Discovery of Bioactive Natural Products from Actinomycetes by Inactivation and Heterologous Expression of Biosynthetic Gene Clusters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enediynes, Enyneallenes, Their Reactions, and Beyond
Advanced Review Enediynes, enyne-allenes, their reactions, and beyond Elfi Kraka∗ and Dieter Cremer Enediynes undergo a Bergman cyclization reaction to form the labile 1,4-didehy- drobenzene (p-benzyne) biradical. The energetics of this reaction and the related Schreiner–Pascal reaction as well as that of the Myers–Saito and Schmittel reac- tions of enyne-allenes are discussed on the basis of a variety of quantum chemical and available experimental results. The computational investigation of enediynes has been beneficial for both experimentalists and theoreticians because it has led to new synthetic challenges and new computational methodologies. The accurate description of biradicals has been one of the results of this mutual fertilization. Other results have been the computer-assisted drug design of new antitumor antibiotics based on the biological activity of natural enediynes, the investigation of hetero- and metallo-enediynes, the use of enediynes in chemical synthesis and C materials science, or an understanding of catalyzed enediyne reactions. " 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs Comput Mol Sci 2013. doi: 10.1002/wcms.1174 INTRODUCTION symmetry-allowed pericyclic reactions, (ii) aromatic- ity as a driving force for chemical reactions, and (iii) review on the enediynes is necessarily an ac- the investigation of labile intermediates with biradical count of intense and successful interdisciplinary A character. The henceforth called Bergman cyclization interactions of very different fields in chemistry provided deeper insight into the electronic structure involving among others organic chemistry, matrix of biradical intermediates, the mechanism of organic isolation spectroscopy, quantum chemistry, biochem- reactions, and orbital symmetry rules. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
View Details
INDEX CHAPTER NUMBER CHAPTER NAME PAGE Extraction of Fungal Chitosan and its Chapter-1 1-17 Advanced Application Isolation and Separation of Phenolics Chapter-2 using HPLC Tool: A Consolidate Survey 18-48 from the Plant System Advances in Microbial Genomics in Chapter-3 49-80 the Post-Genomics Era Advances in Biotechnology in the Chapter-4 81-94 Post Genomics era Plant Growth Promotion by Endophytic Chapter-5 Actinobacteria Associated with 95-107 Medicinal Plants Viability of Probiotics in Dairy Products: A Chapter-6 Review Focusing on Yogurt, Ice 108-132 Cream, and Cheese Published in: Dec 2018 Online Edition available at: http://openaccessebooks.com/ Reprints request: [email protected] Copyright: @ Corresponding Author Advances in Biotechnology Chapter 1 Extraction of Fungal Chitosan and its Advanced Application Sahira Nsayef Muslim1; Israa MS AL-Kadmy1*; Alaa Naseer Mohammed Ali1; Ahmed Sahi Dwaish2; Saba Saadoon Khazaal1; Sraa Nsayef Muslim3; Sarah Naji Aziz1 1Branch of Biotechnology, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 2Branch of Fungi and Plant Science, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq 3Department of Geophysics, College of remote sensing and geophysics, AL-Karkh University for sci- ence, Baghdad-Iraq *Correspondense to: Israa MS AL-Kadmy, Department of Biology, College of Science, AL-Mustansiryiah University, Baghdad-Iraq. Email: [email protected] 1. Definition and Chemical Structure Biopolymer is a term commonly used for polymers which are synthesized by living organisms [1]. Biopolymers originate from natural sources and are biologically renewable, biodegradable and biocompatible. Chitin and chitosan are the biopolymers that have received much research interests due to their numerous potential applications in agriculture, food in- dustry, biomedicine, paper making and textile industry. -
Phyre 2 Results for P0AAI9
