Actinomycetes from Neglected Areas, Iranian Soil, Their Taxonomy, and Secondary Metabolites

Total Page:16

File Type:pdf, Size:1020Kb

Actinomycetes from Neglected Areas, Iranian Soil, Their Taxonomy, and Secondary Metabolites Actinomycetes from neglected areas, Iranian soil, their taxonomy, and secondary metabolites Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Shadi Khodamoradi aus Tabriz / Iran 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim Wink eingereicht am: 09.02.2021 mündliche Prüfung (Disputation) am: 16.04.2021 Druckjahr 2021 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Khodamoradi S, Stadler M, Wink J, Surup F. Litoralimycins A and B, New Cytotoxic Thiopeptides from Streptomonospora sp. M2. Marine Drugs. 2020 Jun;18(6):280. Conference Talk Shadi Khodamoradi. Streptomonospora litoralis sp. nov., a halophilic actinomycetes with antibacterial activity from beach sands. 11th International PhD Symposium, Braunschweig, Germany (2018) Posterbeiträge Shadi Khodamoradi, Richard L. Hahnke, Frank Surup, Manfred Rohde, Michael Steinert, Marc Stadler, Joachim Wink. Isolation of a new Streptomonospora-species producing a new peptide antibiotic. The HIPS Symposium, Saarbrücken, Germany (2019). Shadi Khodamoradi. Isolation of new Streptomyces sp. producing the new antibacterial compound from the soil sample collected from Iran/ Tehran/ Alborz Mountain HZI. 12th International PhD Symposium, Braunschweig, Germany (2019) Shadi Khodamoradi. Isolation, characterization, and Antagonistic Properties of novel species of halophilic Streptomonospora.10th International PhD Symposium, Braunschweig, Germany (2017) iii Acknowledgements First of all, I want to give my sincere gratitude to my principal supervisor PD Dr. Joachim Wink for giving me the chance to explore the wonderful science and sharing his knowledge with me. I appreciate his patience and constant support throughout my PhD journey. I would also like to thank Prof. Dr. Marc Stadler for his great support and giving the opportunity to work in his group. Your guidance and teaching have developed my skill in many ways, especially in academic writing. I thank my associated supervisor Prof. Dr. Michael Steinert for his scientific advice and support. I would like to thank Dr. Stephan Hüttel for his kind support, continuous help and encourage during my PhD study. I would like to give special thanks to my collaboration partners Dr. Frank Surup, Dr. Kathrin Mohr, Dr. Kathrin Wittstein, Dr. Steffen Bernecker, Dr Manfred Rohde, Prof. Dr. Peter Kämpfer, Dr. Eike Steinmann, Dr. Christian Rückert, and Christel Kakoschke. My sincere thanks to my coauthors Prof. Dr. Yvonne Mast for her kind help and advices, Dr. Peter Schumann, Dr. Richard Hahnke, and other members of DSMZ, Dr. Meina Neumann-Schaal and Gabriele Pötter. I would like to further acknowledge to our graduate school in the HZI for their astonishing support and organization during my study especially Dr. Sabine Kirchhoff. I am much grateful to Prof. Dr. Ludger Beerhues for taking over the chair during my defense. My deepest thank to Romy Schade and Silke Reinecke for their great technical support. I would like to mention my appreciation to all members of the MWIS group, especially to Kerstin Schober, Esther Surges, Axel Schulz, Kevin Becker, and Sebastian Pfütze for helping me with chemistry part. I extend my iv Acknowledgements special thanks to my colleague Dr. Chandra Risdian for sharing his knowledge and so many advices in the last years. I would also like to express my gratitude to my group members, Stephanie Schulz, Klaus Peter Conrad, Aileen Gollasch, Birte Trunkwalter, Wera Collisi and Jolanta Lulla for the professional technical support. I thank all of my other colleagues, Nasim Safaei, Senlie Octaviana, Rina Andriyani, Hani Pira, Sana Ullah Tareen for the warm environment in our group. Also I thank previous students Dr. Lucky Mulwa and Dr. Omar Messaoudi for their kind scientific advices during my PhD study. Many thanks to all friends for their support and all the happy time we spent together during this journey. Finally, I would like to thank my kind family for their love and support throughout the years, which enabled me to follow my dreams. v List of Contents Table of Contents Acknowledgements ............................................................................................................. iv List of Figures ..................................................................................................................... ix List of Tables ....................................................................................................................... xi List of Supplementary Figures ........................................................................................... xii List of Supplementary Tables ............................................................................................ xiii List of Abbreviations ......................................................................................................... xiv Abstract .............................................................................................................................. xv Abstrakt ............................................................................................................................. xvi 1 Introduction ....................................................................................................................... 1 1.1 Natural products ......................................................................................................... 