11/13/18

Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives • 6th-order -> 4th-order -> hybrid equations • Dynamic stability derivatives • Long-period (phugoid) mode • Short-period mode

Reading: Flight Dynamics 452-464, 482-486

Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html 1

6th-Order Longitudinal Equations of Motion Fairchild-Republic A-10 Symmetric aircraft Motions in the vertical plane Flat earth Nonlinear Dynamic Equations State Vector, 6 components

u! = X / m − gsinθ − qw ⎡ Axial Velocity ⎤ ⎡ x ⎤ ⎡ u ⎤ ⎢ ⎥ ⎢ 1 ⎥ w! = Z / m + gcosθ + qu ⎢ ⎥ w ⎢ Vertical Velocity ⎥ ⎢ x2 ⎥ x! = cosθ u + sinθ w ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ I ( ) ( ) ⎢ x ⎥ Range x3 = ⎢ ⎥ ⎢ ⎥ = x ⎢ z ⎥ Lon6 z!I = (−sinθ )u + (cosθ )w ⎢ Altitude(–) ⎥ ⎢ x ⎥ ⎢ ⎥ 4 q M / I q ⎢ Pitch Rate ⎥ ⎢ x ⎥ ! = yy ⎢ ⎥ ⎢ ⎥ ⎢ 5 ⎥ ⎢ ⎥ ⎣ θ ⎦ ⎢ Pitch Angle ⎥ ⎢ x ⎥ θ! = q ⎣ ⎦ ⎣ 6 ⎦

Range has no dynamic effect Altitude effect is minimal (air density variation) 2

1 11/13/18

4th-Order Longitudinal Equations of Motion

Nonlinear Dynamic Equations, neglecting range and altitude

u! = f1 = X / m − gsinθ − qw

w! = f2 = Z / m + gcosθ + qu

q! = f3 = M / I yy

! θ = f4 = q State Vector, 4 components ⎡ ⎤ ⎡ ⎤ x1 ⎡ u ⎤ Axial Velocity, m/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ x2 ⎥ w ⎢ Vertical Velocity, m/s ⎥ = x ⎢ ⎥ = ⎢ ⎥ Lon4 ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate, rad/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x θ Pitch Angle, rad 3 ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥

Fourth-Order Hybrid Equations of Motion

4

2 11/13/18

Transform Longitudinal Velocity Components Replace Cartesian body components of velocity by polar inertial components

u! = f1 = X / m − gsinθ − qw

w! = f2 = Z / m + gcosθ + qu

q! = f3 = M / I yy

! θ = f4 = q

⎡ ⎤ ⎡ ⎤ x1 ⎡ u ⎤ Axial Velocity ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ x2 ⎥ w ⎢ Vertical Velocity ⎥ = ⎢ ⎥ = ⎢ x ⎥ ⎢ q ⎥ ⎢ Pitch Rate ⎥ ⎢ 3 ⎥ ⎢ ⎥ x ⎢ θ ⎥ Pitch Angle ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ 5

Transform Longitudinal Velocity Components

Replace Cartesian body components of velocity by polar inertial components

V! = f = T cos α + i − D − mgsinγ m 1 ⎣⎡ ( ) ⎦⎤ Hawker P1127 Kestral

γ! = f2 = ⎣⎡T sin(α + i) + L − mgcosγ ⎦⎤ mV

q! = f3 = M / I yy ! θ = f4 = q

⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ i = Incidence angle of the thrust vector x γ Flight Path Angle ⎢ 2 ⎥ ⎢ ⎥ ⎢ ⎥ with respect to the centerline ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x θ Pitch Angle ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ 6

3 11/13/18

Hybrid Longitudinal Equations of Motion • Replace pitch angle by angle of attack α = θ − γ ! V = f1 = ⎣⎡T cos(α + i) − D − mgsinγ ⎦⎤ m

γ! = f2 = ⎣⎡T sin(α + i) + L − mgcosγ ⎦⎤ mV

q! = f3 = M / I yy ! θ = f4 = q

⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ x ⎢ ⎥ Flight Path Angle ⎢ 2 ⎥ ⎢ γ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x θ Pitch Angle 7 ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥

