5.2.1.1 Dipole Antenna Input Impedance Canonical Validation Problem

Total Page:16

File Type:pdf, Size:1020Kb

5.2.1.1 Dipole Antenna Input Impedance Canonical Validation Problem 5.2.1.1 Dipole Antenna Input Impedance Canonical Validation Problem The dipole antenna is one of the simplest structures in electromagnetic compatibility problems. The values of the real and imaginary input impedance are well known for a dipole antenna. The impedance varies vs. frequency (wavelength compared to the antenna physical length). The half wavelength resonant frequency real part of the impedance should be 73 ohms, and the imaginary part should be 42.5 ohms. z θ 2a r l y φ x Figure 1. Dipole Antenna Geometry Real and imaginary part of input impedance at the input terminals are given by equation 5.2.1.1.1 from [1] R R = r in Sin2 (/2) kl (5.2.1.1.1) X X = m in Sin2 (/2) kl Where l is the length of the antenna and a is the diameter. It is assumed that a << l Rin = real part of the radiation resistance at the input (feed) terminals X in = imaginary part of the radiation resistance at the input (feed) terminals Rr , is the radiation resistance at current maximum Note: The radiation resistance and the input resistance are based on ideal current distribution and do not account for finite radius of the wire or the gap spacing at the feed. The radiation resistance is also the antenna input impedance since the current maximum for a half wavelength dipole occurs at the input terminals. The imaginary part associated with the input impedance of λ a dipole is a function of its length. Thus, the total input impedance for l = is equal to 2 =+ Zjin 73 42.5 Ohms. The input impedance of a dipole for varying lengths (in wavelengths) has been computed and provided in a file “Dipole_Input_Impedance.xls”. The radius of the dipole is assumed to be very small compared to the length. From the results the input impedance of a half wave dipole can be verified to be =+ λ Zjin 73 42.5 Ohms and when the overall length of the dipole is a multiple of , ()i.e., ln==λ, n1,2,3,... , the current at the input terminals is zero which indicates the radiation resistance at the input terminals is infinite. Reference: [1] Constantine A. Balanis “Antenna Theory Analysis and Design” second edition, John Wiley Sons and Inc. .
Recommended publications
  • ECE 5011: Antennas
    ECE 5011: Antennas Course Description Electromagnetic radiation; fundamental antenna parameters; dipole, loops, patches, broadband and other antennas; array theory; ground plane effects; horn and reflector antennas; pattern synthesis; antenna measurements. Prior Course Number: ECE 711 Transcript Abbreviation: Antennas Grading Plan: Letter Grade Course Deliveries: Classroom Course Levels: Undergrad, Graduate Student Ranks: Junior, Senior, Masters, Doctoral Course Offerings: Spring Flex Scheduled Course: Never Course Frequency: Every Year Course Length: 14 Week Credits: 3.0 Repeatable: No Time Distribution: 3.0 hr Lec Expected out-of-class hours per week: 6.0 Graded Component: Lecture Credit by Examination: No Admission Condition: No Off Campus: Never Campus Locations: Columbus Prerequisites and Co-requisites: Prereq: 3010 (312), or Grad standing in Engineering, Biological Sciences, or Math and Physical Sciences. Exclusions: Not open to students with credit for 711. Cross-Listings: Course Rationale: Existing course. The course is required for this unit's degrees, majors, and/or minors: No The course is a GEC: No The course is an elective (for this or other units) or is a service course for other units: Yes Subject/CIP Code: 14.1001 Subsidy Level: Doctoral Course Programs Abbreviation Description CpE Computer Engineering EE Electrical Engineering Course Goals Teach students basic antenna parameters, including radiation resistance, input impedance, gain and directivity Expose students to antenna radiation properties, propagation (Friis transmission
    [Show full text]
  • 25. Antennas II
    25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is a linear d << antenna which is much shorter than the free-space wavelength: V(t) Far field: jk0 r j t 00Id e ˆ Er,, t j sin 4 r Radiation resistance: 2 d 2 RZ rad 3 0 2 where Z 000 377 is the impedance of free space. R Radiation efficiency: rad (typically is small because d << ) RRrad Ohmic Radiation patterns Antennas do not radiate power equally in all directions. For a linear dipole, no power is radiated along the antenna’s axis ( = 0). 222 2 I 00Idsin 0 ˆ 330 30 Sr, 22 32 cr 0 300 60 We’ve seen this picture before… 270 90 Such polar plots of far-field power vs. angle 240 120 210 150 are known as ‘radiation patterns’. 180 Note that this picture is only a 2D slice of a 3D pattern. E-plane pattern: the 2D slice displaying the plane which contains the electric field vectors. H-plane pattern: the 2D slice displaying the plane which contains the magnetic field vectors. Radiation patterns – Hertzian dipole z y E-plane radiation pattern y x 3D cutaway view H-plane radiation pattern Beyond the Hertzian dipole: longer antennas All of the results we’ve derived so far apply only in the situation where the antenna is short, i.e., d << . That assumption allowed us to say that the current in the antenna was independent of position along the antenna, depending only on time: I(t) = I0 cos(t) no z dependence! For longer antennas, this is no longer true.
