JMBFS / Surname of Author Et Al. 20Xx X (X) X-Xx

Total Page:16

File Type:pdf, Size:1020Kb

JMBFS / Surname of Author Et Al. 20Xx X (X) X-Xx NOVEL ACTINOBACTERIAL DIVERSITY IN KAZAKHSTAN DESERTS SOILS AS A SOURCE OF NEW DRUG LEADS Arailym Ziyat*1, Professor Michael Goddfellow2, Ayaulym Nurgozhina1, Shynggys Sergazy1, Madiyar Nurgaziev1 Address(es): Arailym Ziyat, 1PI “National Laboratory Astana”, Centre for Life Sciences, Laboratory of Human Microbiome and Longevity, Kabanbay Batyr Ave. 53, 010000, Astana, Republic of Kazakhstan. 2Newcastle University, Faculty of Science, Agriculture & Engineering, School of Biology, NE1 7RU, Newcastle University, United Kingdom. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2019.8.4.1057-1065 ARTICLE INFO ABSTRACT Received 24. 10. 2018 Discovering new metabolites, notably antibiotics, by isolation and screening novel actinomycetes from extreme habitats gave extraordinary results that can be adapted in the future for healthcare. However, it was little attention payed to desert soils in Central Revised 13. 11. 2018 Asia, such as from Kazakhstan. Accepted 13. 11. 2018 Taxonomic approach was to isolate selectively, dereplicate and classify actinomycetes from two Kazakhstan Deserts (Betpakdala and Published 1. 2. 2019 Usturt Plateu). The most representative isolates from colour-groups were describe via 16S rRNA gene sequence analysis. Relatively large number, of strains from environmental soil samples were classified into Streptomyces genera. Moreover, three strains Regular article from two different soil samples were identified as relatively close to Pseudonocarida genera. All representative isolates were screened for bioactive compound against wild type microorganisms, as a result, of it can be interpreted that approximately half of screened strains are likely to produce metabolites which inhibits cell growth. The results of this project demonstrate for the first time that arid regions of Kazakhstan soils are rich reservoirs of cultivable novel actinobacteria with the capacity to produce bioactive compounds that can be developed as drug leads for medicine. Keywords: Actinomycetes, Kazakhstan, 16sRNA gene sequence, Streptomyces genera INTRODUCTION have been found to be a rich source of new drug leads (Manivasagan et al. 2013). According to World Health Organization (WHO) antibiotic resistance has It is known that actinomycetes are common in extreme habitats, such as acidic become a huge problem that needs immediate attention (WHO 2014). New soils (Kim et al. 2003) or deep sediments (Maldonado et al. 2005). However, antibiotics are urgently needed to kill multi-drug resistant microbial pathogens little attention has been paid to actinomycetes diversity from desert soils, yet and to treat life threatening diseases, such as cancer (Genilloud 2014). For deserts cover almost one-quarter of the Earth’s land surface. example, Klebsiella pneumonia clones are carbapenemase-resistant, which The deserts are the arid and hyper-arid areas of lands; generally ecoregions appears as a major problem in the USA (Kumarasamy et al. 2010). An contain organisms that adapted to survive in arid environmental regions and estimated two million patients in the USA are infected every year by drug- geographically with large areas of soil or rock with low organic matter. resistant pathogens and around 23000 of them die (PharmTech 2013). Actinobacteria have been isolated from desert soils, including the soils from the Microbial natural products are still considered to be the most promising source of Amargosa desert in Nevada (Luedemann 1968), the Mojave desert in southwest new drugs (Cragg and Newman 2013). Shoichet (2013) states that natural United States (Garrity et al. 1996), the Mongolian desert (Kurapova et al. products contain a range of chemical structures optimised for biological 2012), the Namibian desert (Wink et al. 2003), the Sahara desert (Zitouni et al. interactions. However, compounds should follow “the rule of five” (Lipinski et 2005; Meklat et al. 2011), the Taklamakan desert in Xinjiang province, China al. 2012). Natural products are evolutionarily selected by their ability to enter and (Luo et al. 2012), the Thar desert in Rajastan, India (Harwani 2013) and the inhibit or kill bacterial cells and are therefore better than synthetically designed desert ecosystem in the northeast of the Qinghai-Tibet plateau (Ding et al. 2013). drugs which are basically not “tailored for microbial biology” (Wright 2014). However, Kazakhstan desert soil has not been explored for actinomycetes Amongst prokaryotes, members of the phylum Actinobacteria, notably diversity. Streptomyces strains, remain a unique source of novel bioactive compounds of The Kazakhstan Republic, located in Central Asia neighbouring the Russian therapeutic interest (Lucas et al. 2012). It is now known that the genomes of Federation and China is a landlocked country, with high mountain ranges along actinobacteria contain many biosynthetic gene clusters that code for known or the eastern and south-eastern borders. Deserts and semi-deserts make up around predicted specialist metabolites (Goodfellow and Fiedler 2010). Moreover, 58% of the country. natural habitats contain a wealth of undiscovered actinobacteria (Stach et al. Deserts are divided into two geomorphological regions: Turan lowland, Plato 2003). Usturt and Betpak-Dala (Turuzbekova 2014). Within these, many geological Despite these discoveries it has become