Hybrid Longitudinal Equations of Motion • Replace pitch angle by angle of attack α = θ − γ

! V = f1 = ⎣⎡T cos(α + i) − D − mgsinγ ⎦⎤ m

γ! = f2 = ⎣⎡T sin(α + i) + L − mgcosγ ⎦⎤ mV

q! = f3 = M / I yy

! 1 α! = θ −γ! = f4 = q − f2 = q − ⎡T sin(α + i) + L − mgcosγ ⎤ mV ⎣ ⎦

⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ x ⎢ ⎥ Flight Path Angle ⎢ 2 ⎥ ⎢ γ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x α Angle of Attack ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ θ = α +γ 8

4 11/13/18

Why Transform Equations and State Vector?

⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ x ⎢ ⎥ Flight Path Angle ⎢ 2 ⎥ ⎢ γ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x α Angle of Attack ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥

Velocity and flight path angle typically have slow variations

Pitch rate and angle of attack typically have quicker variations

Coupling typically small 9

Small Perturbations from Steady Path

x!(t) = x! N (t) + Δx!(t)

≈ f[xN (t),uN (t),wN (t),t] + F(t)Δx(t) + G(t)Δu(t) + L(t)Δw(t)

Steady, Level Flight

x! N (t) ≡ 0 ≈ f[xN (t),uN (t),wN (t),t] Δx!(t) ≈ FΔx(t) + GΔu(t) + LΔw(t) Rates of change are “small” 10

5 11/13/18

Nominal Equations of Motion in Equilibrium (Trimmed Condition) x (t) 0 f[x (t),u (t),w (t),t]  N = = N N N

T xT = # V γ 0 α % = constant N $ N N N & T, D, L, and M contain state, control, and disturbance effects

! VN = 0 = f1 = ⎣⎡T cos(α N + i) − D − mgsinγ N ⎦⎤ m

γ!N = 0 = f2 = ⎣⎡T sin(α N + i) + L − mgcosγ N ⎦⎤ mVN

q!N = 0 = f3 = M I yy

1 α! N = 0 = f4 = (0) − ⎣⎡T sin(α N + i) + L − mgcosγ N ⎦⎤ mVN 11

Flight Conditions for Steady, Level Flight Nonlinear longitudinal model

 1 V = f1 = $T cos(α + i) − D − mgsinγ & m % ' 1 γ = f2 = $T sin(α + i) + L − mgcosγ & mV % '

q = f3 = M / I yy  1 α = f4 = θ − γ = q − %$T sin(α + i) + L − mgcosγ '& mV Nonlinear longitudinal model in equilibrium

1 0 = f1 = $T cos(α + i) − D − mgsinγ & m % ' 1 0 = f2 = $T sin(α + i) + L − mgcosγ & mV % '

0 = f3 = M / I yy 1  12 0 = f4 = θ − γ = q − %$T sin(α + i) + L − mgcosγ '& mV

6 11/13/18

Numerical Solution for Level Flight Trimmed Condition

• Specify desired altitude and airspeed, hN and VN • Guess starting values for the trim parameters, δT0, δE0, and θ0

• Calculate starting values of f1, f2, and f3

! 1 f1 = V = ⎡T (δT,δ E,θ,h,V )cos(α + i) − D(δT,δ E,θ,h,V )⎤ m ⎣ ⎦ 1 f2 = γ! = ⎣⎡T (δT,δ E,θ,h,V )sin(α + i) + L(δT,δ E,θ,h,V ) − mg⎦⎤ mVN

f3 = q! = M (δT,δ E,θ,h,V ) / I yy

• f1, f2, and f3 = 0 in equilibrium, but not for arbitrary δT0, δE0, and θ0 • Define a scalar, positive-definite trim error cost function, e.g.,

