Quick viewing(Text Mode)

Measurement Aspects of Mobile Terminal Antennas Overview

Measurement Aspects of Mobile Terminal Antennas Overview

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/Laboratory Antennas Sept. 5-9, 2005 SMARADIDC/RadioLaboratory ClemensIcheln ClemensIcheln Antennas Sept. 5-9, 2005 Overview

Measurement Aspects • Introduction of Mobile Terminal Antennas • Small- characteristics • Standard measurement methods ClemensIcheln • Other characterisation methods SMARADIDC/RadioLaboratory • Specific error sources and solutions [email protected]

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Mobile communications antennas Antenna Characteristics The most important small-antenna characteristics are: • Trend: Increasing number of communication systems • input impedance / bandwidth • small(est) mobile terminals • 3-D complexity  complex antenna structures and multi-element antennas • gain / / radiation efficiency • User effect, Specific Absorption Rate (SAR) • simulation-based design and evaluation, but prototyping and Multi-element: Diversity and MIMO performance measurements usually needed

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Radiation Efficiency Wheeler Cap Method (WCM) (1/2) • Measurement of S11 in free space is contrasted with measurement of S when antenna is placed inside a metal cap • The radiation efficient of an antenna is the ratio of the 11 total radiated power and the (net) power accepted by  Difference in reflected power represents the radiated power in free space the antenna: Antenna • Cap eliminates radiation and thus also cap element ηr = Prad,tot / Pin eliminates radiation resistance Rr • Distinction between (physical) radiation efficiency η – size and shape of the cap not significant, r but cavity must be avoided including only internal losses inside antenna structure, • Loss resistance Rl remains ~unchanged and total , which is ηr reduced by mismatch losses (at the antenna connector) Wheeler Cap

• Efficiency is also given by ηr = Gain/Directivity

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005 Wheeler Cap Method (cont’d) Stirred mode chamber • Under these conditions the radiation efficiency can be determined with two measurements by first measuring the input resistance of the AUT • Stirred mode chamber [1]: rotating blades without the cap (Rfs = Rr + Rl), and then with the cap (Rc = Rl + Rs) – Shielded chamber with metal walls – Lots of resonant modes can exist • The radiation efficiency ηr can then be calculated as – Moving metallic stirrers make all P R RRfs− c AUT η =r ×100% = r × 100% = ×100% resonant modes equally strong r P RR+ R in r l fs – Time-average of field is homogeneous field everywhere in the chamber probe • In practice, the current distribution and thus also the resonant  total radiated power is obtained of the antenna under test inside cap change slightly by probing e.g. E-field in one point  some uncertainty (several percents) in the measurement

• Acceptable accuracy - yet, better results can be obtained by using so- [1]P.Corona,G.Ferrara,M.Migliaccio,“Reverberatingchambersassourcesofstochasticelectromagneticfields”, called Improved Wheeler Cap Method (IWCM): IEEE Transactions on Electromagnetic Compatibility,Vol.38No.3,Aug.1996,pp.348–356.

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Scattered field chamber measurement Pattern integration method • by integrating the 3-D gain pattern*, the total radiated power is obtained – Goal: simulate a realistic propagation environment • Typically, in 3-D pattern measurements a reference antenna is needed – shielded chamber with (here: usually fixed) reflectors – as gain reference, or – measurement antenna has no line of sight to AUT – as efficiency reference

– rotation of the AUT • The directivity D0 can be obtained from any 3-D pattern with:  Rayleigh distribution

– if a gain reference was used: ηAUT = Gmax/D0 Ptot,, rad AUT – if an efficiency reference was used: ηη AUT= ref.. ant Ptot,,.. rad ref ant

(* for each direction, the received power in phi- and theta-polarisations needs to be summed up first) KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Anechoic Chambers Absorber lining • Sharp tips  smooth change of impedance • Need: well-defined field strength at measurement position • Area filled with absorbing material increases • Means: placing the field source in a reflection-free environment • Absorber height > λ/2 of lowest frequency all walls need to be completely covered by RF absorbing material: e.g. fmin=900MHz habs ~30cm (better:h >45cm)

For’flat’ incidencewaves, wedgesgivebetterabsorption

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Effect of non-ideal absorber lining Measurement setup

Erefl. Option A: Measurement antenna Direct field / Amplitude Phase moves on an arch, AUT is rotated AUT E Etotal refl. field error/ripple error direct around vertical axis  easy cabling 0dB +6… −∞ dB ±180° (static), complex construction for meas. • Random reflections antenna 10dB +2.4…−3.3dB ±18° measurement antenna (or array) cause interference pattern 20dB +0.8…−0.9dB ±5.7° Option B: Measurement antenna fixed, AUT is rotated around two axes  • In good chambers 30dB ± 0.3dB ±1.8° AUT complicated cabling (rotary reflections level is 40dB ±0.09dB ±0.57° joints), easy installation of -25 dB or better measurement antenna(s)