increasingly difficult to find new landscapes exist: sand (Karakum), rocky (Betpak-Dala), gravelly (Ustyurt), clay bioactive compounds from actinobacteria isolated from well-studied habitats as (Hungry Steppe), saline (Kelkor) deserts (www.zoogeo365.ru 2011). screening such organisms leads to a costly rediscovery of known metabolites According to Gvozdetskii and Mihailov (1978) the average temperature in the (Busti et al. 2006). One way of addressing these problems is to selectively Betpakdala desert and in the Usturt Plateau is 26-28°C. In some years, the isolate, dereplicate (assign in to groups), and screen representatives of novel temperature reaches 40-60°C in the Usturt Plateau. Average annual rainfall is less actinomycetes from neglected and unexplored habitats. This taxonomic approach than 120 mm and 150 mm. Usturt Plateau is located between the Caspian and to bioprospecting has been used to isolate actinobacteria from extreme biomes on Aral seas. It is semi-enclosed by steep cliffs. The Usturt Plateau is 300 m plus the premise that, harsh environmental conditions will give rise to novel above sea level and generally flat with a number of shallow shafts (Muzbel, actinobacteria with the capacity to synthesise novel metabolites (Goodfellow and Karabaur) and hollows. Sarmatian limestone is the parent rock, which weathers Fiedler 2010; Goodfellow 2013). This hypothesis is tested by selecting, into gray-brown solonetzic soils, interbedded with gypsum. dereplicating and screening actinomycetes from marine habitats, notably deeper The Betpakdala desert is located between the lower reaches of the rivers Chu and sediments. To date, novel actinomycetes from desert and marine ecosystems Sarysu on the western shore of Lake Balkhash. The western part of Betpakdala – 1057 J Microbiol Biotech Food Sci / Ziyat et al. 2019 : 8 (4) 1057-1065 is an elevated plain of flat-lying folded Mesozoic and Paleogene loose rocks. The bulk pH values of the soil samples were determined following the procedure Above lie predominantly marine and continental Paleogene sediments (sand, described by Reed and Cummings (1945). Two grams of each soil sample were sandstone, clay, gravel). Flat sections alternate with undrained depressions in the transferred to 50 ml beakers and mixed thoroughly with demineralized water. The form of logs and closed cavities with salt marshes. soil samples were left for 2 hours, then the pH of each soil was determined, in Very little attention has been past to the microbial flora of Kazakhstan Deserts. triplicate, using a glass electrode pH meter (Model 320 Mettler-Toledo AG, Kutovaya et al. (2015) states that two dominant groups of bacteria are CH.8603, Schwerzenbach, Switzerland). represented in the Aridic Calcisols extreme hyper arid desert region: The soil samples were added to pre-weighed silica crucibles and the weight of the Proteobacteria (43.9%) and Actinobacteria (10%). Therefore, it is likely that the crucibles plus soil samples accurately taken. The samples were then dried to same amount of Actinobacteria can be isolated from other arid regions, such as constant weight in a hot oven of 105°C and re-weighed. This procedure was Ustyurt Plateau. carried out in triplicate and the moisture content of the samples recorded as the percentage loss of weight in the three measurements. The crucibles plus dry soil MATERIALS AND METHODS were then placed in a muffle furnace and the temperature slowly raised to 700°C and kept constant for 30 minutes in order to burn off the organic matter prior to Soil samples overnight cooling and reweighing. The average percentage loss as weighted for three measurements was record as the organic matter content. Two soil samples from the Kazakhstan Desert were studied (Table 2.1.). The soil samples from Kazakhstan was provided by the Director of Usturt National Selective isolation and enumeration of putative actinomycetes Preserve (Mangistauskaya region) and head of city administration Sholakkorgan, Sozak district, Southern Kazakhstan region (Betpakdala desert). The soil samples A gram of each soil sample was added to 4.5 ml of 1/4 strength Ringer’s solution -1/2 were stored in plastic bags at room temperature. (9 g NaCl, 0.42
Recommended publications
  • Streptomyces As a Prominent Resource of Future Anti-MRSA Drugs
    REVIEW published: 24 September 2018 doi: 10.3389/fmicb.2018.02221 Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs Hefa Mangzira Kemung 1,2, Loh Teng-Hern Tan 1,2,3, Tahir Mehmood Khan 1,2,4, Kok-Gan Chan 5,6*, Priyia Pusparajah 3*, Bey-Hing Goh 1,2,7* and Learn-Han Lee 1,2,3,7* 1 Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 2 Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia, 4 The Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan, 5 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 6 International Genome Centre, Jiangsu University, Zhenjiang, China, 7 Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as Edited by: they tend to cause severe infections in vulnerable populations and are difficult to treat Miklos Fuzi, due to a limited range of effective antibiotics and also their ability to form biofilm. These Semmelweis University, Hungary organisms were once limited to hospital acquired infections but are now widely present Reviewed by: Dipesh Dhakal, in the community and even in animals. Furthermore, these organisms are constantly Sun Moon University, South Korea evolving to develop resistance to more antibiotics.