2 2 2 J δT,δE,θ = a f1 +b f2 + c f3 ( ) ( ) ( ) ( ) 13

Minimize the Cost Function with Respect to the Trim Parameters

Error cost is bowl-shaped

2 2 2 J (δT,δE,θ) = a( f1 )+b( f2 )+ c( f3 ) Cost is minimized at bottom of bowl, i.e., when

$ ∂ J ∂ J ∂ J ' & ) = 0 % ∂δT ∂δE ∂θ ( Search to find the minimum value of J

14

7 11/13/18

Example of Search for Trimmed Condition (Fig. 3.6-9, Flight Dynamics)

In MATLAB, use fminsearch or fsolve to find trim settings

(δT*,δE*,θ *) = fminsearch$#J,(δT,δE,θ)&%

15

Small Perturbations from Steady Path Approximated by Linear Equations

Linearized Equations of Motion

⎡ ΔV! ⎤ ⎡ ΔV ⎤ ⎢ ⎥ ⎢ ⎥ ⎡ ΔδT ⎤ Δγ! Δγ ⎢ ⎥ Δx! = ⎢ ⎥ = F ⎢ ⎥ + G Δδ E +" Lon ⎢ Δq! ⎥ Lon ⎢ Δq ⎥ Lon ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣⎢ " ⎦⎥ Δα! Δα ⎣⎢ ⎦⎥ ⎣ ⎦

16

8 11/13/18

Linearized Equations of Motion

Phugoid (Long-Period) Motion

Short-Period Motion

17

Approximate Decoupling of Fast and Slow Modes of Motion Hybrid linearized equations allow the two modes to be examined separately

Effects of phugoid Effects of short-period perturbations on perturbations on phugoid motion phugoid motion ⎡ Ph ⎤ FPh FSP FLon = ⎢ ⎥ ⎢ FSP F ⎥ ⎣ Ph SP ⎦ Effects of phugoid Effects of short-period perturbations on perturbations on short- short-period motion period motion

⎡ F small ⎤ ⎡ F 0 ⎤ = ⎢ Ph ⎥ ≈ ⎢ Ph ⎥ small F 0 F ⎣⎢ SP ⎦⎥ ⎣⎢ SP ⎦⎥ 18

9 11/13/18

Sensitivity Matrices for Longitudinal LTI Model x (t) F x (t) G u (t) L w (t) Δ Lon = LonΔ Lon + LonΔ Lon + LonΔ Lon

⎡ F F F F ⎤ ⎢ 11 12 13 14 ⎥ ⎢ F21 F22 F23 F24 ⎥ F = Lon ⎢ F F F F ⎥ ⎢ 31 32 33 34 ⎥ F F F F ⎣⎢ 41 42 43 44 ⎦⎥

⎡ G G G ⎤ ⎡ L L ⎤ ⎢ 11 12 13 ⎥ ⎢ 11 12 ⎥ ⎢ G21 G22 G23 ⎥ ⎢ L21 L22 ⎥ G = L = Lon ⎢ G G G ⎥ Lon ⎢ L L ⎥ ⎢ 31 32 33 ⎥ ⎢ 31 32 ⎥ G G G L L ⎣⎢ 41 42 43 ⎦⎥ ⎣⎢ 41 42 ⎦⎥

19

Dimensional Stability and Control Derivatives

20

10 11/13/18

Dimensional Stability-Derivative Notation § Redefine force and moment symbols as acceleration symbols § Dimensional stability derivatives portray acceleration sensitivities to state perturbations Drag ⇒ D ∝V!, m/s2 mass (m) Lift ⇒ L ∝Vγ!, m/s2 ⇒ L V ∝γ!, rad/s2 mass

Moment 2 ⇒ M ∝ q!, rad/s moment of inertia (I yy ) 21

Dimensional Stability-Derivative Notation

∂D 1 ⎡ ρ V 2 ⎤ F = = −D ! C cosα − C N N S + C cosα − C ρ V S 11 V ⎢( TV N DV ) ( TN N DN ) N N ⎥ ∂V m ⎣ 2 ⎦