    [Show full text]
  • Evaluation of Short-Term Exposure to 2.4 Ghz Radiofrequency Radiation
    GMJ.2020;9:e1580 www.gmj.ir Received 2019-04-24 Revised 2019-07-14 Accepted 2019-08-06 Evaluation of Short-Term Exposure to 2.4 GHz Radiofrequency Radiation Emitted from Wi-Fi Routers on the Antimicrobial Susceptibility of Pseudomonas aeruginosa and Staphylococcus aureus Samad Amani 1, Mohammad Taheri 2, Mohammad Mehdi Movahedi 3, 4, Mohammad Mohebi 5, Fatemeh Nouri 6 , Alireza Mehdizadeh3 1 Shiraz University of Medical Sciences, Shiraz, Iran 2 Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran 3 Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 4 Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran 5 School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 6 Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran Abstract Background: Overuse of antibiotics is a cause of bacterial resistance. It is known that electro- magnetic waves emitted from electrical devices can cause changes in biological systems. This study aimed at evaluating the effects of short-term exposure to electromagnetic fields emitted from common Wi-Fi routers on changes in antibiotic sensitivity to opportunistic pathogenic bacteria. Materials and Methods: Standard strains of bacteria were prepared in this study. An- tibiotic susceptibility test, based on the Kirby-Bauer disk diffusion method, was carried out in Mueller-Hinton agar plates. Two different antibiotic susceptibility tests for Staphylococcus au- reus and Pseudomonas aeruginosa were conducted after exposure to 2.4-GHz radiofrequency radiation. The control group was not exposed to radiation.
    [Show full text]
  • Coordinate Transformations-Based Antenna Elements Embedded in a Metamaterial Shell with Scanning Capabilities
    electronics Article Coordinate Transformations-Based Antenna Elements Embedded in a Metamaterial Shell with Scanning Capabilities Dipankar Mitra 1,*, Sukrith Dev 2, Monica S. Allen 2, Jeffery W. Allen 2 and Benjamin D. Braaten 1,* 1 Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58105, USA 2 Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542, USA; [email protected] (S.D.); [email protected] (M.S.A.); [email protected] (J.W.A.) * Correspondence: [email protected] (D.M.); [email protected] (B.D.B.) Abstract: In this work transformation electromagnetics/optics (TE/TO) were employed to realize a non-homogeneous, anisotropic material-embedded beam-steerer using both a single antenna element and an antenna array without phase control circuitry. Initially, through theory and validation with numerical simulations it is shown that beam-steering can be achieved in an arbitrary direction by enclosing a single antenna element within the transformation media. Then, this was followed by an array with fixed voltages and equal phases enclosed by transformation media. This enclosed array was scanned, and the proposed theory was validated through numerical simulations. Further- more, through full-wave simulations it was shown that a horizontal dipole antenna embedded in a metamaterial can be designed such that the horizontal dipole performs identically to a vertical Citation: Mitra, D.; Dev, S.; Allen, dipole in free-space. Similarly, it was also shown that a material-embedded horizontal dipole array M.S.; Allen, J.W.; Braaten, B.D.