    [Show full text]
  • Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration.
    [Show full text]
  • Investigating the Relationship Between Amphotericin B and Extracellular
    Investigating the relationship between amphotericin B and extracellular vesicles produced by Streptomyces nodosus By Samuel John King A thesis submitted in partial fulfilment of the requirements for the degree of Master of Research School of Science and Health Western Sydney University 2017 Acknowledgements A big thank you to the following people who have helped me throughout this project: Jo, for all of your support over the last two years; Ric, Tim, Shamilla and Sue for assistance with electron microscope operation; Renee for guidance with phylogenetics; Greg, Herbert and Adam for technical support; and Mum, you're the real MVP. I acknowledge the services of AGRF for sequencing of 16S rDNA products of Streptomyces "purple". Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. ……………………………………………………..… (Signature) Contents List of Tables............................................................................................................... iv List of Figures .............................................................................................................. v Abbreviations .............................................................................................................. vi Abstract .....................................................................................................................
    [Show full text]
  • Draft Genome Sequence of Streptomyces Sp. TP-A0867, An
    Komaki et al. Standards in Genomic Sciences (2016) 11:85 DOI 10.1186/s40793-016-0207-1 SHORT GENOME REPORT Open Access Draft genome sequence of Streptomyces sp. TP-A0867, an alchivemycin producer Hisayuki Komaki1*, Natsuko Ichikawa2, Akio Oguchi2, Moriyuki Hamada1, Enjuro Harunari3, Shinya Kodani4, Nobuyuki Fujita2 and Yasuhiro Igarashi3 Abstract Streptomyces sp. TP-A0867 (=NBRC 109436) produces structurally complex polyketides designated alchivemycins A and B. Here, we report the draft genome sequence of this strain together with features of the organism and assembly, annotation, and analysis of the genome sequence. The 9.9 Mb genome of Streptomyces sp. TP-A0867 encodes 8,385 putative ORFs, of which 7,232 were assigned with COG categories. We successfully identified a hybrid polyketide synthase (PKS)/ nonribosomal peptide synthetase (NRPS) gene cluster that could be responsible for alchivemycin biosynthesis, and propose the biosynthetic pathway. The alchivemycin biosynthetic gene cluster is also present in Streptomyces rapamycinicus NRRL 5491T, Streptomyces hygroscopicus subsp. hygroscopicus NBRC 16556, and Streptomyces ascomycinicus NBRC 13981T, which are taxonomically highly close to strain TP-A0867. This study shows a representative example that distribution of secondary metabolite genes is correlated with evolution within the genus Streptomyces. Keywords: Alchivemycin, Biosynthetic gene cluster, Genome mining, Polyketide synthase, Streptomyces,Taxonomy Introduction has not been known to date. In this study, we performed Actinomycetes are known for their ability of producing a whole genome shotgun sequencing of the strain TP- variety of secondary metabolites with useful pharmaco- A0867 to elucidate the biosynthetic pathway of alchivemy- logical potency such as antimicrobial, antitumor, and cins. We herein present the draft genome sequence of immunosuppressive activities.
    [Show full text]
  • Harnessing Synthetic Biology for the Bioprospecting and Engineering of Aromatic Polyketide Synthases
    HARNESSING SYNTHETIC BIOLOGY FOR THE BIOPROSPECTING AND ENGINEERING OF AROMATIC POLYKETIDE SYNTHASES A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering (2017) MATTHEW J. CUMMINGS SCHOOL OF CHEMISTRY 1 THIS IS A BLANK PAGE 2 List of contents List of contents .............................................................................................................................. 3 List of figures ................................................................................................................................. 8 List of supplementary figures ...................................................................................................... 10 List of tables ................................................................................................................................ 11 List of supplementary tables ....................................................................................................... 11 List of boxes ................................................................................................................................ 11 List of abbreviations .................................................................................................................... 12 Abstract ....................................................................................................................................... 14 Declaration .................................................................................................................................