Thrust and drag effects are combined and represented by one symbol

2 ∂L Lα 1 ⎡ ρNVN ⎤ F24 = VN = ! CT cosα N + CL S V ⎢( N α ) ⎥ ∂α N mVN ⎣ 2 ⎦

Thrust and lift effects are combined and represented by one symbol

∂M 1 ⎡ ρ V 2 ⎤ F = = M ! C N N Sc 34 α ⎢ mα ⎥ ∂α I yy ⎣ 2 ⎦ 22

11 11/13/18

Longitudinal Stability Matrix

Effects of phugoid Effects of short-period perturbations on perturbations on phugoid phugoid motion motion

! −D −gcosγ −D −D $ # V N q α & # L g L L & V sin q α ! Ph $ # γ N & F F VN V VN VN F = # Ph SP & = # N & Lon SP # F F & # MV 0 M q Mα & " Ph SP % # & g * L - # LV q Lα & − − sinγ N ,1− / − # VN V VN VN & " N + . %

Effects of phugoid Effects of short-period perturbations on short- perturbations on period motion short-period motion 23

Comparison of 2nd- and 4th- Order Model Response

24

12 11/13/18

4th-Order Initial-Condition Responses of Business Jet at Two Time Scales Plotted over different periods of time 4 initial conditions [V(0), γ(0), q(0), α(0)]

0 - 100 sec 0 - 6 sec • Reveals Phugoid Mode • Reveals Short-Period Mode

25

2nd-Order Models of Longitudinal Motion Assume off-diagonal blocks of (4 x 4) stability matrix are negligible

⎡ F ~ 0 ⎤ F = ⎢ Ph ⎥ Lon ~ 0 F ⎣⎢ SP ⎦⎥ Approximate Phugoid Equation

Δx! Ph = ⎡ ⎤ −DV −gcosγ N ⎡ ΔV! ⎤ ⎢ ⎥⎡ ΔV ⎤ ⎢ ⎥ ≈ ⎢ LV g ⎥⎢ ⎥ ⎢ Δγ! ⎥ sinγ N ⎢ Δγ ⎥ ⎣ ⎦ ⎢ VN V ⎥⎣ ⎦ ⎣ N ⎦ ⎡ T ⎤ ⎡ −D ⎤ ⎢ δT ⎥ ⎢ V ⎥ + ΔδT + ΔV ⎢ LδT ⎥ ⎢ LV ⎥ wind ⎢ VN ⎥ ⎢ VN ⎥ 26 ⎣ ⎦ ⎣ ⎦

13 11/13/18

2nd-Order Models of Longitudinal Motion

⎡ F ~ 0 ⎤ F = ⎢ Ph ⎥ Lon ~ 0 F ⎣⎢ SP ⎦⎥ Approximate Short-Period Equation

Δx! SP = ⎡ ⎤ M q Mα ⎡ Δq! ⎤ ⎢ ⎥⎡ Δq ⎤ ≈ ⎢ ⎥ ⎢ ⎛ Lq ⎞ L ⎥⎢ ⎥ ⎢ Δα! ⎥ ⎜1− ⎟ − α ⎢ Δα ⎥ ⎣ ⎦ ⎢ ⎝ VN ⎠ VN ⎥⎣ ⎦ ⎣ ⎦ ⎡ M ⎤ ⎡ M ⎤ ⎢ δ E ⎥ ⎢ α ⎥ + Δδ E + Δα ⎢ −Lδ E ⎥ ⎢ −Lα ⎥ wind ⎢ VN ⎥ ⎢ VN ⎥ 27 ⎣ ⎦ ⎣ ⎦

Comparison of Bizjet 4th- and 2nd-Order Model Responses

Phugoid Time Scale, ~100 s

4th Order, 4 initial conditions [V(0), γ(0), q(0), α(0)]

2nd Order, 2 initial conditions [V(0), γ(0)]

28

14 11/13/18

Comparison of Bizjet 4th- and 2nd-Order Model Responses

Short-Period Time Scale, ~10 s

4th Order, 4 initial conditions [V(0), γ(0), q(0), α(0)]