Email [email protected] Description P0AAI9 Thu Jan 5 11:13:02 GMT Date 2012 Unique Job 67b84eb8ab23ea25 ID Detailed template information # Template Alignment Coverage 3D Model Confidence % i.d. Template Information PDB header:transferase Chain: A: PDB Molecule:malonyl coa-acyl carrier protein 1 c2g2oA_ 100.0 100 Alignment transacylase; PDBTitle: structure of e.coli fabd complexed with sulfate PDB header:transferase Chain: A: PDB Molecule:malonyl coa-acp transacylase; 2 c3eenA_ Alignment 100.0 54 PDBTitle: crystal structure of malonyl-coa:acyl carrier protein transacylase2 (fabd), xoo0880, from xanthomonas oryzae pv. oryzae kacc10331 PDB header:transferase Chain: A: PDB Molecule:malonyl acyl carrier protein 3 c3im8A_ 100.0 45 Alignment transacylase; PDBTitle: crystal structure of mcat from streptococcus pneumoniae PDB header:transferase Chain: A: PDB Molecule:malonyl coa-acyl carrier protein 4 c3ezoA_ Alignment 100.0 55 transacylase; PDBTitle: crystal structure of acyl-carrier-protein s-2 malonyltransferase from burkholderia pseudomallei 1710b PDB header:transferase Chain: A: PDB Molecule:malonyl-coa-[acyl-carrier-protein] 5 c3tqeA_ Alignment 100.0 54 transacylase; PDBTitle: structure of the malonyl coa-acyl carrier protein transacylase (fabd)2 from coxiella burnetii PDB header:transferase Chain: B: PDB Molecule:malonyl coa-acyl carrier protein 6 c3qatB_ Alignment 100.0 43 transacylase; PDBTitle: crystal structure of acyl-carrier-protein-s- malonyltransferase from2 bartonella henselae PDB header:transferase Chain: A: PDB Molecule:malonyl -
Molecular Biosystems
Molecular BioSystems View Article Online PAPER View Journal | View Issue Cloning and sequencing of the kedarcidin biosynthetic Cite this: Mol. BioSyst., 2013, gene cluster from Streptoalloteichus sp. ATCC 53650 9, 478 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics† Jeremy R. Lohman,a Sheng-Xiong Huang,a Geoffrey P. Horsman,b Paul E. Dilfer,a Tingting Huang,a Yihua Chen,b Evelyn Wendt-Pienkowskib and Ben Shenz*abcd Enediyne natural product biosynthesis is characterized by a convergence of multiple pathways, generating unique peripheral moieties that are appended onto the distinctive enediyne core. Kedarcidin (KED) possesses two unique peripheral moieties, a (R)-2-aza-3-chloro-b-tyrosine and an iso- propoxy-bearing 2-naphthonate moiety, as well as two deoxysugars. The appendage pattern of these peripheral moieties to the enediyne core in KED differs from the other enediynes studied to date with respect to stereochemical configuration. To investigate the biosynthesis of these moieties and expand our understanding of enediyne core formation, the biosynthetic gene cluster for KED was cloned from Streptoalloteichus sp. ATCC 53650 and sequenced. Bioinformatics analysis of the ked cluster revealed the presence of the conserved genes encoding for enediyne core biosynthesis, type I and type II polyketide synthase loci likely responsible for 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthonate Received 16th November 2012, formation, and enzymes known for deoxysugar biosynthesis. Genes homologous to those responsible Accepted 20th January 2013 for the biosynthesis, activation, and coupling of the L-tyrosine-derived moieties from C-1027 and DOI: 10.1039/c3mb25523a maduropeptin and of the naphthonate moiety from neocarzinostatin are present in the ked cluster, supporting 2-aza-L-tyrosine and 3,6,8-trihydroxy-2-naphthoic acid as precursors, respectively, for the www.rsc.org/molecularbiosystems (R)-2-aza-3-chloro-b-tyrosine and the 2-naphthonate moieties in KED biosynthesis. -
Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R. -
Probing Interaction Motifs for Ligand Binding Prediction from Three
PROBING INTERACTION MOTIFS FOR LIGAND BINDING PREDICTION FROM THREE PERSPECTIVES: ASSESSING PROTEIN SIMILARITY, LIGAND SIMILARITY AND COMPONENTS OF PROTEIN-LIGAND INTERACTIONS By Nan Liu A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Chemistry – Doctor of Philosophy 2015 ABSTRACT PROBING INTERACTION MOTIFS FOR LIGAND BINDING PREDICTION FROM THREE PERSPECTIVES: ASSESSING PROTEIN SIMILARITY, LIGAND SIMILARITY AND COMPONENTS OF PROTEIN-LIGAND INTERACTIONS By Nan Liu The interactions between small molecules and diverse enzyme, membrane receptor and channel proteins are associated with important biological processes and diseases. This makes the study of binding motifs between proteins and ligands appealing to scientists. We