1 1.2 The Class of Actinobacteria ....................................................................................... 4 1.2.1 Rare Actinobacteria ............................................................................................. 6 1.2.2 Bioactive compounds from rare actinomycetes................................................... 7 1.3 Prokaryotic taxonomy ................................................................................................ 9 1.4 The polyphasic classification in Actinobacteria ....................................................... 10 1.4.1 Phenotypic classification ................................................................................... 10 1.4.1.1 Microscopic and macroscopic characteristics ............................................ 10 1.4.1.2 Physiological characteristics ...................................................................... 11 1.4.2 Chemical classification (chemotaxonomy) ....................................................... 12 1.4.3 Genomic classification ...................................................................................... 13 1.5 Dereplication of compounds from Actinobacteria ................................................... 14 1.6 Previous work in search of novel Actinobacteria and their secondary metabolites . 15 1.7 Study aims ................................................................................................................ 16 5) Taxonomic study of the identified novel Actinobacteria strains. .............................. 16 2. Materials and Methods ................................................................................................... 17 2.1 Materials ....................................................................................................................... 17 2.1.2 Chemicals .......................................................................................................... 24 2.1.3 Equipment ......................................................................................................... 28 2.1.4 Primers............................................................................................................... 31 2.1.5 Kits and Enzymes .............................................................................................. 32 2.1.6 Microorganisms ................................................................................................. 33 2.2 Method ..................................................................................................................... 34 2.2.1 Sampling ............................................................................................................ 34 2.2.2 Isolation ............................................................................................................. 34 vi List of Contents 2.2.3 Cultivation ......................................................................................................... 35 2.2.3.1 Cultivation of Actinobacteria strains .......................................................... 35 2.2.3.2 Cultivation in production media and extraction of secondary metabolite .. 35 2.2.4 Taxonomic classification ................................................................................... 35 2.2.4.1 Extraction, amplification, sequencing of 16S rRNA .................................. 36 2.2.4.2 MALDI-TOF analysis ................................................................................ 37 2.2.4.3 RiboPrinter® analysis ................................................................................ 38 2.2.4.5 DNA-DNA hybridization ........................................................................... 38 2.2.4.6 Whole genome sequencing ......................................................................... 39
Recommended publications
  • The German North Sea Ports' Absorption Into Imperial Germany, 1866–1914
    From Unification to Integration: The German North Sea Ports' absorption into Imperial Germany, 1866–1914 Henning Kuhlmann Submitted for the award of Master of Philosophy in History Cardiff University 2016 Summary This thesis concentrates on the economic integration of three principal German North Sea ports – Emden, Bremen and Hamburg – into the Bismarckian nation- state. Prior to the outbreak of the First World War, Emden, Hamburg and Bremen handled a major share of the German Empire’s total overseas trade. However, at the time of the foundation of the Kaiserreich, the cities’ roles within the Empire and the new German nation-state were not yet fully defined. Initially, Hamburg and Bremen insisted upon their traditional role as independent city-states and remained outside the Empire’s customs union. Emden, meanwhile, had welcomed outright annexation by Prussia in 1866. After centuries of economic stagnation, the city had great difficulties competing with Hamburg and Bremen and was hoping for Prussian support. This thesis examines how it was possible to integrate these port cities on an economic and on an underlying level of civic mentalities and local identities. Existing studies have often overlooked the importance that Bismarck attributed to the cultural or indeed the ideological re-alignment of Hamburg and Bremen. Therefore, this study will look at the way the people of Hamburg and Bremen traditionally defined their (liberal) identity and the way this changed during the 1870s and 1880s. It will also investigate the role of the acquisition of colonies during the process of Hamburg and Bremen’s accession. In Hamburg in particular, the agreement to join the customs union had a significant impact on the merchants’ stance on colonialism.
