Linearized Longitudinal Equations of Motion

Linearized Longitudinal Equations of Motion

11/13/18 Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Learning Objectives • 6th-order -> 4th-order -> hybrid equations • Dynamic stability derivatives • Long-period (phugoid) mode • Short-period mode Reading: Flight Dynamics 452-464, 482-486 Copyright 2018 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html 1 6th-Order Longitudinal Equations of Motion Fairchild-Republic A-10 Symmetric aircraft Motions in the vertical plane Flat earth Nonlinear Dynamic Equations State Vector, 6 components u! = X / m − gsinθ − qw ⎡ Axial Velocity ⎤ ⎡ x ⎤ ⎡ u ⎤ ⎢ ⎥ ⎢ 1 ⎥ w! = Z / m + gcosθ + qu ⎢ ⎥ w ⎢ Vertical Velocity ⎥ ⎢ x2 ⎥ x! = cosθ u + sinθ w ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ I ( ) ( ) ⎢ x ⎥ Range x3 = ⎢ ⎥ ⎢ ⎥ = x ⎢ z ⎥ Lon6 z!I = (−sinθ )u + (cosθ )w ⎢ Altitude(–) ⎥ ⎢ x ⎥ ⎢ ⎥ 4 q M / I q ⎢ Pitch Rate ⎥ ⎢ x ⎥ ! = yy ⎢ ⎥ ⎢ ⎥ ⎢ 5 ⎥ ⎢ ⎥ ⎣ θ ⎦ ⎢ Pitch Angle ⎥ ⎢ x ⎥ θ! = q ⎣ ⎦ ⎣ 6 ⎦ Range has no dynamic effect Altitude effect is minimal (air density variation) 2 1 11/13/18 4th-Order Longitudinal Equations of Motion Nonlinear Dynamic Equations, neglecting range and altitude u! = f1 = X / m − gsinθ − qw w! = f2 = Z / m + gcosθ + qu q! = f3 = M / I yy ! θ = f4 = q State Vector, 4 components ⎡ ⎤ ⎡ ⎤ x1 ⎡ u ⎤ Axial Velocity, m/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ x2 ⎥ w ⎢ Vertical Velocity, m/s ⎥ = x ⎢ ⎥ = ⎢ ⎥ Lon4 ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate, rad/s ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x θ Pitch Angle, rad 3 ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ Fourth-Order Hybrid Equations of Motion 4 2 11/13/18 Transform Longitudinal Velocity Components Replace Cartesian body components of velocity by polar inertial components u! = f1 = X / m − gsinθ − qw w! = f2 = Z / m + gcosθ + qu q! = f3 = M / I yy ! θ = f4 = q ⎡ ⎤ ⎡ ⎤ x1 ⎡ u ⎤ Axial Velocity ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ x2 ⎥ w ⎢ Vertical Velocity ⎥ = ⎢ ⎥ = ⎢ x ⎥ ⎢ q ⎥ ⎢ Pitch Rate ⎥ ⎢ 3 ⎥ ⎢ ⎥ x ⎢ θ ⎥ Pitch Angle ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ 5 Transform Longitudinal Velocity Components Replace Cartesian body components of velocity by polar inertial components V! = f = T cos α + i − D − mgsinγ m 1 ⎣⎡ ( ) ⎦⎤ Hawker P1127 Kestral γ! = f2 = ⎣⎡T sin(α + i) + L − mgcosγ ⎦⎤ mV q! = f3 = M / I yy ! θ = f4 = q ⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ i = Incidence angle of the thrust vector x γ Flight Path Angle ⎢ 2 ⎥ ⎢ ⎥ ⎢ ⎥ with respect to the centerline ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x θ Pitch Angle ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ 6 3 11/13/18 Hybrid Longitudinal Equations of Motion • Replace pitch angle by angle of attack α = θ − γ ! V = f1 = ⎣⎡T cos(α + i) − D − mgsinγ ⎦⎤ m γ! = f2 = ⎣⎡T sin(α + i) + L − mgcosγ ⎦⎤ mV q! = f3 = M / I yy ! θ = f4 = q ⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ x ⎢ ⎥ Flight Path Angle ⎢ 2 ⎥ ⎢ γ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x θ Pitch Angle 7 ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ Hybrid Longitudinal Equations of Motion • Replace pitch angle by angle of attack α = θ − γ ! V = f1 = ⎣⎡T cos(α + i) − D − mgsinγ ⎦⎤ m γ! = f2 = ⎣⎡T sin(α + i) + L − mgcosγ ⎦⎤ mV q! = f3 = M / I yy ! 1 α! = θ −γ! = f4 = q − f2 = q − ⎡T sin(α + i) + L − mgcosγ ⎤ mV ⎣ ⎦ ⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ x ⎢ ⎥ Flight Path Angle ⎢ 2 ⎥ ⎢ γ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x α Angle of Attack ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ θ = α +γ 8 4 11/13/18 Why Transform Equations and State Vector? ⎡ ⎤ ⎡ ⎤ x1 ⎡ V ⎤ Velocity ⎢ ⎥ ⎢ ⎥ x ⎢ ⎥ Flight Path Angle ⎢ 2 ⎥ ⎢ γ ⎥ ⎢ ⎥ ⎢ ⎥ = = ⎢ ⎥ x3 ⎢ q ⎥ Pitch Rate ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ x α Angle of Attack ⎣⎢ 4 ⎦⎥ ⎣ ⎦ ⎣⎢ ⎦⎥ Velocity and flight path angle typically have slow variations Pitch rate and angle of attack typically have quicker variations Coupling typically small 9 Small Perturbations from Steady Path x!(t) = x! N (t) + Δx!(t) ≈ f[xN (t),uN (t),wN (t),t] + F(t)Δx(t) + G(t)Δu(t) + L(t)Δw(t) Steady, Level Flight x! N (t) ≡ 0 ≈ f[xN (t),uN (t),wN (t),t] Δx!(t) ≈ FΔx(t) + GΔu(t) + LΔw(t) Rates of change are “small” 10 5 11/13/18 Nominal Equations of Motion in Equilibrium (Trimmed Condition) x N (t) = 0 = f[xN (t),uN (t),wN (t),t] T xT = # V γ 0 α % = constant N $ N N N & T, D, L, and M contain state, control, and disturbance effects ! VN = 0 = f1 = ⎣⎡T cos(α N + i) − D − mgsinγ N ⎦⎤ m γ!N = 0 = f2 = ⎣⎡T sin(α N + i) + L − mgcosγ N ⎦⎤ mVN q!N = 0 = f3 = M I yy 1 α! N = 0 = f4 = (0) − ⎣⎡T sin(α N + i) + L − mgcosγ N ⎦⎤ mVN 11 Flight Conditions for Steady, Level Flight Nonlinear longitudinal model 1 V = f1 = $T cos(α + i) − D − mgsinγ & m % ' 1 γ = f2 = $T sin(α + i) + L − mgcosγ & mV % ' q = f3 = M / I yy 1 α = f4 = θ − γ = q − %$T sin(α + i) + L − mgcosγ '& mV Nonlinear longitudinal model in equilibrium 1 0 = f1 = $T cos(α + i) − D − mgsinγ & m % ' 1 0 = f2 = $T sin(α + i) + L − mgcosγ & mV % ' 0 = f3 = M / I yy 1 12 0 = f4 = θ − γ = q − %$T sin(α + i) + L − mgcosγ '& mV 6 11/13/18 Numerical Solution for Level Flight Trimmed Condition • Specify desired altitude and airspeed, hN and VN • Guess starting values for the trim parameters, δT0, δE0, and θ0 • Calculate starting values of f1, f2, and f3 ! 