2nd Order, 2 initial conditions [q(0), α(0)]

29

Approximate Phugoid Response to a 10% Thrust Increase

What is the steady-state response? 30

15 11/13/18

Approximate Short-Period Response to a 0.1-Rad Pitch Control Step Input

Pitch Rate, rad/s Angle of Attack, rad

What is the steady-state response? 31

Normal Load Factor Response to a 0.1-Rad Pitch Control Step Input

Grumman X-29 • Normal load factor at the center of mass

VN VN ⎛ Lα Lδ E ⎞ Δnz = (Δα! − Δq) = Δα + Δδ E g g ⎜ V V ⎟ ⎝ N N ⎠ • Pilot focuses on normal load factor during rapid maneuvering

Normal Load Factor, gs at c.m. Normal Load Factor, gs at c.m. Aft Pitch Control (Elevator) Forward Pitch Control ()

32

16 11/13/18

Curtiss Autocar, 1917 Waterman Arrowbile, 1935

Stout Skycar, 1931 ConsolidatedVultee 111, 1940s

33

ConvAIRCAR 116 Taylor AirCar, 1950s (w/Crosley auto), 1940s

Hallock Road Wing , 1957

34

17 11/13/18

Mitzar SkyMaster Pinto, 1970s Lotus Elise , concept, 2002

Pinto separated from the airframe. Two killed. Proposed, not built.

Haynes Skyblazer, concept, 2004 Aeromobil, 2014

Proposed, not built.

Aircraft entered a spin, ballistic 35 parachute was deployed. No fatality.

Terrafugia Transition TF-X, concept

[2019, $400K (est)] Date? Cost? … or, now, for the same price Jaguar F Type Tecnam Astore PLUS

plus $120K in savings account 36

18 11/13/18

Next Time: Lateral-Directional Dynamics Reading: Flight Dynamics 574-591

Learning Objectives

• 6th-order -> 4th-order -> hybrid equations • Dynamic stability derivatives • Dutch roll mode • Roll and spiral modes

37

Supplemental Material

38

19 11/13/18

Elements of the Stability Matrix Stability derivatives portray acceleration sensitivities to state perturbations ∂ f ∂ f ∂ f ∂ f 1 ≡ −D ; 1 = −gcosγ ; 1 ≡ −D ; 1 ≡ −D ∂V V ∂γ N ∂q q ∂α α

f f g f f ∂ 2 LV ∂ 2 ∂ 2 Lq ∂ 2 Lα ≡ ; = sinγ N ; ≡ ; ≡ VN VN VN ∂V ∂γ VN ∂q ∂α

∂ f ∂ f ∂ f ∂ f 3 ≡ M ; 3 = 0; 3 ≡ M ; 3 ≡ M ∂V V ∂γ ∂q q ∂α α

f f g f f ∂ 4 LV ∂ 4 ∂ 4 Lq ∂ 4 Lα ≡ − ; = − sinγ N ; ≡ 1− ; ≡ − VN VN VN ∂V ∂γ VN ∂q ∂α

39

Velocity Dynamics First row of nonlinear equation 1 V! = f = T cosα − D − mgsinγ 1 m [ ] 1 ⎡ ρV 2 ρV 2 ⎤ = C cosα S − C S − mgsinγ m ⎢ T 2 D 2 ⎥ ⎣ ⎦ First row of linearized equation ! ΔV(t) = [F11ΔV(t) + F12Δγ (t) + F13Δq(t) + F14 Δα(t)]

+[G11Δδ E(t) + G12ΔδT (t) + G13Δδ F(t)] + L ΔV + L Δα [ 11 wind 12 wind ]