    [Show full text]
  • Micromonospora: an Important Microbe for Biomedicine and Potentially for Biocontrol and Biofuels
    ARTICLE IN PRESS Soil Biology & Biochemistry xxx (2009) 1e7 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Review Micromonospora: An important microbe for biomedicine and potentially for biocontrol and biofuels Ann M. Hirsch a,b,*, Maria Valdés c a Department of Molecular, Cell and Developmental Biology, University of California, 405 Hilgard Avenue, Los Angeles, CA 90095-1606, USA b Molecular Biology Institute, University of California, 405 Hilgard Avenue, Los Angeles, CA 90095-1606, USA c Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, I. P. N., Plan de Ayala y Carpio, 11340, Mexico article info abstract Article history: Micromonospora species have long been recognized as important sources of antibiotics and also for their Received 2 September 2009 unusual spores. However, their involvement in plant-microbe associations is poorly understood although Received in revised form several studies demonstrate that Micromonospora species function in biocontrol, plant growth promo- 17 November 2009 tion, root ecology, and in the breakdown of plant cell wall material. Our knowledge of this generally Accepted 20 November 2009 understudied group of actinomycetes has been greatly advanced by the increasing number of reports of Available online xxx their associations with plants, by the deployment of DNA cloning and molecular systematics techniques, and by the recent application of whole genome sequencing. Efforts to annotate the genomes of several Keywords: Actinomycetes Micromonospora species are underway. This information will greatly augment our knowledge of these Biocontrol versatile microorganisms. Hydrolytic enzymes Ó 2009 Elsevier Ltd. All rights reserved. Secondary metabolites 1. Introduction species also produce anti-tumor antibiotics (lomaiviticins A and B, tetrocarcin A, LL-E33288 complex, etc.) and anthracycline antibi- Although the genus Micromonospora has long been recognized otics.
    [Show full text]
  • Natural Thiopeptides As a Privileged Scaffold for Drug Discovery and Therapeutic Development
    – MEDICINAL Medicinal Chemistry Research (2019) 28:1063 1098 CHEMISTRY https://doi.org/10.1007/s00044-019-02361-1 RESEARCH REVIEW ARTICLE Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development 1 1 1 1 1 Xiaoqi Shen ● Muhammad Mustafa ● Yanyang Chen ● Yingying Cao ● Jiangtao Gao Received: 6 November 2018 / Accepted: 16 May 2019 / Published online: 29 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Since the start of the 21st century, antibiotic drug discovery and development from natural products has experienced a certain renaissance. Currently, basic scientific research in chemistry and biology of natural products has finally borne fruit for natural product-derived antibiotics drug discovery. A batch of new antibiotic scaffolds were approved for commercial use, including oxazolidinones (linezolid, 2000), lipopeptides (daptomycin, 2003), and mutilins (retapamulin, 2007). Here, we reviewed the thiazolyl peptides (thiopeptides), an ever-expanding family of antibiotics produced by Gram-positive bacteria that have attracted the interest of many research groups thanks to their novel chemical structures and outstanding biological profiles. All members of this family of natural products share their central azole substituted nitrogen-containing six-membered ring and are fi 1234567890();,: 1234567890();,: classi ed into different series. Most of the thiopeptides show nanomolar potencies for a variety of Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and penicillin-resistant Streptococcus pneumonia (PRSP). They also show other interesting properties such as antiplasmodial and anticancer activities. The chemistry and biology of thiopeptides has gathered the attention of many research groups, who have carried out many efforts towards the study of their structure, biological function, and biosynthetic origin.
