1.0 Introduction Actinobacteria Are Filamentous, Branching Bacteria That
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
View Details
INDEX CHAPTER NUMBER CHAPTER NAME PAGE Extraction of Fungal Chitosan and its Chapter-1 1-17 Advanced Application Isolation and Separation of Phenolics Chapter-2 using HPLC Tool: A Consolidate Survey 18-48 from the Plant System Advances in Microbial Genomics in Chapter-3 49-80 the Post-Genomics Era Advances in Biotechnology in the Chapter-4 81-94 Post Genomics era Plant Growth Promotion by Endophytic Chapter-5 Actinobacteria Associated with 95-107 Medicinal Plants Viability of Probiotics in Dairy Products: A Chapter-6 Review Focusing on Yogurt, Ice 108-132 Cream, and Cheese Published in: Dec 2018 Online Edition available at: http://openaccessebooks.com/ Reprints request: [email protected] Copyright: @ Corresponding Author Advances in Biotechnology Chapter 1 Extraction of Fungal Chitosan and its Advanced Application Sahira Nsayef Muslim1; Israa MS AL-Kadmy1*; Alaa Naseer Mohammed Ali1; Ahmed Sahi Dwaish2; Saba Saadoon Khazaal1; Sraa Nsayef Muslim3; Sarah Naji Aziz1 1Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 2Branch of Fungi and Plant Science, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 3Department of Geophysics, College of remote sensing and geophysics, AL-Karkh University for sci- ence, Baghdad-Iraq *Correspondense to: Israa MS AL-Kadmy, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq. Email: [email protected] 1. Definition and Chemical Structure Biopolymer is a term commonly used for polymers which are synthesized by living organisms [1]. Biopolymers originate from natural sources and are biologically renewable, biodegradable and biocompatible. Chitin and chitosan are the biopolymers that have received much research interests due to their numerous potential applications in agriculture, food in- dustry, biomedicine, paper making and textile industry. -
Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr. -
Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration. -
Effect of Sulfonylurea Tribenuron Methyl Herbicide on Soil
b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 79–86 ht tp://www.bjmicrobiol.com.br/ Environmental Microbiology Effect of sulfonylurea tribenuron methyl herbicide on soil Actinobacteria growth and characterization of resistant strains a,b,∗ a,c d f e Kounouz Rachedi , Ferial Zermane , Radja Tir , Fatima Ayache , Robert Duran , e e e a,c Béatrice Lauga , Solange Karama , Maryse Simon , Abderrahmane Boulahrouf a Université Frères Mentouri, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Génie Microbiologique et Applications, Constantine, Algeria b Université Frères Mentouri, Institut de la Nutrition, de l’Alimentation et des Technologies Agro-Alimentaires (INATAA), Constantine, Algeria c Université Frères Mentouri, Faculté des Sciences de la Nature et de la Vie, Département de Microbiologie, Constantine, Algeria d Université Frères Mentouri, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biologie Moléculaire et Cellulaire, Constantine, Algeria e Université de Pau et des Pays de l’Adour, Unité Mixte de Recherche 5254, Equipe Environnement et Microbiologie, Pau, France f Université Frères Mentouri, Constantine 1, Algeria a r t i c l e i n f o a b s t r a c t Article history: Repeated application of pesticides disturbs microbial communities and cause dysfunctions ® Received 28 October 2016 on soil biological processes. Granstar 75 DF is one of the most used sulfonylurea herbi- Accepted 6 May 2017 cides on cereal crops; it contains 75% of tribenuron-methyl. -
Investigating the Relationship Between Amphotericin B and Extracellular
Investigating the relationship between amphotericin B and extracellular vesicles produced by Streptomyces nodosus By Samuel John King A thesis submitted in partial fulfilment of the requirements for the degree of Master of Research School of Science and Health Western Sydney University 2017 Acknowledgements A big thank you to the following people who have helped me throughout this project: Jo, for all of your support over the last two years; Ric, Tim, Shamilla and Sue for assistance with electron microscope operation; Renee for guidance with phylogenetics; Greg, Herbert and Adam for technical support; and Mum, you're the real MVP. I acknowledge the services of AGRF for sequencing of 16S rDNA products of Streptomyces "purple". Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. ……………………………………………………..… (Signature) Contents List of Tables............................................................................................................... iv List of Figures .............................................................................................................. v Abbreviations .............................................................................................................. vi Abstract ..................................................................................................................... -
Isolation and Characterization of Aerobic Actinomycetes with Probiotic Properties in Nile Tilapia
