View Details
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Report Template
Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Table of Contents Below) with Family Name Provided
1 Australian Plants Society Plant Table Profiles – Sutherland Group (updated August 2021) Below is a progressive list of all cultivated plants from members’ gardens and Joseph Banks Native Plants Reserve that have made an appearance on the Plant Table at Sutherland Group meetings. Links to websites are provided for the plants so that further research can be done. Plants are grouped in the categories of: Trees and large shrubs (woody plants generally taller than 4 m) Medium to small shrubs (woody plants from 0.1 to 4 m) Ground covers or ground-dwelling (Grasses, orchids, herbaceous and soft-wooded plants, ferns etc), as well as epiphytes (eg: Platycerium) Vines and scramblers Plants are in alphabetical order by botanic names within plants categories (see table of contents below) with family name provided. Common names are included where there is a known common name for the plant: Table of Contents Trees and Large shrubs........................................................................................................................... 2 Medium to small shrubs ...................................................................................................................... 23 Groundcovers and other ground‐dwelling plants as well as epiphytes. ............................................ 64 Vines and Scramblers ........................................................................................................................... 86 Sutherland Group http://sutherland.austplants.com.au 2 Trees and Large shrubs Acacia decurrens -
Improved Taxonomy of the Genus Streptomyces
UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR. -
Fabaceae) Subfam
J. Jpn. Bot. 92(1): 34–43 (2017) Harashuteria, a New Genus of Leguminosae (Fabaceae) Subfam. Papilionoideae Tribe Phaseoleae a a b, Kazuaki OHASHI , Koji NATA and Hiroyoshi OHASHI * aSchool of Pharmacy, Iwate Medical University, Yahaba, Iwate, 028-3694 JAPAN; bHerbarium TUS, Botanical Garden, Tohoku University, Sendai, 980-0862 JAPAN *Corresponding author: [email protected] (Accepted on November 25, 2016) A new genus, Harashuteria K. Ohashi & H. Ohashi, is proposed as a member of the tribe Phaseoleae of Leguminosae (Fabaceae) based on Shuteria hirsuta Baker by comparative morphological observation and molecular phylogenetic analysis of Shuteria and its related genera. Molecular phylogenetic analysis was performed using cpDNA (trnK/matK, trnL–trnF and rpl2 intron) markers. Our molecular phylogeny shows that Shuteria hirsuta is sister to Cologania and is distinct from Shuteria vestita or Amphicarpaea, although the species has been attributed to these genera. A new combination, Harashuteria hirsuta (Baker) K. Ohashi & H. Ohashi is proposed. Key words: Amphicarpaea, Cologania, Fabaceae, Glycininae, Harashuteria, Hiroshi Hara, new genus, Phaseoleae, Shuteria, Shuteria hirsuta. The genus Shuteria Wight & Arn. was protologue. Kurz (1877) recognized Shuteria established on the basis of S. vestita Wight & hirsuta as a member of Pueraria, because he Arn. including 4–5 species in Asia (Schrire described Pueraria anabaptista Kurz citing 2005). The genus belongs to the subtribe S. hirsuta as its synonym (hence Pueraria Glycininae in the tribe Phaseoleae and is anabaptista is superfluous). Amphicarpaea closely allied to Amphicarpaea, Cologania, lineata Chun & T. C. Chen is adopted as a and Dumasia especially in the flower structures correct species by Sa and Gilbert (2010) in the (Lackey 1981). -
Citrobacter Braakii
& M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt. Ltd., Chinar Fortune City, Hoshangabad Rd., Madhya Pradesh, India Abstract Citrobacter braakii (C. braakii) is widespread in nature, mainly found in human urinary tract. The current study was attempted to investigate the effect of Mr. Trivedi’s biofield treatment on C. braakii in lyophilized as well as revived state for antimicrobial susceptibility pattern, biochemical characteristics, and biotype number. Lyophilized vial of ATCC strain of C. braakii was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10 while Gr. IIB was stored and analysed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes. First, second and third tube was analysed on day 5, 10 and 15, respectively. All experimental parameters were studied using automated MicroScan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of C. -
Phenotyping and 16S Rdna Analysis After Biofield
Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana To cite this version: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, et al.. Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen. Journal of Clinical & Medical Genomics, Omics Publishing Group, 2015, 3 (1), pp.1000129. hal-01435926 HAL Id: hal-01435926 https://hal.archives-ouvertes.fr/hal-01435926 Submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License & M cal ed ni ic li a l C G f e Trivedi et al., J Clin Med Genom 2015, 3:1 o n l o a m n r DOI: 10.4172/2472-128X.1000129 i u c s o Journal of Clinical & Medical Genomics J ISSN: 2472-128X ResearchResearch Article Article OpenOpen Access Access Phenotyping and 16S rDNA Analysis after Biofield Treatment on Citrobacter braakii: A Urinary Pathogen Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Sambhu Charan Mondal2 and Snehasis Jana2* 1Trivedi Global Inc., Eastern Avenue Suite A-969, Henderson, NV, USA 2Trivedi Science Research Laboratory Pvt. -