1 f1 = V = ⎡T (δT,δ E,θ,h,V )cos(α + i) − D(δT,δ E,θ,h,V )⎤ m ⎣ ⎦ 1 f2 = γ! = ⎣⎡T (δT,δ E,θ,h,V )sin(α + i) + L(δT,δ E,θ,h,V ) − mg⎦⎤ mVN f3 = q! = M (δT,δ E,θ,h,V ) / I yy • f1, f2, and f3 = 0 in equilibrium, but not for arbitrary δT0, δE0, and θ0 • Define a scalar, positive-definite trim error cost function, e.g., 2 2 2 J δT,δE,θ = a f1 +b f2 + c f3 ( ) ( ) ( ) ( ) 13 Minimize the Cost Function with Respect to the Trim Parameters Error cost is bowl-shaped 2 2 2 J (δT,δE,θ) = a( f1 )+b( f2 )+ c( f3 ) Cost is minimized at bottom of bowl, i.e., when $ ∂ J ∂ J ∂ J ' & ) = 0 % ∂δT ∂δE ∂θ ( Search to find the minimum value of J 14 7 11/13/18 Example of Search for Trimmed Condition (Fig. 3.6-9, Flight Dynamics) In MATLAB, use fminsearch or fsolve to find trim settings (δT*,δE*,θ *) = fminsearch$#J,(δT,δE,θ)&% 15 Small Perturbations from Steady Path Approximated by Linear Equations Linearized Equations of Motion ⎡ ΔV! ⎤ ⎡ ΔV ⎤ ⎢ ⎥ ⎢ ⎥ ⎡ ΔδT ⎤ Δγ! Δγ ⎢ ⎥ Δx! = ⎢ ⎥ = F ⎢ ⎥ + G Δδ E +" Lon ⎢ Δq! ⎥ Lon ⎢ Δq ⎥ Lon ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣⎢ " ⎦⎥ ⎣⎢ Δα! ⎦⎥ ⎣ Δα ⎦ 16 8 11/13/18 Linearized Equations of Motion Phugoid (Long-Period) Motion Short-Period Motion 17 Approximate Decoupling of Fast and Slow Modes of Motion Hybrid linearized equations allow the two modes to be examined separately Effects of phugoid Effects of short-period perturbations on perturbations on phugoid motion phugoid motion ⎡ Ph ⎤ FPh FSP FLon = ⎢ ⎥ ⎢ FSP F ⎥ ⎣ Ph SP ⎦ Effects of phugoid Effects of short-period perturbations on perturbations on short- short-period motion period motion ⎡ F small ⎤ ⎡ F 0 ⎤ = ⎢ Ph ⎥ ≈ ⎢ Ph ⎥ small F 0 F ⎣⎢ SP ⎦⎥ ⎣⎢ SP ⎦⎥ 18 9 11/13/18 Sensitivity Matrices for Longitudinal LTI Model Δx (t) = F Δx (t) + G Δu (t) + L Δw (t) Lon Lon Lon Lon Lon Lon Lon ⎡ F F F F ⎤ ⎢ 11 12 13 14 ⎥ ⎢ F21 F22 F23 F24 ⎥ F = Lon ⎢ F F F F ⎥ ⎢ 31 32 33 34 ⎥ F F F F ⎣⎢ 41 42 43 44 ⎦⎥ ⎡ G G G ⎤ ⎡ L L ⎤ ⎢ 11 12 13 ⎥ ⎢ 11 12 ⎥ ⎢ G21 G22 G23 ⎥ ⎢ L21 L22 ⎥ G = L = Lon ⎢ G G G ⎥ Lon ⎢ L L ⎥ ⎢ 31 32 33 ⎥ ⎢ 31 32 ⎥ G G G L L ⎣⎢ 41 42 43 ⎦⎥ ⎣⎢ 41 42 ⎦⎥ 19 Dimensional Stability and Control Derivatives 20 10 11/13/18 Dimensional Stability-Derivative Notation § Redefine force and moment symbols as acceleration symbols § Dimensional stability derivatives portray acceleration sensitivities to state perturbations Drag ⇒ D ∝V!, m/s2 mass (m) Lift ⇒ L ∝Vγ!, m/s2 ⇒ L V ∝γ!, rad/s2 mass Moment 2 ⇒ M ∝ q!, rad/s moment of inertia (I yy ) 21 Dimensional Stability-Derivative Notation ∂D 1 ⎡ ρ V 2 ⎤ F = = −D ! C cosα − C N N S + C cosα − C ρ V S 11 V ⎢( TV N DV ) ( TN N DN ) N N ⎥ ∂V m ⎣ 2 ⎦ Thrust and drag effects are combined and represented