    [Show full text]
  • Actinobacteria in Algerian Saharan Soil and Description Sixteen New
    Revue ElWahat pour les Recherches et les Etudes Vol.7n°2 (2014) : 61 – 78 Revue ElWahat pour les recherches et les Etudes : 61 – 78 ISSN : 1112 -7163 Vol.7n°2 (2014) http://elwahat.univ-ghardaia.dz Diversity of Actinobacteria in Algerian Saharan soil and description of sixteen new taxa Bouras Noureddine 1,2 , Meklat Atika 1, Boubetra Dalila 1, Saker Rafika 1, Boudjelal Farida 1, Aouiche Adel 1, Lamari Lynda 1, Zitouni Abdelghani 1, Schumann Peter 3, Spröer Cathrin 3, Klenk Hans -Peter 3 and Sabaou Nasserdine 1 1- Affiliation: Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria; [email protected] 2- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria; 3- Leibniz Institute DSMZ - Germ an Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany. Abstract _ The goal of this study was to investigate the biodiversity of actinobacteria in Algerian Saharan soils by using a polyphasic taxonomic approach based on the phenotypic and molecular studies (16S rRNA gene sequence analysis and DNA-DNA hybridization ). A total of 323 strains of actinobacteria were isolated from different soil samples, by a dilution agar plating method, using selective isolation media without or with 15-20% of NaCl (for halophilic strains). The morphological and chemotaxonomic characteristics (diaminopimelic acid isomers, whole-cell sugars, menaquinones, cellular fatty acids and diagnostic phospholipids) of the strains were consistent with those of members of the genus Saccharothrix , Nocardiopsis , Actinopolyspora , Streptomonospora , Saccharopolyspora , Actinoalloteichus , Actinokineospora and Prauserella .
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead
    1 Supplementary Material 2 Genomic and phylogenomic insights into the family Streptomycetaceae lead 3 to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera with 4 emended descriptions of Streptomyces calvus 5 Munusamy Madhaiyan1, †, *, Venkatakrishnan Sivaraj Saravanan2, †, Wah-Seng See-Too3, † 6 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 7 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 8 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 9 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 10 Malaysia 1 11 Table S3. List of the core genes in the genome used for phylogenomic analysis. NCBI Protein Accession Gene WP_074993204.1 NUDIX hydrolase WP_070028582.1 YggS family pyridoxal phosphate-dependent enzyme WP_074992763.1 ParB/RepB/Spo0J family partition protein WP_070022023.1 lipoyl(octanoyl) transferase LipB WP_070025151.1 FABP family protein WP_070027039.1 heat-inducible transcriptional repressor HrcA WP_074992865.1 folate-binding protein YgfZ WP_074992658.1 recombination protein RecR WP_074991826.1 HIT domain-containing protein WP_070024163.1 adenylosuccinate synthase WP_009190566.1 anti-sigma regulatory factor WP_071828679.1 preprotein translocase subunit SecG WP_070026304.1 50S ribosomal protein L13 WP_009190144.1 30S ribosomal protein S5 WP_014674378.1 30S ribosomal protein S8 WP_070026314.1 50S ribosomal protein L5 WP_009300593.1 30S ribosomal protein S13 WP_003998809.1
    [Show full text]
  • Elbe Estuary Publishing Authorities
    I Integrated M management plan P Elbe estuary Publishing authorities Free and Hanseatic City of Hamburg Ministry of Urban Development and Environment http://www.hamburg.de/bsu The Federal State of Lower Saxony Lower Saxony Federal Institution for Water Management, Coasts and Conservation www.nlwkn.Niedersachsen.de The Federal State of Schleswig-Holstein Ministry of Agriculture, the Environment and Rural Areas http://www.schleswig-holstein.de/UmweltLandwirtschaft/DE/ UmweltLandwirtschaft_node.html Northern Directorate for Waterways and Shipping http://www.wsd-nord.wsv.de/ http://www.portal-tideelbe.de Hamburg Port Authority http://www.hamburg-port-authority.de/ http://www.tideelbe.de February 2012 Proposed quote Elbe estuary working group (2012): integrated management plan for the Elbe estuary http://www.natura2000-unterelbe.de/links-Gesamtplan.php Reference http://www.natura2000-unterelbe.de/links-Gesamtplan.php Reproduction is permitted provided the source is cited. Layout and graphics Kiel Institute for Landscape Ecology www.kifl.de Elbe water dropwort, Oenanthe conioides Integrated management plan Elbe estuary I M Elbe estuary P Brunsbüttel Glückstadt Cuxhaven Freiburg Introduction As a result of this international responsibility, the federal states worked together with the Federal Ad- The Elbe estuary – from Geeshacht, via Hamburg ministration for Waterways and Navigation and the to the mouth at the North Sea – is a lifeline for the Hamburg Port Authority to create a trans-state in- Hamburg metropolitan region, a flourishing cultural
    [Show full text]
  • Isolation and Screening of Cellulolytic Actinomycetes from Diverse Habitats