Study of Actinobacteria and Their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean
Study of Actinobacteria and their Secondary Metabolites from Various Habitats in Indonesia and Deep-Sea of the North Atlantic Ocean Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Chandra Risdian aus Jakarta / Indonesien 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 18.12.2019 mündliche Prüfung (Disputation) am: 04.03.2020 Druckjahr 2020 ii Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Risdian C, Primahana G, Mozef T, Dewi RT, Ratnakomala S, Lisdiyanti P, and Wink J. Screening of antimicrobial producing Actinobacteria from Enggano Island, Indonesia. AIP Conf Proc 2024(1):020039 (2018). Risdian C, Mozef T, and Wink J. Biosynthesis of polyketides in Streptomyces. Microorganisms 7(5):124 (2019) Posterbeiträge Risdian C, Mozef T, Dewi RT, Primahana G, Lisdiyanti P, Ratnakomala S, Sudarman E, Steinert M, and Wink J. Isolation, characterization, and screening of antibiotic producing Streptomyces spp. collected from soil of Enggano Island, Indonesia. The 7th HIPS Symposium, Saarbrücken, Germany (2017). Risdian C, Ratnakomala S, Lisdiyanti P, Mozef T, and Wink J. Multilocus sequence analysis of Streptomyces sp. SHP 1-2 and related species for phylogenetic and taxonomic studies. The HIPS Symposium, Saarbrücken, Germany (2019). iii Acknowledgements Acknowledgements First and foremost I would like to express my deep gratitude to my mentor PD Dr. -
Effect of Sulfonylurea Tribenuron Methyl Herbicide on Soil
b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 79–86 ht tp://www.bjmicrobiol.com.br/ Environmental Microbiology Effect of sulfonylurea tribenuron methyl herbicide on soil Actinobacteria growth and characterization of resistant strains a,b,∗ a,c d f e Kounouz Rachedi , Ferial Zermane , Radja Tir , Fatima Ayache , Robert Duran , e e e a,c Béatrice Lauga , Solange Karama , Maryse Simon , Abderrahmane Boulahrouf a Université Frères Mentouri, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Génie Microbiologique et Applications, Constantine, Algeria b Université Frères Mentouri, Institut de la Nutrition, de l’Alimentation et des Technologies Agro-Alimentaires (INATAA), Constantine, Algeria c Université Frères Mentouri, Faculté des Sciences de la Nature et de la Vie, Département de Microbiologie, Constantine, Algeria d Université Frères Mentouri, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biologie Moléculaire et Cellulaire, Constantine, Algeria e Université de Pau et des Pays de l’Adour, Unité Mixte de Recherche 5254, Equipe Environnement et Microbiologie, Pau, France f Université Frères Mentouri, Constantine 1, Algeria a r t i c l e i n f o a b s t r a c t Article history: Repeated application of pesticides disturbs microbial communities and cause dysfunctions ® Received 28 October 2016 on soil biological processes. Granstar 75 DF is one of the most used sulfonylurea herbi- Accepted 6 May 2017 cides on cereal crops; it contains 75% of tribenuron-methyl. -
Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. -
Water and Soil As Reservoirs for Mdr Genes
WATER AND SOIL AS RESERVOIRS FOR MDR GENES LUÍSA VIEIRA PEIXE UNIVERSITY OF PORTO . PORTUGAL ESCMID eLibrary 1 © by author Bacteria in the earth - appeared 3,5x109 years ago One gram of soil: up to 1010 bacterial cells & Species diversity of 4x103 to 5x104 species Antibiotics production: tens (daptomycin, vancomycin) to hundreds (erythromycin, streptomycin) of millions of years ago 2 Raynaud ESCMID & Nunan, Pone. 2014 eLibrary © by author Extensive Natural Collection of AMR Genes Antibiotic resistance is ancient: Soil, fresh and marine water phyla contain • TetM and VanA in DNA 30,000-year- old; a huge diversity of ARG genes. • Metallo-b-lactamases emerged one >> More diverse than the clinical ARG pool billion years ago. New MBL in soil Psychrobacter psychrophilus MR29-12 StrepR TetR Permafrost Siberian 15 000-35 000 anos AMR gene is the one that confers protection to a particular antibiotic (increase in MIC) when expressed. Resistome – all resistance genes of a community Network of predicted bacterial phyla for each AMR used in cross- soil comparisons (n=880) (Forsberg et al., Nature. 2014) Without human interference, selection for resistance already occurs naturally in microbial populations in soil, water and other habitats 3 Gudeta et al., FrontiersESCMID Microb. 2016; D’Costa et al, Nature. 2011; Forsberg et al, Nature.2014; Martinez J.L. Science.2010;eLibrary FEMS Microbiol Lett 296.2009; Riesenfeld et al, Envir. Microbiol. 2004 © by author What are AMR genes doing in these Bacteria? Protection against antibiotics ABR genes Physiological functions silencing E.g. detoxification; virulence, signal trafficking, intra- domain communication. 2’ N-acetyltransferase of Providencia stuartii - acetylation of peptidoglycan and gentamycin Antibiotic-producing microorganisms catQ ...Streptomyces...synthesize over half of all known antibiotics..