanocytes in upper layers of epidermis is abnormal. In normal skin, melanocytes are found only in the basal layer of the epidermis. The condition suggests the Kalbouneh early stages in the development of melanoma. Heba Dr. We do immunohistochemistry against melanocytes in order to getthe dingnosis Langerhans cells: Originate from bone marrow (monocytes) Mainly in the stratum spinosum Langerhans cells recognize, phagocytose, and process foreign antigens Kalbouneh Heba Dr. Langerhans cells → rounded cells, lightly stained cytoplasm, with processes Dr. Heba Kalbouneh Melanocytes and Langerhans Cells Melanocytes localize to the stratum basale and extend processes between the keratinocytes of the stratum basale and spinosum. Melanocytes produce the pigment melanin that protects against ultraviolet radiation. Melanin is produced in membrane-bound organelles called melanosomes that derive from the Golgi. Melanosomes are transported to the ends of the melanocyte Melanocyte processes where neighboring keratinocytes phagocytose the Kalbouneh Langerhansmelanosomes.cell Langerhans cells are antigen-presenting cells in Keratinocyte Heba the immune system. Dr. Melanocytes :according to the location Sweat glands **apocrine sweat glands secrete in both modes of secretion: merocrine and aprocrine 21 Dr. Heba Kalbouneh Sweat Glands Eccrine sweat gland Apocrine sweat gland . Merocrine secretion . Empty into hair follicle . Empty directly onto skin surface . Location: armpits, groin, nipples . Viscous, cloudy secretion good . Location: most all over body (esp. nutrient source for bacteria (odor !!) abundant on palms & soles: ~ 500/cm2) . Secretion may contain Pheromones . Secretion begins at puberty and is . Clear, watery secretion (99% stimulated during emotional distress H2O; rest NaCl + some waste Scent glands products Kalbouneh Heba Dr. → simple coiled tubular glands: when a section is taken we find rounded: • Dark stained: duct • Lightly stained: secretary portion Apocrine sweat glands Eccrine (merocrine) sweat glands Kalbouneh 24 Heba Sweat glands appears rounded profiles within the epidermis: Dr. Apocrine larger in size with wide lumens in comparing with eccrine sweat glands. Apocrine sweat gland Eccrine sweat gland Kalbouneh Heba Dr. *Once I see the hair follicle , I realize it’s a skin This section is taken from axilla, genital a skin section area (where we have apocrine sweat ** The hair follicle is surrounded by glands) adipocytes, then the hair follicle extends down in the dermis ** Can’t be taken from the scalp because it doesn’t have apocrine sweat glands Apocrine or eccrine sweat glands???? Kalbouneh Heba Dr. Apocrine: Because the apical surfaces of • Eccrine sweat glands are seen in thin and the cells have apocrine mode thick skin, not only thick skin of secretion (separation of apical part of cells) Apocrine or eccrine sweat glands???? A: Duct B: secretory portion • Apocrine sweat glands: → wide lumens → not clear apical part of cells (separation of apical part) Meissner's corpuscles localize in the dermis between epidermal ridges. Meissner's corpuscles are touch receptors and enriched in fingers and toes Kalbouneh Heba Dr. Meissner’s corpuscle → according to its shape and location Dr. Heba Kalbouneh Meissner’s corpuscle Dr. Heba Kalbouneh Pacinian Corpuscle Pacinian corpuscles are large (~ 1 mm), onion-like structures in the dermis and hypodermis. Pacinian corpuscles contain a myelinated nerve ending in the central core of the structure. Pacinian corpuscles are sensitive to mechanical and vibratory pressure, Kalbouneh rapidly changing pressure Heba Dr. Kalbouneh Heba Dr. Sweat glands Pacinian corpusle Nerve Adipocytes Ring shaped cells: white adipocytes • This section is taken from: deep part of the reticular layer of dermis • eccrine sweat glands Meissner corpuscle Epidermal ridge Dermal papilla Kalbouneh Heba Dr. Pacinian corpuscles Kalbouneh Heba **In the center of Pacinian corpuscles! There is sensory nerve ending Dr. surrounded by connective tissue capsule forming the corpuscle Pacinian corpuscles Dr. Heba Kalbouneh The junction between dermis and epidermis Sebaceous gland Hair follicle Hair shaft/root /Hair fiber Arrector pili Dermal papilla Pacinian corpuscle Hair matrix Kalbouneh Sweat gland Heba Dr. Sebaceous gland Hair follicle Kalbouneh Arrector pili Heba Dr..