    [Show full text]
  • Compact Integrated Antennas Designs and Applications for the Mc1321x, Mc1322x, and Mc1323x
    Freescale Semiconductor Document Number: AN2731 Application Note Rev. 2, 12/2012 Compact Integrated Antennas Designs and Applications for the MC1321x, MC1322x, and MC1323x 1 Introduction Contents 1 Introduction . 1 With the introduction of many applications into the 2 Antenna Terms . 2 2.4 GHz band for commercial and consumer use, 3 Basic Antenna Theory . 3 Antenna design has become a stumbling point for many 4 Impedance Matching . 5 customers. Moving energy across a substrate by use of an 5 Antennas . 8 RF signal is very different than moving a low frequency 6 Miniaturization Trade-offs . 11 voltage across the same substrate. Therefore, designers 7 Potential Issues . 12 who lack RF expertise can avoid pitfalls by simply 8 Recommended Antenna Designs . 13 following “good” RF practices when doing a board 9 Design Examples . 14 layout for 802.15.4 applications. The design and layout of antennas is an extension of that practice. This application note will provide some of that basic insight on board layout and antenna design to improve our customers’ first pass success. Antenna design is a function of frequency, application, board area, range, and costs. Whether your application requires the absolute minimum costs or minimization of board area or maximum range, it is important to understand the critical parameters so that the proper trade-offs can be chosen. Some of the parameters necessary in selecting the correct antenna are: antenna © Freescale Semiconductor, Inc., 2005, 2006, 2012. All rights reserved. tuning, matching, gain/loss, and required radiation pattern. This note is not an exhaustive inquiry into antenna design. It is instead, focused toward helping our customers understand enough board layout and antenna basics to aid in selecting the correct antenna type for their application as well as avoiding the typical layout mistakes that cause performance issues that lead to delays.
    [Show full text]
  • High-Performance Indoor VHF-UHF Antennas
    High‐Performance Indoor VHF‐UHF Antennas: Technology Update Report 15 May 2010 (Revised 16 August, 2010) M. W. Cross, P.E. (Principal Investigator) Emanuel Merulla, M.S.E.E. Richard Formato, Ph.D. Prepared for: National Association of Broadcasters Science and Technology Department 1771 N Street NW Washington, DC 20036 Mr. Kelly Williams, Senior Director Prepared by: MegaWave Corporation 100 Jackson Road Devens, MA 01434 Contents: Section Title Page 1. Introduction and Summary of Findings……………………………………………..3 2. Specific Design Methods and Technologies Investigated…………………..7 2.1 Advanced Computational Methods…………………………………………………..7 2.2 Fragmented Antennas……………………………………………………………………..22 2.3 Non‐Foster Impedance Matching…………………………………………………….26 2.4 Active RF Noise Cancelling……………………………………………………………….35 2.5 Automatic Antenna Matching Systems……………………………………………37 2.6 Physically Reconfigurable Antenna Elements………………………………….58 2.7 Use of Metamaterials in Antenna Systems……………………………………..75 2.8 Electronic Band‐Gap and High Impedance Surfaces………………………..98 2.9 Fractal and Self‐Similar Antennas………………………………………………….104 2.10 Retrodirective Arrays…………………………………………………………………….112 3. Conclusions and Design Recommendations………………………………….128 2 1.0 Introduction and Summary of Findings In 1995 MegaWave Corporation, under an NAB sponsored project, developed a broadband VHF/UHF set‐top antenna using the continuously resistively loaded printed thin‐film bow‐tie shown in Figure 1‐1. It featured a low VSWR (< 3:1) and a constant dipole‐like azimuthal pattern across both the VHF and UHF television bands. Figure 1‐1: MegaWave 54‐806 MHz Set Top TV Antenna, 1995 In the 15 years since then much technical progress has been made in the area of broadband and low‐profile antenna design methods and actual designs.
    [Show full text]
  • Ground-To-Air Antennas and Antenna Line Products Information About KATHREIN Broadcast
    BROADCAST CATALOGUE Ground-to-Air Antennas and Antenna Line Products Information about KATHREIN Broadcast As of 1st June 2019, KATHREIN SE's (formerly KATHREIN-Werke KG) business unit "BROADCAST" will be transferred to KATHREIN Broadcast GmbH (limited liability company). From 1st June 2019, the new company data are: KATHREIN Broadcast GmbH Ing.-Anton-Kathrein-Str. 1, 3, 5, 7 83101 Rohrdorf, Germany Tax Payer's ID No.: 156/117/31113 VAT Reg. No.: DE 323 189 785 Commercial Register Traunstein: HRB 27745 Catalogue Issue 06/2019 All data published in previous catalogue issues hereby becomes invalid. We reserve the right to make alterations in accordance with the requirements of our customers, therefore for binding data please check valid data sheets on our homepage: www.kathrein.com Please also see additional information on inside back cover. Our quality assurance system and our Our products are compliant to the EU environmental management system apply Directive RoHS as well as to other to the entire company and are certified RoHS environmentally relevant regulations by TÜV according to EN ISO 9001 and (e.g. REACH). EN ISO 14001. Antennas for Communication Antennas for Communication Antennas for Navigation Antennas for Navigation Electrical Accessories Electrical Accessories Mechanical Accessories Mechanical Accessories Services Services Summary of Types The articles are listed by type number in numerical order. Type No. Page Type No. Page Type No. Page Type No. Page 711 ... 727 ... 792 ... K63 ... 711329 50, 51 727463 28, 29 792008 75 K637011 601825 73 727728 34, 35 792246 76 713 ... K64 ... 713316B 56, 57 729 ... 800 ... K6421351 601704 66, 67 713645 83 729803 28, 29 80010228 49 K6421361 601686 68, 69 K6421371 601687 68, 69 714 ..