40

20 11/13/18

Sensitivity of Velocity Dynamics to State Perturbations

% 2 (  ρV V = '(CT cosα −CD ) S − mgsinγ* m 2 & ) Coefficients in first row of F

1 ⎡ ρ V 2 ⎤ F = C cosα − C N N S + C cosα − C ρ V S 11 ⎢( TV N DV ) ( TN N DN ) N N ⎥ m ⎣ 2 ⎦ ∂C F12 = −gcosγ N C ≡ T TV ∂V 2 1 V ∂CD − ⎡ ρN N ⎤ C ≡ F = C S DV 13 ⎢ Dq ⎥ m ⎣ 2 ⎦ ∂V ∂C C ≡ D Dq ∂q −1 ⎡ ρ V 2 ⎤ F = C sinα + C N N S ∂C 14 ⎢( TN N Dα ) ⎥ D m 2 CD ≡ ⎣ ⎦ α ∂α 41

Sensitivity of Velocity Dynamics to Control and Disturbance Perturbations Coefficients in first rows of G and L

−1 ⎡ ρ V 2 ⎤ G = C N N S 11 ⎢ Dδ E ⎥ m ⎣ 2 ⎦ ∂ f1 L11 = − 1 ⎡ ρ V 2 ⎤ ∂V G = C cosα N N S 12 ⎢ TδT N ⎥ m ⎣ 2 ⎦ ∂ f1 L12 = − 1 ⎡ V 2 ⎤ ∂α − ρN N ∂C G = C S C ≡ T 13 D TδT m ⎢ δ F 2 ⎥ ∂δT ⎣ ⎦ ∂C C ≡ D DδE ∂δE

∂CD CD ≡ δF ∂δF 42

21 11/13/18

Flight Path Angle Dynamics Second row of nonlinear equation 1 γ! = f = T sinα + L − mgcosγ 2 mV [ ] 1 ⎡ ρV 2 ρV 2 ⎤ = ⎢CT sinα S + CL S − mgcosγ ⎥ mV ⎣ 2 2 ⎦ Second row of linearized equation

Δγ!(t) = [F21ΔV(t) + F22Δγ (t) + F23Δq(t) + F24 Δα(t)]

+[G21Δδ E(t) + G22ΔδT (t) + G23Δδ F(t)] + L ΔV + L Δα [ 21 wind 22 wind ]

43

Sensitivity of Flight Path Angle Dynamics to State Perturbations % ρV 2 ( γ = '(CT sinα +CL ) S − mgcosγ* mV 2 & ) Coefficients in second row of F 1 ⎡ ρ V 2 ⎤ F = C sinα + C N N S + C sinα + C ρ V S 21 ⎢( TV N LV ) ( TN N LN ) N N ⎥ mVN ⎣ 2 ⎦ 1 ⎡ ρ V 2 ⎤ − C sinα + C N N S − mgcosγ 2 ⎢( TN N LN ) N ⎥ mVN ⎣ 2 ⎦ ∂C C T TV ≡ F22 = gsinγ N VN ∂V ∂C C L LV ≡ 2 ∂V 1 ⎡ ρNVN ⎤ ∂C F23 = CL S C L ⎢ q ⎥ Lq ≡ mVN ⎣ 2 ⎦ ∂q ∂C C ≡ L 1 ⎡ ρ V 2 ⎤ Lα ∂α F = C cosα + C N N S 24 ⎢( TN N Lα ) ⎥ 44 mVN ⎣ 2 ⎦

22 11/13/18

Pitch Rate Dynamics Third row of nonlinear equation

2 M Cm (ρV 2)Sc q = f = = 3 I I yy yy Third row of linearized equation

Δq!(t) = [F31ΔV(t) + F32Δγ (t) + F33Δq(t) + F34 Δα(t)]

+[G31Δδ E(t) + G32ΔδT (t) + G33Δδ F(t)] + L ΔV + L Δα [ 31 wind 32 wind ]

45

Sensitivity of Pitch Rate Dynamics to State Perturbations

q = C ρV 2 2 Sc I m ( ) yy Coefficients in third row of F

1 ⎡ ρ V 2 ⎤ F = C N N Sc + C ρ V Sc 31 ⎢ mV mN N N ⎥ I yy ⎣ 2 ⎦

F32 = 0

2 C 1 ⎡ ρ V ⎤ ∂ m N N Cm ≡ F33 = Cm Sc V V I ⎢ q 2 ⎥ ∂ yy ⎣ ⎦ ∂C C ≡ m mq ∂q 2 1 ⎡ ρNVN ⎤ ∂Cm F34 = Cm Sc C ≡ ⎢ α ⎥ mα I yy 2 ∂α ⎣ ⎦ 46