Recommended publications
  • Anatomy and Physiology of Hair
    Chapter 2 Provisional chapter Anatomy and Physiology of Hair Anatomy and Physiology of Hair Bilgen Erdoğan ğ AdditionalBilgen Erdo informationan is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/67269 Abstract Hair is one of the characteristic features of mammals and has various functions such as protection against external factors; producing sebum, apocrine sweat and pheromones; impact on social and sexual interactions; thermoregulation and being a resource for stem cells. Hair is a derivative of the epidermis and consists of two distinct parts: the follicle and the hair shaft. The follicle is the essential unit for the generation of hair. The hair shaft consists of a cortex and cuticle cells, and a medulla for some types of hairs. Hair follicle has a continuous growth and rest sequence named hair cycle. The duration of growth and rest cycles is coordinated by many endocrine, vascular and neural stimuli and depends not only on localization of the hair but also on various factors, like age and nutritional habits. Distinctive anatomy and physiology of hair follicle are presented in this chapter. Extensive knowledge on anatomical and physiological aspects of hair can contribute to understand and heal different hair disorders. Keywords: hair, follicle, anatomy, physiology, shaft 1. Introduction The hair follicle is one of the characteristic features of mammals serves as a unique miniorgan (Figure 1). In humans, hair has various functions such as protection against external factors, sebum, apocrine sweat and pheromones production and thermoregulation. The hair also plays important roles for the individual’s social and sexual interaction [1, 2].
    [Show full text]
  • Diapositiva 1
    Ingegneria delle tecnologie per la salute Fondamenti di anatomia e istologia Apparato tegumentario aa. 2017-18 INTEGUMENTARY SYSTEM integumentary system = refers to skin and its accessory structures responsible for much more than simply human outward appearance: about 16% of body weight, covering an area of 1.5 to 2 m2 (= largest organ system in human body). • skin protects inner organs INTEGUMENTARY SYSTEM • skin = even not typical, but an organ, made of tissues that work together as a single structure to perform unique and critical functions • integumentary system = skin + its accessory structures, providing body with overall protection. • made of multiple layers of cells and tissues, which are held to underlying structures by connective tissue: deeper layer of skin is well vascularized (has numerous blood vessels) and also has numerous sensory, and autonomic and sympathetic nerve fibers ensuring communication to and from brain. INTEGUMENTARY SYSTEM Overview • Largest organ (15% of body weight) • Epidermis – keratinized stratified squamous epithelium • Dermis – connective tissue layer • Hypodermis • Thickness variable, normally 1-2 mm – dermis may thicken, up to 6 mm – stratum corneum layer increased • calluses on hands and feet Structure of the Skin 2 layers: epidermis + dermis SKIN: histology SKIN: histology SKIN: histology Cells of the Epidermis • Stem cells – undifferentiated cells in deepest layers • Keratinocytes – most of the skin cells • Melanocytes – synthesize pigment that shield UV • Tactile (merkel) cells – receptor cells associated with nerve fibers • Dendritic (langerhans) cells – macrophages guard against pathogens Cell and Layers of the Epidermis Epidermis: histology = composed of keratinized, stratified squamous epithelium, made of 4 or 5 layers of epithelial cells, depending on its location in body.