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005 Small anechoic chamber Example: Dualaxis3Dpatternmeasurement antenna under test inthesmallanechoicchamber

AUT (embedded movie) two axes Dual-polarised measurement antenna distance ~ 1.3 m measurement antenna light-weight positioner

TKK/Radiolab’s AnechoicRoom KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Novel measurement systems Satimo Stargate 64

Typical problems in far-field-pattern measurements with - circular array of 64 dual-polarised field probes

mobile terminals: - Perturbation technique gives amplitude and • Long measurement time for 3-D patterns due to phase of the incident field at each probe mechanical movement of antennas (either probes or AUT) - far-field radiation pattern obtained through spherical wave expansion • Only amplitudes of radiated fields of active mobile phones obtainable - the phase is needed e.g. for diversity or - Usable frequency range: 0.8 − 3.2 GHz MIMO evaluation - Ø = 4m  user can also be in the setup - Full 3-D far-field measurement within minutes

Source:http://www.satimo.com

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005 RAMS: Rapid antenna Body phantoms measurement system • Test-person effect important, variations up to 10 dB • Simultaneoususeof32dual polarisedantennas locatedona • standardised head phantoms to model the handset user spherearoundtheAUT(possible • liquids for 900 MHz / 1800 MHz to model brain tissue toincludeauser)  Effect of user on radiation characteristics / efficiency • Measurementdistanceabout1m Standardised handset position ’cheek’ on SAM: • Phaseretrieval network uses one of the measurement channels as phasereference • SphericalWaveExpansion yields full3D(complex)farfields SAM =Specific • Measurementtime only3sec(per Anthropomorphic wideband Vivaldi- Mannequin frequencypoint) type antenna KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Antenna prototype with head phantom: Specific Absorption Rate

• Power dissipated in the user’s head in W/kg

• Limits according to standards such as EN50360: – EU: 2 W/kg for 10-g volume-averaged SAR – US: 1.6 W/kg for 1-g volume-averaged SAR • Representative head phantom: SAM phantom • Frequency-specific fluid (see IEEE P1528 specifications)  Small isotropic E-field probe is moved inside liquid, while phone is placed in typical position(s) at ear

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005 SAR measurements SAR measurements User effect

• Automated system required user’s • Standard EN50361 applies mobile torso • For terminals that terminal • Commercial DASY4 system: feature Web & Video user’s arms functionality, new user phantom(s) are needed to evaluate the effect a user has on the terminal

performance (e.g. by styrofoam base phone shadowing)

Simple test set-up for • Alternative: SAR prediction ”browsing” position [1] with EM-field simulations [1]J.Krogerus,“PhantomsforTerminalAntennaPerformanceTesting”, COST273TD(02)154,Lisbon,Portugal,September2002,6p. KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005 Radio-channel sounder Example: Urban spherical array • Radio-channel sounder measurements measurement (@2.1GHz) – Fast-switched (~ms) multi-antenna arrays at both ends (BS and MS) – In multi-antenna systems, all antennas can be simultaneously measured sounder => diversity/MIMO performance directly available MS • Radio-channel characterisation (mobile – Multi-path environment station) – Spherical multi-element antenna array base station used as base- and mobile station – With methods the directions of departure (DOD) and directions of arrival (DOA) is obtained A5.3GHz  General channel models for 16element different environment categories antennaarray KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Models of urban environment Example 2: Elevation power distribution and θ- and φ-polarized powers in another macrocell route ( at rooftop level):

Lineofsight−60 Measuredelevation power Theta−polarization distributionat2.1GHzinan −65 Phi−polarization urbanmacrocellenvironment, −70 andtwosimplifiedmodels: −75 −80

−85

Received power [dB] −90

−95

Source:Kalliola,K.etal:“Angularpower −100 0 40 80 120 160 200 240 distributionandmeaneffectivegainofmobile MS location [m] antennaindifferentpropagationenvironments”, IEEETransactionsonVehicularTechnology, • Incident signal power arrives mainly from the directions just above the Vol.51,Issue5,9/02,pp:823838 elevation azimuth plane - especially true in macrocell environments

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Multi-element terminal antennas MEasurement Based Antenna Testbed Sphericalantenna Referencepoint • MEBAT is HUT/Radiolab’s novel multi- • Simplest case: Diversity (e.g. dual-polarised terminal antenna) antenna system evaluation tool Signals • Most complex case: MIMO (multi-element arrays at both ends) • Computational performance evaluation of a multi-antenna configuration already in the • Static or separate single-channel measurements not sufficient early phase of the design process: • Average performance affected by time- and place-dependent Signals characteristics of the (dynamic) environment Sphericalantenna MEBAT • Dynamic MS measurements in real propagation arrayradiochannel DoAestimateoftheincident Measured/simulated environments are time consuming and expensive measurements complexsignals(beamforming) radiationpatterns