    International Journal of Advanced Biotechnology and Research(IJBR) ISSN 0976-2612, Online ISSN 2278–599X, Vol5, Issue3, 2014, pp438-451 http://www.bipublication.com Isolation and Screening of Cellulolytic Actinomycetes from Diverse Habitats Payal Das, Renu Solanki and Monisha Khanna* Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110 019 *Corresponding author: Dr. Monisha Khanna, Associate Professor in Zoology, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, Email: [email protected], [email protected], Tel: +91-011-26293224; Fax: +91-011-26294540 [Received 25/06/2014, Accepted-17/07/2014] ABSTRACT Cellulases have become the focal biocatalysts due to their wide spread industrial applications. Wide variety of bacteria in the environment permits screening for more efficient cellulase producing strains. The study focuses on isolation and screening of cellulase producing actinomycetes. The isolates from varied ecological habitats were subjected to primary screening. Between 80-90 % isolates were found to produce cellulase enzyme. Among the isolates tested, colonies 51, 157, 194 and NRRL B-16746 ( S. albidoflavus ) showing appreciable zones of clearance were selected for secondary screening. Enzyme activity was determined in crude and in partially purified extracts. NRRL B-16746 S. albidoflavus (1.165 U/ml/min) showed maximum activity followed by colony 194 (0.995 U/ml/min), colony 51 (0. 536 U/ml/min), colony 157 (0.515 U/ml/min) and NRRL B-1305 ( S. albogriseolus ; positive control) (0.484 U/ml/min). The taxonomic status of isolates 51,157 and 194 was studied by polyphasic approach including morphological and biochemical characterization.
    [Show full text]
  • View Details
    INDEX CHAPTER NUMBER CHAPTER NAME PAGE Extraction of Fungal Chitosan and its Chapter-1 1-17 Advanced Application Isolation and Separation of Phenolics Chapter-2 using HPLC Tool: A Consolidate Survey 18-48 from the Plant System Advances in Microbial Genomics in Chapter-3 49-80 the Post-Genomics Era Advances in Biotechnology in the Chapter-4 81-94 Post Genomics era Plant Growth Promotion by Endophytic Chapter-5 Actinobacteria Associated with 95-107 Medicinal Plants Viability of Probiotics in Dairy Products: A Chapter-6 Review Focusing on Yogurt, Ice 108-132 Cream, and Cheese Published in: Dec 2018 Online Edition available at: http://openaccessebooks.com/ Reprints request: [email protected] Copyright: @ Corresponding Author Advances in Biotechnology Chapter 1 Extraction of Fungal Chitosan and its Advanced Application Sahira Nsayef Muslim1; Israa MS AL-Kadmy1*; Alaa Naseer Mohammed Ali1; Ahmed Sahi Dwaish2; Saba Saadoon Khazaal1; Sraa Nsayef Muslim3; Sarah Naji Aziz1 1Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 2Branch of Fungi and Plant Science, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 3Department of Geophysics, College of remote sensing and geophysics, AL-Karkh University for sci- ence, Baghdad-Iraq *Correspondense to: Israa MS AL-Kadmy, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq. Email: [email protected] 1. Definition and Chemical Structure Biopolymer is a term commonly used for polymers which are synthesized by living organisms [1]. Biopolymers originate from natural sources and are biologically renewable, biodegradable and biocompatible. Chitin and chitosan are the biopolymers that have received much research interests due to their numerous potential applications in agriculture, food in- dustry, biomedicine, paper making and textile industry.
    [Show full text]
  • The Spatial and Temporal Diffusion of Agricultural Land Prices
    The Spatial and Temporal Diffusion of Agricultural Land Prices M. Ritter; X. Yang; M. Odening Humboldt-Universität zu Berlin, Department of Agricultural Economics, Germany Corresponding author email: [email protected] Abstract: In the last decade, many parts of the world experienced severe increases in agricultural land prices. This price surge, however, did not take place evenly in space and time. To better understand the spatial and temporal behavior of land prices, we employ a price diffusion model that combines features of market integration models and spatial econometric models. An application of this model to farmland prices in Germany shows that prices on a county-level are cointegrated. Apart from convergence towards a long- run equilibrium, we find that price transmission also proceeds through short-term adjustments caused by neighboring regions. Acknowledegment: Financial support from the China Scholarship Council (CSC NO.201406990006) and the Deutsche Forschungsgemeinschaft (DFG) through Research Unit 2569 “Agricultural Land Markets – Efficiency and Regulation” is gratefully acknowledged. The authors also thank Oberer Gutachterausschuss für Grundstückswerte in Niedersachsen (P. Ache) for providing the data used in the analysis. JEL Codes: Q11, C23 #117 The Spatial and Temporal Diffusion of Agricultural Land Prices Abstract In the last decade, many parts of the world experienced severe increases in agricultural land prices. This price surge, however, did not take place evenly in space and time. To better understand the spatial and temporal behavior of land prices, we employ a price diffusion model that combines features of market integration models and spatial econometric models. An application of this model to farmland prices in Germany shows that prices on a county-level are cointegrated.