    [Show full text]
  • Nestin Expression in Hair Follicle Sheath Progenitor Cells
    Nestin expression in hair follicle sheath progenitor cells Lingna Li*, John Mignone†, Meng Yang*, Maja Matic‡, Sheldon Penman§, Grigori Enikolopov†, and Robert M. Hoffman*¶ *AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111; †Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724; §Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307; and ‡Stony Brook University, Stony Brook, NY 11794 Contributed by Sheldon Penman, June 25, 2003 The intermediate filament protein, nestin, marks progenitor expression of the neural stem cell protein nestin in hair follicle cells of the CNS. Such CNS stem cells are selectively labeled by stem cells suggests a possible relation. placing GFP under the control of the nestin regulatory se- quences. During early anagen or growth phase of the hair Materials and Methods follicle, nestin-expressing cells, marked by GFP fluorescence in Nestin-GFP Transgenic Mice. Nestin is an intermediate filament nestin-GFP transgenic mice, appear in the permanent upper hair (IF) gene that is a marker for CNS progenitor cells and follicle immediately below the sebaceous glands in the follicle neuroepithelial stem cells (5). Enhanced GFP (EGFP) trans- bulge. This is where stem cells for the hair follicle outer-root genic mice carrying EGFP under the control of the nestin sheath are thought to be located. The relatively small, oval- second-intron enhancer are used for studying and visualizing shaped, nestin-expressing cells in the bulge area surround the the self-renewal and multipotency of CNS stem cells (5–7). hair shaft and are interconnected by short dendrites. The precise Here we report that hair follicle stem cells strongly express locations of the nestin-expressing cells in the hair follicle vary nestin as evidenced by nestin-regulated EGFP expression.
    [Show full text]
  • Enabling Sweat-Based Biosensors: Solving the Problem of Low
    Enabling sweat-based biosensors: Solving the problem of low biomarker concentration in sweat A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biomedical Engineering of the College of Engineering & Applied Science by Andrew J. Jajack B.S., Biology, Wittenberg University, 2014 Committee Chairs: Jason C. Heikenfeld, Ph.D. and Chia-Ying Lin, Ph.D. Abstract Non-invasive, sweat biosensing will enable the development of an entirely new class of wearable devices capable of assessing health on a minute-to-minute basis. Every aspect of healthcare stands to benefit: prevention (activity tracking, stress-level monitoring, over-exertion alerting, dehydration warning), diagnosis (early-detection, new diagnostic techniques), and management (glucose tracking, drug-dose monitoring). Currently, blood is the gold standard for measuring the level of most biomarkers in the body. Unlike blood, sweat can be measured outside of the body with little inconvenience. While some biomarkers are produced in the sweat gland itself, most are produced elsewhere and must diffuse into sweat. These biomarkers come directly from blood or interstitial fluid which surrounds the sweat gland. However, a two-cell thick epithelium acts as barrier and dilutes most biomarkers in sweat. As a result, many biomarkers that would be useful to monitor are diluted in sweat to concentrations below what can be detected by current biosensors. This is a core challenge that must be overcome before the advantages of sweat biosensing can be fully realized. The objective of this dissertation is to develop methods of concentrating biomarkers in sweat to bring them into range of available biosensors.
    [Show full text]
  • Identification of Hair Shaft Progenitors That Create a Niche for Hair Pigmentation
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Identification of hair shaft progenitors that create a niche for hair pigmentation Chung-Ping Liao,1 Reid C. Booker,1 Sean J. Morrison,2,3,4,5,6 and Lu Q. Le1,4,5 1Department of Dermatology, 2Department of Pediatrics, 3Children’s Research Institute, 4Simmons Comprehensive Cancer Center, 5Hamon Center for Regenerative Science and Medicine, 6Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lin- eage cells results in arrest of hair growth, confirming the critical role of KROX20+ cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differen- tiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. [Keywords: stem cell factor (SCF); hair pigmentation; hair shaft progenitor cell; hair follicle stem cell; hair matrix; KROX20] Supplemental material is available for this article.