Journal of Applied Pharmaceutical Science Vol. 10(09), pp 040-049, September, 2020 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2020.10905 ISSN 2231-3354 Isolation and characterization of aerobic actinomycetes with probiotic properties in Nile tilapia Jirayut Euanorasetr1,2*, Varissara Chotboonprasit1,2, Wacharaporn Ngoennamchok1,2, Sutassa Thongprathueang1,2, Archiraya Promprateep1,2, Suppakit Taweesaga1,2, Pongsan Chatsangjaroen1,2, Bungonsiri Intra3,4 1Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand 2Laboratory of biotechnological research for energy and bioactive compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand 3 Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand 4Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand ARTICLE INFO ABSTRACT Received on: 20/04/2020 This study scoped the isolation of aerobic actinomycetes with probiotic properties against bacterial pathogens in Nile Accepted on: 23/06/2020 tilapia. Eleven rhizosphere soil samples were collected from the agricultural sites in three provinces (Chanthaburi, Available online: 05/09/2020 Nan, and Chachoengsao) of Thailand. A total of 157 actinomycete-like colonies were successfully isolated. The antibacterial -
A Novel Approach to the Discovery of Natural Products from Actinobacteria Rahmy Tawfik University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-24-2017 A Novel Approach to the Discovery of Natural Products From Actinobacteria Rahmy Tawfik University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Microbiology Commons Scholar Commons Citation Tawfik, Rahmy, "A Novel Approach to the Discovery of Natural Products From Actinobacteria" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6766 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Novel Approach to the Discovery of Natural Products From Actinobacteria by Rahmy Tawfik A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Cell Biology, Microbiology & Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Lindsey N. Shaw, Ph.D. Edward Turos, Ph.D. Bill J. Baker, Ph.D. Date of Approval: March 22, 2017 Keywords: Secondary Metabolism, Soil, HPLC, Mass Spectrometry, Antibiotic Copyright © 2017, Rahmy Tawfik Acknowledgements I would like to express my gratitude to the people who have helped and supported me throughout this degree for both scientific and personal. First, I would like to thank my mentor and advisor, Dr. Lindsey Shaw. Although my academics were lacking prior to entering graduate school, you were willing to look beyond my shortcomings and focus on my strengths. -
JMBFS / Surname of Author Et Al. 20Xx X (X) X-Xx
NOVEL ACTINOBACTERIAL DIVERSITY IN KAZAKHSTAN DESERTS SOILS AS A SOURCE OF NEW DRUG LEADS Arailym Ziyat*1, Professor Michael Goddfellow2, Ayaulym Nurgozhina1, Shynggys Sergazy1, Madiyar Nurgaziev1 Address(es): Arailym Ziyat, 1PI “National Laboratory Astana”, Centre for Life Sciences, Laboratory of Human Microbiome and Longevity, Kabanbay Batyr Ave. 53, 010000, Astana, Republic of Kazakhstan. 2Newcastle University, Faculty of Science, Agriculture & Engineering, School of Biology, NE1 7RU, Newcastle University, United Kingdom. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2019.8.4.1057-1065 ARTICLE INFO ABSTRACT Received 24. 10. 2018 Discovering new metabolites, notably antibiotics, by isolation and screening novel actinomycetes from extreme habitats gave extraordinary results that can be adapted in the future for healthcare. However, it was little attention payed to desert soils in Central Revised 13. 11. 2018 Asia, such as from Kazakhstan. Accepted 13. 11. 2018 Taxonomic approach was to isolate selectively, dereplicate and classify actinomycetes from two Kazakhstan Deserts (Betpakdala and Published 1. 2. 2019 Usturt Plateu). The most representative isolates from colour-groups were describe via 16S rRNA gene sequence analysis. Relatively large number, of strains from environmental soil samples were classified into Streptomyces genera. Moreover, three strains Regular article from two different soil samples were identified as relatively close to Pseudonocarida genera. All representative isolates were screened for bioactive compound against wild type microorganisms, as a result, of it can be interpreted that approximately half of screened strains are likely to produce metabolites which inhibits cell growth. The results of this project demonstrate for the first time that arid regions of Kazakhstan soils are rich reservoirs of cultivable novel actinobacteria with the capacity to produce bioactive compounds that can be developed as drug leads for medicine. -
IJMICRO.2020.8816111.Pdf
University of Calgary PRISM: University of Calgary's Digital Repository Libraries & Cultural Resources Open Access Publications 2020-11-24 Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles Bizuye, Abebe; Gedamu, Lashitew; Bii, Christine; Gatebe, Erastus; Maina, Naomi Abebe Bizuye, Lashitew Gedamu, Christine Bii, Erastus Gatebe, and Naomi Maina, “Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles,” International Journal of Microbiology, vol. 2020, Article ID 8816111, 17 pages, 2020. doi:10.1155/2020/8816111 http://dx.doi.org/10.1155/2020/8816111 Journal Article Downloaded from PRISM: https://prism.ucalgary.ca Research Article Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles Abebe Bizuye ,1,2 Lashitew Gedamu,3 Christine Bii,4 Erastus Gatebe,5 and Naomi Maina 2,6 1Department of Medical Laboratory, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia 2Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Innovation and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 3Department of Biological Sciences, University of Calgary, Calgary, Canada 4Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya 5Kenya Industrial Research Development and Innovation, Nairobi, Kenya 6Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya Correspondence should be addressed to Abebe Bizuye; [email protected] Received 18 August 2020; Revised 17 October 2020; Accepted 16 November 2020; Published 24 November 2020 Academic Editor: Diriba Muleta Copyright © 2020 Abebe Bizuye et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Taxonomic Characterization of Streptomyces Strain CH54-4 Isolated from Mangrove Sediment