use multiple computational techniques to unveil the protein-ligand interaction motifs from three perspectives. Firstly, from the perspective of proteins, by comparing the structure differences and common features of different binding sites for the same ligand, 3-dimensional motifs that represent the favorable interactions of the same ligands can be extracted. The goal is for such a motif to represent the shared features for binding a certain ligand in unrelated proteins, while discriminating from other ligands. The 3-dimensional motifs for cholesterol and cholate binding to non-homologous protein sites have been extracted, using SimSite3D alignment and analysis of the conserved interactions between these sites. The 3-dimensional protein motif for cholesterol binding can give about 80% accuracy of true positive sites with a low false positive rate. Furthermore, an online server CholMine was established so that the users can use this approach to predict cholesterol and cholate binding sites in proteins of interest. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. -
Selective Proteolytic Activity of the Antitumor Agent Kedarcidin N
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 8009-8012, September 1993 Biochemistry Selective proteolytic activity of the antitumor agent kedarcidin N. ZEIN*t, A. M. CASAZZA*, T. W. DOYLE*, J. E. LEETt, D. R. SCHROEDERt, W. SOLOMON*, AND S. G. NADLER§ *Cancer Drug Discovery, Molecular Drug Mechanism, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 4000, Princeton, NJ 08543-4000; tChemistry Division, Bristol-Myers Squibb, Pharmaceutical Research Institute, P.O. Box 5100, Wallingford, CT 06492-7660; and §Antitumor Immunology, Bristol-Myers Squibb Pharmaceutical Research Institute, 3005 1st Avenue, Seattle, WA 98121 Communicated by William P. Jencks, May 27, 1993 ABSTRACT Kedarcidin is a potent antitumor antibiotic there is substantial in vitro chemical and structural informa- chromoprotein, composed of an enediyne-containing chro- tion (4-21). Furthermore, it was proposed that the neocarzi- mophore embedded in a highly acidic single chain polypeptide. nostatin apoprotein stabilizes and regulates the availability of The chromophore was shown to cleave duplex DNA site- the labile chromophore (4-9). As previously shown for specifically in a single-stranded manner. Herein, we report that neocarzinostatin (4-9), DNA experiments with the isolated in vitro, the kedarcidin apoprotein, which lacks any detectable chromophore and the kedarcidin chromoprotein demon- chromophore, cleaves proteins selectively. Histones that are the strated that DNA cleavage was mostly due to the chro- most opposite in net charge to the apoprotein are cleaved most mophore (N.Z. and W.S., unpublished data). However, readily. Our findings imply that the potency of kedarcidin cytotoxicity assays using human colon cancer cell lines HCT results from the combination of a DNA damaging-chro- 116 showed the chromophore and the chromoprotein to mophore and a protease-like apoprotein. -
(12) Patent Application Publication (10) Pub. No.: US 2014/0296.161 A1 Qian Et Al
US 201402961 61A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0296.161 A1 Qian et al. (43) Pub. Date: Oct. 2, 2014 (54) DIDEMININ BIOSYNTHETIC GENE CLUSTER Publication Classification INTISTRELLA MOBILIS (51) Int. Cl. (71) Applicant: King Abdullah University of Science C07K II/02 (2006.01) and Technology, Thuwal (SA) C07K I4/95 (2006.01) (72) Inventors: Pei-Yuan Qian, Hong Kong (CN); Ying (52) U.S. Cl. Sharon Xu, Hong Kong (CN); Pok-Yui CPC ............... C07K II/02 (2013.01); C07K 14/195 Lai, Hong Kong (CN) (2013.01) (73) Assignee: King Abdullah University of Science USPC ......... 514/21.1:536/23.1; 53.59. 530/324; and Technology, Thuwal (SA) 435/252.3; 435/69.1 (21) Appl. No.: 14/346,068 (57) ABSTRACT (22) PCT Filed: Sep. 21, 2012 (86). PCT No.: PCT/B2O12/OO2361 A novel Tistrella mobilis strain having Accession Deposit S371 (c)(1), Number NRRL B-50531 is provided. A method of producing (2), (4) Date: Mar. 20, 2014 a didemnin precursor, didemnin or didemnin derivative by O O using the Tistrella mobilis strain, and the therapeutic compo Related U.S. Application Data sition comprising at least one didemnin or didemnin deriva (60) Provisional application No. 61/537.416, filed on Sep. tive produced from the strain or modified strain thereof are 21, 2011. also provided. Patent Application Publication Oct. 2, 2014 Sheet 1 of 16 US 2014/0296.161 A1 OMe M-0 N.0-Melyr H II0 OMe HO s O HO Thr'III O Me OH O). -