    [Show full text]
  • Biomechanics of Human Stratum Corneum: Dry Skin Conditions, Tissue Damage and Alleviation a Dissertation Submitted to the Depar
    BIOMECHANICS OF HUMAN STRATUM CORNEUM: DRY SKIN CONDITIONS, TISSUE DAMAGE AND ALLEVIATION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Kemal Levi November 2009 © 2010 by Kemal Levi. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/cb644mw1707 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Reinhold Dauskardt, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Sarah Heilshorn I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. William Nix Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract The outermost layer of human skin, the stratum corneum (SC), is subject daily to variable ambient moisture and temperature conditions as well as application of potentially damaging cleansing agents.
    [Show full text]
  • The Integumentary System
    CHAPTER 5: THE INTEGUMENTARY SYSTEM Copyright © 2010 Pearson Education, Inc. OVERALL SKIN STRUCTURE 3 LAYERS Copyright © 2010 Pearson Education, Inc. Figure 5.1 Skin structure. Hair shaft Dermal papillae Epidermis Subpapillary vascular plexus Papillary layer Pore Appendages of skin Dermis Reticular • Eccrine sweat layer gland • Arrector pili muscle Hypodermis • Sebaceous (oil) gland (superficial fascia) • Hair follicle Nervous structures • Hair root • Sensory nerve fiber Cutaneous vascular • Pacinian corpuscle plexus • Hair follicle receptor Adipose tissue (root hair plexus) Copyright © 2010 Pearson Education, Inc. EPIDERMIS 4 (or 5) LAYERS Copyright © 2010 Pearson Education, Inc. Figure 5.2 The main structural features of the skin epidermis. Keratinocytes Stratum corneum Stratum granulosum Epidermal Stratum spinosum dendritic cell Tactile (Merkel) Stratum basale Dermis cell Sensory nerve ending (a) Dermis Desmosomes Melanocyte (b) Melanin granule Copyright © 2010 Pearson Education, Inc. DERMIS 2 LAYERS Copyright © 2010 Pearson Education, Inc. Figure 5.3 The two regions of the dermis. Dermis (b) Papillary layer of dermis, SEM (22,700x) (a) Light micrograph of thick skin identifying the extent of the dermis, (50x) (c) Reticular layer of dermis, SEM (38,500x) Copyright © 2010 Pearson Education, Inc. Figure 5.3a The two regions of the dermis. Dermis (a) Light micrograph of thick skin identifying the extent of the dermis, (50x) Copyright © 2010 Pearson Education, Inc. Q1: The type of gland which secretes its products onto a surface is an _______ gland. 1) Endocrine 2) Exocrine 3) Merocrine 4) Holocrine Copyright © 2010 Pearson Education, Inc. Q2: The embryonic tissue which gives rise to muscle and most connective tissue is… 1) Ectoderm 2) Endoderm 3) Mesoderm Copyright © 2010 Pearson Education, Inc.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Sweat Glands • Oil Glands • Mammary Glands
    Chapter 4 The Integumentary System Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • The integumentary system is composed of: • Skin • Hair • Nails • Sweat glands • Oil glands • Mammary glands © 2015 Pearson Education, Inc. Introduction • The skin is the most visible organ of the body • Clinicians can tell a lot about the overall health of the body by examining the skin • Skin helps protect from the environment • Skin helps to regulate body temperature © 2015 Pearson Education, Inc. Integumentary Structure and Function • Cutaneous Membrane • Epidermis • Dermis • Accessory Structures • Hair follicles • Exocrine glands • Nails © 2015 Pearson Education, Inc. Figure 4.1 Functional Organization of the Integumentary System Integumentary System FUNCTIONS • Physical protection from • Synthesis and storage • Coordination of immune • Sensory information • Excretion environmental hazards of lipid reserves response to pathogens • Synthesis of vitamin D3 • Thermoregulation and cancers in skin Cutaneous Membrane Accessory Structures Epidermis Dermis Hair Follicles Exocrine Glands Nails • Protects dermis from Papillary Layer Reticular Layer • Produce hairs that • Assist in • Protect and trauma, chemicals protect skull thermoregulation support tips • Nourishes and • Restricts spread of • Controls skin permeability, • Produce hairs that • Excrete wastes of fingers and supports pathogens prevents water loss provide delicate • Lubricate toes epidermis penetrating epidermis • Prevents entry of
    [Show full text]
  • Curling Cuticles of the Great Toenails: a Case Report of Eponychogryphosis