    [Show full text]
  • Performance Expectations for Reduced-Size Antennas
    High Frequency Design From February 2010 High Frequency Electronics Copyright © 2010 Summit Technical Media, LLC SMALL ANTENNAS Performance Expectations for Reduced-Size Antennas By Gary Breed Editorial Director λ very device that L/ = 0.167 and RRad = 5.5 ohms. The feed- This month’s tutorial article transmits and/or point impedance will be 5.5 –jX, where X is a presents a summary of Ereceives radio sig- large capacitance, as high as 1500 ohms in the the advantages and limita- nals needs an antenna. case of thin dipole. This 5.5 –j1500 ohm tions of electrically-small When that device has a impedance must be matched to the system antennas like those used in small size or limited impedance, typically 50 ohms. many wireless devices space for a classic reso- Small loops and monopoles have similarly nant antenna, various low radiation resistance with high reactance. techniques are used to implement reduced- Matching to highly reactive loads is inherent- size antennas. Those techniques may include ly narrow bandwidth, since the magnitude of inductive or capacitive loading, meandered or the reactance changes rapidly with frequency. spiral construction, high dielectric constant Achieving a broader bandwidth match materials to slow down wave propagation, and requires either complex networks or the intro- embedded structures incorporated into the duction of lossy components. packaging. Each of these methods imposes The use of meandered lines, spirals, fractal some type of limitation when compared to patterns effectively distribute the required monopole, dipole, or resonant loop antennas. inductance over the length of the antenna, This tutorial looks at the key limitations of and can result in higher radiation resistance small antennas, with the intention of illus- and lower loss matching networks.
    [Show full text]
  • UHF VHF Dipole Antenna
    A.H. Systems Model TDS-536 Tuned Dipole Set TDS-536 TV Dipole Set Operation Manual A.H. Systems inc. – May 2014 1 REV B A.H. Systems Model TDS-536 Tuned Dipole Set TABLE OF CONTENTS INTRODUCTION 3 GENERAL INFORMATION 5 OPERATING INSTRUCTIONS 6 FORMULAS 7 MAINTENANCE 10 WARRANTY 11 A.H. Systems inc. – May 2014 2 REV B A.H. Systems Model TDS-536 Tuned Dipole Set INTRODUCTION CONTENTS – TUNED DIPOLE SET, TV Model Part QTY Number Number Description 1 TSC-536 2573 Transit Storage Case 2 N/A N/A Keys 1 TV-1 2572 Tuned Dipole Antenna (50 MHz – 220 MHz) 2 N/A N/A 17” Extension Elements 2 N/A 2337-2 Telescoping Elements 1 TV-2 2580 Tuned Dipole Antenna (325 MHz – 1000 MHz) 1 SAC-213 2111 3 Meter Cable, N(m) to N(m) 1 ABC-TD 2332-1 Clamp 1 N/A 2346 Tape Measurer A.H. Systems inc. – May 2014 3 REV B A.H. Systems Model TDS-536 Tuned Dipole Set INTENDED PURPOSES This equipment is intended for indoor and outdoor use in a wide variety of industrial and scientific applications, and designed to be used in the process of generating, controlling and measuring high levels of electromagnetic Radio Frequency (RF) energy. It is the responsibility of the user to assure that the device is operated in a location which will control the radiated energy such that it will not cause injury and will not violate regulatory levels of electromagnetic interference. RANGE OF ENVIRONMENTAL CONDITIONS This equipment is designed to be safe under the following environmental conditions: Indoor use Altitude up to 2000M Temperature of 5C to 40C Maximum relative humidity 80 % for temperatures up to 31C.