23 11/13/18

Angle of Attack Dynamics Fourth row of nonlinear equation

 1 α = f4 = θ − γ = q − [T sinα + L − mgcosγ ] mV Fourth row of linearized equation

Δα!(t) = [F41ΔV(t) + F42Δγ (t) + F43Δq(t) + F44 Δα(t)]

+[G41Δδ E(t) + G42ΔδT (t) + G43Δδ F(t)] + L ΔV + L Δα [ 41 wind 42 wind ]

47

Sensitivity of Angle of Attack Dynamics to State Perturbations  α =θ −γ = q −γ Coefficients in fourth row of F

F41 = −F21 F43 = 1− F23

F42 = −F22 F44 = −F24

48

24 11/13/18

Alternative Approach: Numerical Calculation of the Sensitivity Matrices (“1st Differences”)

⎡ (V + ΔV ) ⎤ ⎡ (V − ΔV ) ⎤ ⎡ V ⎤ ⎡ V ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ γ ⎥ ⎢ γ ⎥ ⎢ (γ + Δγ ) ⎥ ⎢ (γ − Δγ ) ⎥ f1 − f1 f − f ⎢ q ⎥ ⎢ q ⎥ 1 ⎢ q ⎥ 1 ⎢ q ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ α ⎥ ⎢ α ⎥ x=xN (t ) ⎢ α ⎥ ⎢ α ⎥ x=xN (t ) ⎣ ⎦ ⎣ ⎦ u=uN (t ) ⎣ ⎦ ⎣ ⎦ u=uN (t ) ∂ f w w (t ) ∂ f w w (t ) 1 (t) ≈ = N ; 1 (t) ≈ = N ∂V 2ΔV ∂γ 2Δγ

⎡ (V + ΔV ) ⎤ ⎡ (V − ΔV ) ⎤ ⎡ V ⎤ ⎡ V ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ γ ⎥ ⎢ γ ⎥ ⎢ (γ + Δγ ) ⎥ ⎢ (γ − Δγ ) ⎥ f2 − f2 f − f ⎢ q ⎥ ⎢ q ⎥ 2 ⎢ q ⎥ 2 ⎢ q ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ α ⎥ ⎢ α ⎥ x=xN (t ) ⎢ α ⎥ ⎢ α ⎥ x=xN (t ) ⎣ ⎦ ⎣ ⎦ u=uN (t ) ⎣ ⎦ ⎣ ⎦ u=uN (t ) ∂ f w w (t ) ∂ f w w (t ) 2 (t) ≈ = N ; 2 (t) ≈ = N ∂V 2ΔV ∂γ 2Δγ Remaining elements of F(t), G(t), and L(t) calculated accordingly 49

Control and Disturbance Sensitivities in Flight Path Angle, Pitch Rate, and Angle-of-Attack Dynamics

2 2 ∂ f 1 $ ρV ' ∂ f3 1 $ ρVN ' 2 = C N S = C Sc f f LδE & mδE ) ∂ 4 ∂ 2 ∂δE mV & 2 ) ∂δE I 2 = − N % ( yy % ( ∂δE ∂δE 2 2 ∂ f2 1 $ ρVN ' f 1 $ V ' ∂ f4 ∂ f2 = C sinα S ∂ 3 ρ N = − & TδT N ) = C Sc ∂δT mV 2 & mδT ) ∂δT ∂δT N % ( ∂δT I yy % 2 ( 2 ∂ f4 ∂ f2 ∂ f2 1 $ ρVN ' 2 = − = C S ∂ f3 1 $ ρVN ' ∂δF ∂δF & LδF ) = C Sc ∂δF mVN % 2 ( & mδF ) ∂δF I yy % 2 (