Twenty-Three Species of Hypobarophilic Bacteria Recovered from Diverse Ecosystems 2 Exhibit Growth Under Simulated Martian Conditions at 0.7 Kpa
Schuerger and Nicholson, 2015 Astrobiology, accepted 12-02-15 1 Twenty-three Species of Hypobarophilic Bacteria Recovered from Diverse Ecosystems 2 Exhibit Growth under Simulated Martian Conditions at 0.7 kPa 3 4 Andrew C. Schuerger1* and Wayne L. Nicholson2 5 6 1Dept. of Plant Pathology, University of Florida, Gainesville, FL, email: [email protected], USA. 7 2Dept of Microbiology and Cell Science, University of Florida, Gainesville, FL; email: 8 [email protected]; USA. 9 10 11 12 Running title: Low-pressure growth of bacteria at 0.7 kPa. 13 14 15 16 17 *Corresponding author: University of Florida, Space Life Sciences Laboratory, 505 Odyssey 18 Way, Merritt Island, FL 32953. Phone 321-261-3774. Email: [email protected]. 19 20 21 22 23 Pages: 22 24 Tables: 3 25 Figures: 4 26 1 Schuerger and Nicholson, 2015 Astrobiology, accepted 12-02-15 27 Summary 28 Bacterial growth at low pressure is a new research area with implications for predicting 29 microbial activity in clouds, the bulk atmosphere on Earth, and for modeling the forward 30 contamination of planetary surfaces like Mars. Here we describe experiments on the recovery 31 and identification of 23 species of bacterial hypobarophiles (def., growth under hypobaric 32 conditions of approximately 1-2 kPa) in 11 genera capable of growth at 0.7 kPa. Hypobarophilic 33 bacteria, but not archaea or fungi, were recovered from soil and non-soil ecosystems. The 34 highest numbers of hypobarophiles were recovered from Arctic soil, Siberian permafrost, and 35 human saliva. Isolates were identified through 16S rRNA sequencing to belong to the genera 36 Carnobacterium, Exiguobacterium, Leuconostoc, Paenibacillus, and Trichococcus. -
Precursor-Directed Biosynthesis of Azinomycin a and Related Metabolites by Streptomyces Sahachi- Roi
ORBIT-OnlineRepository ofBirkbeckInstitutionalTheses Enabling Open Access to Birkbeck’s Research Degree output Precursor-Directed Biosynthesis of Azinomycin A and Related Metabolites by Streptomyces sahachi- roi https://eprints.bbk.ac.uk/id/eprint/40052/ Version: Full Version Citation: Sebbar, Abdel-Ilah (2014) Precursor-Directed Biosynthesis of Azinomycin A and Related Metabolites by Streptomyces sahachiroi. [Thesis] (Unpublished) c 2020 The Author(s) All material available through ORBIT is protected by intellectual property law, including copy- right law. Any use made of the contents should comply with the relevant law. Deposit Guide Contact: email Precursor-Directed Biosynthesis of Azinomycin A and Related Metabolites by Streptomyces sahachiroi Abdel-Ilah Sebbar Department of Biological Sciences School of Science Birkbeck College University of London A thesis submitted to the University of London for the degree of Doctor of Philosophy August 2014 Declaration The work presented in this thesis in entirely on my own, except where I have either acknowledged help from a known person or given a published reference. 15/8/14 Signed: ………………. Date:… ………………... PhD student: Abdel-Ilah Sebbar Department of Biological Sciences School of Science Birkbeck College University of London 15/8/14 Signed: Date: …………………... Supervisor: Dr. Philip Lowden Department of Biological Sciences School of Science Birkbeck College University of London 2 Abstract Azinomycins A and B are bioactive compounds produced by Streptomyces species. These naturally occurring antibiotics exhibit potent in vitro cytotoxic activity, promising in vivo antitumor activity and exert their effect by disruption of DNA replication by the formation of interstrand cross-links. The electrophilic C-10 and C-21 carbons contained within the aziridine and epoxide moieties are known to be responsible for the interstrand cross-links through alkylation of N-7 atoms of guanine bases.