by one symbol 2 ∂L Lα 1 ⎡ ρNVN ⎤ F24 = VN = ! CT cosα N + CL S V ⎢( N α ) ⎥ ∂α N mVN ⎣ 2 ⎦ Thrust and lift effects are combined and represented by one symbol ∂M 1 ⎡ ρ V 2 ⎤ F = = M ! C N N Sc 34 α ⎢ mα ⎥ ∂α I yy ⎣ 2 ⎦ 22 11 11/13/18 Longitudinal Stability Matrix Effects of phugoid Effects of short-period perturbations on perturbations on phugoid phugoid motion motion ! −D −gcosγ −D −D $ # V N q α & # L g L L & V sin q α ! Ph $ # γ N & F F VN V VN VN F = # Ph SP & = # N & Lon SP # F F & # MV 0 M q Mα & " Ph SP % # & g * L - # LV q Lα & − − sinγ N ,1− / − # VN V VN VN & " N + . % Effects of phugoid Effects of short-period perturbations on short- perturbations on period motion short-period motion 23 Comparison of 2nd- and 4th- Order Model Response 24 12 11/13/18 4th-Order Initial-Condition Responses of Business Jet at Two Time Scales Plotted over different periods of time 4 initial conditions [V(0), γ(0), q(0), α(0)] 0 - 100 sec 0 - 6 sec • Reveals Phugoid Mode • Reveals Short-Period Mode 25 2nd-Order Models of Longitudinal Motion Assume off-diagonal blocks of (4 x 4) stability matrix are negligible ⎡ F ~ 0 ⎤ F = ⎢ Ph ⎥ Lon ~ 0 F ⎣⎢ SP ⎦⎥ Approximate Phugoid Equation Δx! Ph = ⎡ ⎤ −DV −gcosγ N ⎡ ΔV! ⎤ ⎢ ⎥⎡ ΔV ⎤ ⎢ ⎥ ≈ ⎢ LV g ⎥⎢ ⎥ ⎢ Δγ! ⎥ sinγ N ⎢ Δγ ⎥ ⎣ ⎦ ⎢ VN V ⎥⎣ ⎦ ⎣ N ⎦ ⎡ T ⎤ ⎡ −D ⎤ ⎢ δT ⎥ ⎢ V ⎥ + ΔδT + ΔV ⎢ LδT ⎥ ⎢ LV ⎥ wind ⎢ VN ⎥ ⎢ VN ⎥ 26 ⎣ ⎦ ⎣ ⎦ 13 11/13/18 2nd-Order Models of Longitudinal Motion ⎡ F ~ 0 ⎤ F = ⎢ Ph ⎥ Lon ~ 0 F ⎣⎢ SP ⎦⎥ Approximate Short-Period Equation Δx! SP = ⎡ ⎤ M q Mα ⎡ Δq! ⎤ ⎢ ⎥⎡ Δq ⎤ ≈ ⎢ ⎥ ⎢ ⎛ Lq ⎞ L ⎥⎢ ⎥ ⎢ Δα! ⎥ ⎜1− ⎟ − α ⎢ Δα ⎥ ⎣ ⎦ ⎢ ⎝ VN ⎠ VN ⎥⎣ ⎦ ⎣ ⎦ ⎡ M ⎤ ⎡ M ⎤ ⎢ δ E ⎥ ⎢ α ⎥ + Δδ E + Δα ⎢ −Lδ E ⎥ ⎢ −Lα ⎥ wind ⎢ VN ⎥ ⎢ VN ⎥ 27 ⎣ ⎦ ⎣ ⎦ Comparison of Bizjet 4th- and 2nd-Order Model Responses Phugoid Time Scale, ~100 s 4th Order, 4 initial conditions [V(0), γ(0), q(0), α(0)] 2nd Order, 2 initial conditions [V(0), γ(0)] 28 14 11/13/18 Comparison of Bizjet 4th- and 2nd-Order Model Responses Short-Period Time Scale, ~10 s 4th Order, 4 initial conditions [V(0), γ(0), q(0), α(0)] 2nd Order, 2 initial conditions [q(0), α(0)] 29 Approximate Phugoid Response to a 10% Thrust Increase What is the steady-state response? 30 15 11/13/18 Approximate Short-Period Response to a 0.1-Rad Pitch Control Step Input Pitch Rate, rad/s Angle of Attack, rad What is the steady-state response? 31 Normal Load Factor Response to a 0.1-Rad Pitch Control Step Input Grumman X-29 • Normal load factor at the center of mass VN VN ⎛ Lα Lδ E ⎞ Δnz = (Δα! − Δq) = Δα + Δδ E g g ⎝⎜ V V ⎠⎟ N N • Pilot focuses on normal load factor during rapid maneuvering Normal Load Factor, gs at c.m.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us