Ann Microbiol (2010) 60:299–305 DOI 10.1007/s13213-010-0041-4 ORIGINAL ARTICLE Taxonomic characterization of Streptomyces strain CH54-4 isolated from mangrove sediment Rattanaporn Srivibool & Kanpicha Jaidee & Morakot Sukchotiratana & Shinji Tokuyama & Wasu Pathom-aree Received: 19 January 2010 /Accepted: 9 March 2010 /Published online: 15 April 2010 # Springer-Verlag and the University of Milan 2010 Abstract An actinobacterium, designated as strain CH54-4, wall chemotype I with no characteristic sugar, and type II was isolated from mangrove sediment on the east coast of the polar lipids that typically contain diphosphatidyl glycerol, Gulf of Thailand using starch casein agar. This isolate was phosphatidylinositol, phosphatidylethanolamine, and phos- found to contain chemical markers typical of members of the phatidylinositol mannoside. Members of the genus Strepto- genus Streptomyces: This strain possessed a broad spectrum myces are widely distributed in soils and played important of antimicrobial activity against Gram-positive, Gram- role in soil ecology (Goodfellow and Williams 1983). They negative bacteria and fungi. In addition, this strain also are prolific sources of secondary metabolites, notably showed strong activity against breast cancer cells with an antibiotics (Lazzarini et al. 2000). −1 IC50 value of 2.91 µg ml . Phylogenetic analysis of a 16S The search and discovery of novel microbes for new rRNA gene sequence showed that strain CH54-4 forms a secondary metabolites is significant in the fight against distinct clade within the Streptomyces 16S rRNA gene tree antibiotic resistant pathogens (Bernan et al. 2004) and and closely related to Streptomyces thermocarboxydus. emerging diseases (Taylor et al. 2001). One strategy is to isolate novel actinomycetes from poorly studied habitats to Keywords Mangrove sediment . -
Diversity and Antimicrobial Activity of Culturable Endophytic Actinobacteria Associated with Acanthaceae Plants
R ESEARCH ARTICLE doi: 10.2306/scienceasia1513-1874.2020.036 Diversity and antimicrobial activity of culturable endophytic actinobacteria associated with Acanthaceae plants a,b, c a Wongsakorn Phongsopitanun ∗, Paranee Sripreechasak , Kanokorn Rueangsawang , Rungpech Panyawuta, Pattama Pittayakhajonwutd, Somboon Tanasupawatb a Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 Thailand b Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330 Thailand c Department of Biotechnology, Faculty of Science, Burapha University, Chonburi 20131 Thailand d National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani 12120 Thailand ∗Corresponding author, e-mail: [email protected] Received 20 Oct 2019 Accepted 20 Apr 2020 ABSTRACT: In this study, a total of 52 endophytic actinobacteria were isolated from 6 species of Acanthaceae plants collected in Thailand. Most actinobacteria were obtained from the root part. Based on 16S rRNA gene analysis and phylogenetic tree, these actinobacteria were classified into 4 families (Nocardiaceae, Micromonosporaceae, Streptosporangiaceae and Streptomycetaceae) and 6 genera including Actinomycetospora (1 isolate), Dactylosporangium (1 isolate), Nocardia (3 isolates), Microbispora (5 isolates), Micromonospora (10 isolates) and Streptomyces (32 isolates). The result of antimicrobial activity screening indicated that 8 isolates, including 1 Actinomycetospora and 7 Streptomyces, -
Phylogenetic Study of the Species Within the Family Streptomycetaceae
Antonie van Leeuwenhoek DOI 10.1007/s10482-011-9656-0 ORIGINAL PAPER Phylogenetic study of the species within the family Streptomycetaceae D. P. Labeda • M. Goodfellow • R. Brown • A. C. Ward • B. Lanoot • M. Vanncanneyt • J. Swings • S.-B. Kim • Z. Liu • J. Chun • T. Tamura • A. Oguchi • T. Kikuchi • H. Kikuchi • T. Nishii • K. Tsuji • Y. Yamaguchi • A. Tase • M. Takahashi • T. Sakane • K. I. Suzuki • K. Hatano Received: 7 September 2011 / Accepted: 7 October 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract Species of the genus Streptomyces, which any other microbial genus, resulting from academic constitute the vast majority of taxa within the family and industrial activities. The methods used for char- Streptomycetaceae, are a predominant component of acterization have evolved through several phases over the microbial population in soils throughout the world the years from those based largely on morphological and have been the subject of extensive isolation and observations, to subsequent classifications based on screening efforts over the years because they are a numerical taxonomic analyses of standardized sets of major source of commercially and medically impor- phenotypic characters and, most recently, to the use of tant secondary metabolites. Taxonomic characteriza- molecular phylogenetic analyses of gene sequences. tion of Streptomyces strains has been a challenge due The present phylogenetic study examines almost all to the large number of described species, greater than described species (615 taxa) within the family Strep- tomycetaceae based on 16S rRNA gene sequences Electronic supplementary material The online version and illustrates the species diversity within this family, of this article (doi:10.1007/s10482-011-9656-0) contains which is observed to contain 130 statistically supplementary material, which is available to authorized users.