    [Show full text]
  • Adding an Input Balun in AAA-1 in Dipole Mode to Reduce 2 Nd Order IMD Distortions When Asymmetric Signal Source (Antenna) Is Used
    Adding Input Balun in the Dipole Amplifier ……. Rev.1.1 © LZ1AQ Adding an Input Balun in AAA-1 in Dipole Mode to Reduce 2 nd Order IMD Distortions when Asymmetric Signal Source (antenna) is Used When using large loops as dipole arms with AAA-1 active antenna amplifier or totally asymmetric electric antennas such as ground plane (GP), some 2-nd order IMD distortion might occur due to asymmetric signal source combined with the strong signals. The vertical dipole is partially asymmetric antenna – the lower arm has higher capacitance to ground than the upper one. Also nearby conducting objects can influence the dipole symmetry additionally. The dipole amplifier itself has very high OIP2 to symmetric signal sources – in order of +90 dBm but it can not be accomplished since the signals in the two arms of the amplifier might have different amplitudes due to input asymmetry. How to localize 2 nd order IMD distortions? The easiest way is to check the 2 nd order products (F1+F2 and 2F ) which might exist as a spurious signals in 14.400 – 15.200 MHz band as result of action of strong broadcasting stations on 41 m band with frequencies 7.200-7.600 MHz. Night time is most suitable for this experiment. The RX must have good dynamic range and a good input band pass filter which must stop the fundamental signals at 41 m band to avoid generation of 2 nd order products in the RX itself. All candidate spurious frequencies in 14-15MHz zone should be multiples of 5 KHz since this is the distance between broadcasting frequencies.
    [Show full text]
  • Identifying and Locating Cable TV Interference Application Note
    Application Note Identifying and Locating Cable TV Interference A Primer for Public Safety Engineers and Cellular Operators Introduction In the early days of cable TV systems, the signals being sent over the cables were the same signals that were transmitted over the air. This minimized the extent of interference problems. Problems in those days would often manifest as ghosting and would look like a multipath reflection. However as cable TV systems offered more and more TV channels and other services, signals transmitted over the cables covered virtually the entire spectrum from 7 MHz to over 1 GHz. See table 1. There are many different services that operate over the air in that frequency range. All those services can be subject to interfering signals radiating from cable TV systems and in turn over the air signals can leak into the cable TV plant and cause interference. As cable TV systems began to expand the frequency range in the cable, interference started to be experienced by aeronautical users in the 100 to 140 MHz range and amateur radio operators in the 50 MHz to 54 MHz, 144 to 148 MHz, 220 to 225 MHz, and the 440 to 450 MHz bands. First responders could also experience interference when operating near a leaky cable plant. Problems in the 700 and 850 MHz cellular bands emerged as the frequencies in the cables were pushed higher and higher to provide more channels for cable TV customers. As the 600 MHz frequency range begins to be used by cellular operators, problems are likely to be seen there as well.
    [Show full text]
  • Range Calculation for 300Mhz to 1000Mhz Communication Systems
    APPLICATION NOTE Range Calculation for 300MHz to 1000MHz Communication Systems RANGE CALCULATION Description For restricted-power UHF* communication systems, as defined in FCC Rules and Regula- tions Title 47 Part 15 Subpart C “intentional radiators*”, communication range capability is a topic which generates much interest. Although determined by several factors, communica- tion range is quantified by a surprisingly simple equation developed in 1946 by H.T. Friis of Denmark. This paper begins by introducing the Friis Transmission Equation and examining the terms comprising it. Then, real-world-environment factors which influence RF commu- nication range and how they affect a “Link Budget*” are investigated. Following that, some methods for optimizing RF-link range are given. Range-calculation spreadsheets, including the special case of RKE, are presented. Finally, information concerning FCC rules govern- ing “intentional radiators”, FCC-established radiation limits, and similar reference material is provided. Section 7. “Appendix” on page 13 includes definitions (words are marked with an asterisk *) and formulas. Note: “For additional information, two excel spreadsheets, RKE Range Calculation (MF).xls and Generic Range Calculation.xls, have been attached to this PDF. To open the attachments, in the Attachments panel, select the attachment, and then click Open or choose Open Attachment from the Options menu. For addi- tional information on attachments, please refer to Adobe Acrobat Help menu“ 9144C-RKE-07/15 1. The Friis Transmission Equation For anyone using a radio to communicate across some distance, whatever the type of communication, range capability is inevitably a primary concern. Whether it is a cell-phone user concerned about dropped calls, kids playing with their walkie- talkies, a HAM radio operator with VHF/UHF equipment providing emergency communications during a natural disaster, or a driver opening a garage door from their car in the pouring rain, an expectation for reliable communication always exists.
    [Show full text]