∂ f2 ∂ f2 ∂ f3 ∂ f3 ∂ f ∂ f = − = − 4 = 2 ∂Vwind ∂V ∂Vwind ∂V ∂Vwind ∂V

∂ f2 ∂ f2 ∂ f ∂ f ∂ f3 ∂ f2 = − 3 = − 3 = ∂α ∂α ∂α ∂α wind ∂α wind ∂α wind 50

25 11/13/18

Velocity-Dependent Derivative Definitions Air compressibility effects are a principal source of velocity dependence

a = Speed of Sound ∂CD ∂CD ∂CD CD ≡ = = a M ∂M ∂ (V / a) ∂V M = Mach number = V a

∂C #1 & C ≡ D = % (C DV ∂V $a ' DM C > 0 C < 0 DM DM ∂C #1 & C ≡ L = % (C C 0 LV V a LM DM ≈ ∂ $ ' ∂C #1 & C ≡ m = % (C mV ∂V $a ' mM 51

Wing Lift and Moment Coefficient Sensitivity to Pitch Rate Straight-wing incompressible flow estimate (Etkin) C = −2C h − 0.75 Lqˆwing Lαwing ( cm ) 2 C = −2C h − 0.5 mqˆwing Lαwing ( cm ) Straight-wing supersonic flow estimate (Etkin)

C = −2C h − 0.5 Lqˆwing Lαwing ( cm )

2 2 C 2C h 0.5 m ˆ = − − L ( cm − ) qwing 3 M 2 −1 αwing Triangular-wing estimate (Bryson, Nielsen)

2π CL = − CL qˆwing 3 αwing π Cm = − qˆwing 3AR 52

26 11/13/18

Control- and Disturbance- Effect Matrices • Control-effect derivatives portray acceleration sensitivities to control input perturbations

# −D T −D & % δ E δT δ F ( % Lδ E / VN LδT / VN Lδ F / VN ( G = Lon % M M M ( % δ E δT δ F ( % −L / V −L / V −L / V ( $ δ E N δT N δ F N ' • Disturbance-effect derivatives portray acceleration sensitivities to disturbance input perturbations # −D −D & % Vwind αwind ( L / V L / V % Vwind N αwind N ( L = % ( Lon M M % Vwind αwind ( % ( −LV / VN −Lα / VN $% wind wind '( 53

Primary Longitudinal Stability Derivatives

# 2 & −1 ρVN DV  % CT −CD S + CT −CD ρVN S( m ( V V ) 2 ( N N ) $ '

L 1 " ρV 2 % 1 " ρV 2 % V  C N S + C ρV S − C N S − mg $ LV LN N ' 2 $ LN ' VN mV 2 mV 2 N # & N # &

1 " ρV 2 % 1 # ρV 2 & M = C N Sc M = C N Sc q $ mq ' α % mα ( I yy # 2 & I yy $ 2 '

L 1 # ρV 2 & α  C + C N S % TN Lα ( VN mV ( ) 2 N $ '

Small angle assumptions 54

27 11/13/18

Primary Phugoid Control Derivatives

−1 ⎡ ρV 2 ⎤ D ! C N S δT ⎢ TδT ⎥ m ⎣ 2 ⎦ L 1 ⎡ ρV 2 ⎤ δ F ! C N S ⎢ Lδ F ⎥ VN mV 2 N ⎣ ⎦

55

Primary Short-Period Control Derivatives

⎛ ρ V 2 ⎞ M = C N N Sc δ E mδ E ⎜ ⎟ ⎝ 2I yy ⎠ L ⎛ ρ V 2 ⎞ δ E = C N N S V Lδ E ⎝⎜ 2m ⎠⎟

56

28 11/13/18

Flight Motions

Dornier Do-128D

Dornier Do-128 Short-Period Demonstration http://www.youtube.com/watch?v=3hdLXE0rc9Q

Dornier Do-128 Phugoid Demonstration http://www.youtube.com/watch?v=jzxtpQ30nLg&feature=related 57

29