    [Show full text]
  • Ready to Take Offshore
    The Power Hub Offshore Wind Region BREMEN_BREMERHAVEN_CUXHAVEN_CUXLAND_NORDENHAM_WESERMARSCH Ready to take offshore Europe’s premier address for the offshore wind energy industry Legal Notice Publishers WFB Wirtschaftsförderung Bremen GmbH [Bremen Invest], BIS Bremerhavener Gesellschaft für Investitionsförderung und Stadtentwicklung mbH [BIS Bremerhaven Economic Development Company], Agentur für Wirtschaftsförderung Cuxhaven [Cuxhaven Agency for Economic Promotion], Municipality of Hagen, City of Langen, Municipality of Loxstedt, City of Nordenham, Municipality of Schiffdorf, Wirtschaftsförderung Wesermarsch GmbH [Wesermarsch Economic Promotion], Municipality of Wursten Text and Design Ann-Kathrin Marr and bigbenreklamebureau Editors Uwe Kiupel, Insa Rabbel (Bremerhaven), Dr. Erika Voigt (Bremen), Dr. Christian Rogge, Hilke von der Reith (Cuxha- ven), Jan-Christian Voos (Hagen), Katerina Henkel (Langen), Dieter Pleyn (Loxstedt), Jürgen B. Mayer (Nordenham), Stefan Grün (Schiffdorf), Ingrid Marten (Wesermarsch), Norma Warncke, Friedrich Bokeloh (Land Wursten) Cover Photo Jan Oelker: Installing a REpower 5M turbine at the Alpha Ventus offshore wind farm Photos WFB Wirtschaftsförderung Bremen GmbH, BIS Bremer- havener Gesellschaft für Investitionsförderung und Stadtentwicklung mbH, Agentur für Wirtschaftsförderung Cuxhaven, City of Nordenham, Wirtschaftsförderung Wesermarsch GmbH, Wolfhard Scheer, WAB e.V., IWES, DOTI GmbH, BEAN GmbH, Jens Meier, Norddeutsche See- kabelwerke GmbH, Beate Ulich, Foto Hagedorn, Kunst- halle Bremen / Stefan
    [Show full text]
  • Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
    Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr.
    [Show full text]
  • Actinobacteria and Myxobacteria Isolated from Freshwater Snails and Other Uncommon Iranian Habitats, Their Taxonomy and Secondary Metabolism
    Actinobacteria and Myxobacteria isolated from freshwater snails and other uncommon Iranian habitats, their taxonomy and secondary metabolism Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Nasim Safaei aus Teheran / Iran 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 24.02.2021 mündliche Prüfung (Disputation) am: 20.04.2021 Druckjahr 2021 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Safaei, N. Mast, Y. Steinert, M. Huber, K. Bunk, B. Wink, J. (2020). Angucycline-like aromatic polyketide from a novel Streptomyces species reveals freshwater snail Physa acuta as underexplored reservoir for antibiotic-producing actinomycetes. J Antibiotics. DOI: 10.3390/ antibiotics10010022 Safaei, N. Nouioui, I. Mast, Y. Zaburannyi, N. Rohde, M. Schumann, P. Müller, R. Wink.J (2021) Kibdelosporangium persicum sp. nov., a new member of the Actinomycetes from a hot desert in Iran. Int J Syst Evol Microbiol (IJSEM). DOI: 10.1099/ijsem.0.004625 Tagungsbeiträge Actinobacteria and myxobacteria isolated from freshwater snails (Talk in 11th Annual Retreat, HZI, 2020) Posterbeiträge Myxobacteria and Actinomycetes isolated from freshwater snails and
    [Show full text]