(P.Suvikunnas etal:Evaluationof ΣΣΣ×Σ××× Receivedsignals performanceofmultiantenna Simulatedormeasuredcomplex ofthediversity terminalsusingtwoapproaches, 3Dradiationpatternsofamulti branches IMTC/04 proceedings,Como,Italy, elementmobileterminalantenna KTHStockholm,Sept‘05 ACEMIMOcourse 05/04,pp.10911096.)KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005 Mutual coupling Mutual coupling (cont’d) • mobile antennas show mostly resistive mutual impedance • when measuring a combination of two • normalised mutual resistance is approximately equal to the closely spaced antennas such as a correlation coefficient: mobile-handset diversity antenna, mutual coupling may have an effect Envelope Normalised Attenuation Coupling correlation mutual res. of received betw. loads power [dB] S [dB] • in typical measurement arrangement both 21 antennas connected to matched loads: 0 0 0 - inf.  idealcase 0.3 0.55 -0.4 -10.6 due to mutual coupling dissipation in both  realcases 0.7 0.84 -1.6 -5.9 antennas (+ mismatch) => possibly less dualelementantennaon power received than with single antenna headphantom(”SAM”) 1 1 -3.5 0  worstcase Source: R.Vaughan andJ.BachAndersen,“Antennadiversityinmobilecommunications”,IEEE Transactions on Vehicular Technology,Vol.36,No.4,November 1987,pp.149172.

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Measurement errors Phase centre alignment

• General accuracies of RF signal source, the VNA, • Typical assumption is that the phase centre is at the feed point cables losses, connectors, wall reflections of the antenna – true only for simple structures • But for complex structures such as handsets the location of the • Positioning of antenna(s) phase centre varies as a function of frequency! – Choice of range (minimum distance) • In the presence of a head phantom, the location of the (effective) – Phase center alignment phase center may move outside the handset perimiter • Effect of RF cable shield Measured field-strength uncertainty when rotating off the phase centre: – Reflection and re-radiation misalignment d = 5 m d = 1 m d =0.5 m – Parasitic radiation = 10 mm <0.1 dB ±0.1 dB ±0.2 dB = 30 mm <0.1 dB ±0.3 dB ±0.5 dB

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005 Effect of RF cable Current chokes handset EM waves ferrite bead (lossy, wideband), cap/ (resonant, narrowband)

• With an external signal Example: measured magnetic fields along RF cable (900MHz): source (e.g. VNA), we need an additional RF H-field Case M4 dBmA/m cable

 no free-floating AUT AUT + feed cable cap • Antenna prototypes are unwanted mostly measured without an transmission independent RF transmitter ferrites cap + ferrites

 there are several solutions: signal-feed cable KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005 ClemensIcheln Antennas Sept. 5-9, 2005

Current chokes (cont’d) Optical RF links Comparisonofθpol.yzplanegainpatternsat920MHz foranAUTsetupwithbareRFfeedcableonly • ideal: no RF cables from/to AUT anda setupincludingabalunandferrites——. • still not many commercial products • power consumption, size • typically phase information is lost

• no information obtained about S11

KTHStockholm,Sept‘05 ACEMIMOcourse KTHStockholm,Sept‘05 ACEMIMOcourse

HELSINKIUNIVERSITYOFTECHNOLOGY MIMOCommunicationSystemsand SMARADIDC/RadioLaboratory ClemensIcheln Antennas Sept. 5-9, 2005

Select reading - IEEE Standard Test Procedures for Antennas, ANSI/IEEE Std. 149-1979,IEEE Press,NewYork,NY,1980,143pages JohnD.Kraus(ed.),Antennas (3rded.),McGrawHill,Chapter24 HiroyukiArai,Measurement of mobile antenna systems, Artech House,214p. ClemensIcheln,Methods for measuring RF radiation properties of small antennas,Doctoraldissertation,http://lib.hut.fi/Diss/2001/isbn9512256886 A.Lehto,A.Räisänen,Mikroaaltomittaustekniikka,3.painos,Espoo,Otatieto Oy,1995,215sivut K.Hirasawa,M.Haneishi,Analysis, Design, and Measurement of Small and Low-Profile Antennas,Artech House,1992 K.Fujimoto,J.R.James,Mobile Antenna System Handbook,Artech House, 2001

KTHStockholm,Sept‘05 ACEMIMOcourse