    Open Access Case Report DOI: 10.7759/cureus.3959 Curling Cuticles of the Great Toenails: A Case Report of Eponychogryphosis Philip R. Cohen 1 1. Dermatology, San Diego Family Dermatology, San Diego, USA Corresponding author: Philip R. Cohen, [email protected] Abstract The cuticle, also referred to as the eponychium, creates a seal between the proximal nail fold and the nail plate. It is derived from both the ventral and dorsal portions of the proximal nail fold. In addition to its principle function as a barrier preventing allergens, irritants and pathogens from entering the nail cul-de- sac, the cuticle can play a role as a model for evaluating the etiology and management of diseases that affect capillary microcirculation, provide a source of solid tissue for genetic disorder studies, and aid in the evaluation of patients in whom the diagnoses of either systemic scleroderma or dermatomyositis is being entertained. Curling cuticle is a distinctive and unique occurrence. The clinical features of a man with curling cuticles on the lateral portion of both great toes is described. Although a deficiency in personal hygiene may partially account for the clinical finding, the pathogenesis of this observation remains to be established. The term ‘eponychogryphosis’ is proposed to describe the alteration of the patient’s cuticles. Categories: Dermatology, Internal Medicine, Rheumatology Keywords: curl, curling, cuticle, eponychium, eponychogryphosis, fold, great, onychogryphosis, nail, toe Introduction The cuticle, also known as the eponychium, is an extension of the stratum corneum from the proximal nail fold [1-3]. It forms a seal that prevents allergens, irritants, and pathogens from entering the potential space between the distal skin of the digit and the nail plate [4-5].
    [Show full text]
  • Basic Biology of the Skin 3
    © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER Basic Biology of the Skin 3 The skin is often underestimated for its impor- Layers of the skin: tance in health and disease. As a consequence, it’s frequently understudied by chiropractic students 1. Epidermis—the outer most layer of the skin (and perhaps, under-taught by chiropractic that is divided into the following fi ve layers school faculty). It is not our intention to present a from top to bottom. These layers can be mi- comprehensive review of anatomy and physiol- croscopically identifi ed: ogy of the skin, but rather a review of the basic Stratum corneum—also known as the biology of the skin as a prerequisite to the study horny cell layer, consisting mainly of kera- of pathophysiology of skin disease and the study tinocytes (fl at squamous cells) containing of diagnosis and treatment of skin disorders and a protein known as keratin. The thick layer diseases. The following material is presented in prevents water loss and prevents the entry an easy-to-read point format, which, though brief of bacteria. The thickness can vary region- in content, is suffi cient to provide a refresher ally. For example, the stratum corneum of course to mid-level or upper-level chiropractic the hands and feet are thick as they are students and chiropractors. more prone to injury. This layer is continu- Please refer to Figure 3-1, a cross-sectional ously shed but is replaced by new cells from drawing of the skin. This represents a typical the stratum basale (basal cell layer).
    [Show full text]
  • Biology of Human Hair: Know Your Hair to Control It
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Adv Biochem Engin/Biotechnol DOI: 10.1007/10_2010_88 Ó Springer-Verlag Berlin Heidelberg 2010 Biology of Human Hair: Know Your Hair to Control It Rita Araújo, Margarida Fernandes, Artur Cavaco-Paulo and Andreia Gomes Abstract Hair can be engineered at different levels—its structure and surface— through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regula- tion of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization. Keywords Follicular morphogenesis Á Hair follicle Á Hair life cycle Á Keratin Contents 1 Structure and Morphology of Human Hair ............................................................................ 2 Biology of Human Hair .......................................................................................................... 2.1 Hair Follicle Anatomy...................................................................................................
    [Show full text]