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Malaysian Journal of Microbiology, Vol 14(7) 2018, Pp
    Malaysian Journal of Microbiology, Vol 14(7) 2018, pp. 663-673 DOI: http://dx.doi.org/10.21161/mjm.108617 Malaysian Journal of Microbiology Published by Malaysian Society for Microbiology (In since 2011) Diversity and functional characterization of antifungal-producing Streptomyces-like microbes isolated from the rhizosphere of cajuput plants (Melaleuca leucodendron L.) Alimuddin Ali1*, Mustofa2, Widya Asmara3, Herlina Rante4 and Jaka Widada5 1Laboratory of Microbiology. Department of Biology, Universitas Negeri Makassar, South Sulawesi, Indonesia. 2Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia. 3Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia. 4Laboratory of Microbiology. Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia. 5Department of Microbiology. Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia. Email: [email protected] Received 10 August 2017; Received in revised form 7 August 2018; Accepted 8 August 2018 ABSTRACT Aims: The study was undertaken to evaluate the diversity of actinomycetes from the rhizosphere of the cajuput plant (Melaleuca leucodendron L.) using ARDRA, and to examine their in vitro antifungal potency against selected fungi. Methodology and results: A total of 78 Streptomyces-like microbes were isolated from the limestone rhizosphere of cajuput plants and cultured in SN agar medium. The ability to inhibit fungal growth was observed using a dual culture assay. The diversity of the isolates was examined by morphological and genotype profiling using ARDRA (Amplified 16S ribosomal DNA restriction analysis), following which they were assigned to eight groups. Seventeen (21.8%) strains showed the ability to produce the antifungal compound as evidenced by their antagonism in vitro against the tested fungi, namely Saccharomyces cerevisiae BY 47420, Candida albicans CGMCC 2538, Aspergillus flavus NRLL 3357, and Fusarium oxysporum KFCC 11363P in the dual culture assay.
    [Show full text]
  • A Novel Approach to the Discovery of Natural Products from Actinobacteria Rahmy Tawfik University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-24-2017 A Novel Approach to the Discovery of Natural Products From Actinobacteria Rahmy Tawfik University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Microbiology Commons Scholar Commons Citation Tawfik, Rahmy, "A Novel Approach to the Discovery of Natural Products From Actinobacteria" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6766 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Novel Approach to the Discovery of Natural Products From Actinobacteria by Rahmy Tawfik A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Cell Biology, Microbiology & Molecular Biology College of Arts and Sciences University of South Florida Major Professor: Lindsey N. Shaw, Ph.D. Edward Turos, Ph.D. Bill J. Baker, Ph.D. Date of Approval: March 22, 2017 Keywords: Secondary Metabolism, Soil, HPLC, Mass Spectrometry, Antibiotic Copyright © 2017, Rahmy Tawfik Acknowledgements I would like to express my gratitude to the people who have helped and supported me throughout this degree for both scientific and personal. First, I would like to thank my mentor and advisor, Dr. Lindsey Shaw. Although my academics were lacking prior to entering graduate school, you were willing to look beyond my shortcomings and focus on my strengths.
    [Show full text]
  • IJMICRO.2020.8816111.Pdf
    University of Calgary PRISM: University of Calgary's Digital Repository Libraries & Cultural Resources Open Access Publications 2020-11-24 Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles Bizuye, Abebe; Gedamu, Lashitew; Bii, Christine; Gatebe, Erastus; Maina, Naomi Abebe Bizuye, Lashitew Gedamu, Christine Bii, Erastus Gatebe, and Naomi Maina, “Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles,” International Journal of Microbiology, vol. 2020, Article ID 8816111, 17 pages, 2020. doi:10.1155/2020/8816111 http://dx.doi.org/10.1155/2020/8816111 Journal Article Downloaded from PRISM: https://prism.ucalgary.ca Research Article Molecular-Based Identification of Actinomycetes Species That Synthesize Antibacterial Silver Nanoparticles Abebe Bizuye ,1,2 Lashitew Gedamu,3 Christine Bii,4 Erastus Gatebe,5 and Naomi Maina 2,6 1Department of Medical Laboratory, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia 2Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Innovation and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 3Department of Biological Sciences, University of Calgary, Calgary, Canada 4Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya 5Kenya Industrial Research Development and Innovation, Nairobi, Kenya 6Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya Correspondence should be addressed to Abebe Bizuye; [email protected] Received 18 August 2020; Revised 17 October 2020; Accepted 16 November 2020; Published 24 November 2020 Academic Editor: Diriba Muleta Copyright © 2020 Abebe Bizuye et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • 1466-1476, 2012 ISSN 1819-544X This Is a Refereed Journal and All Articles Are Professionally Screened and Reviewed
    1466 Journal of Applied Sciences Research, 8(3): 1466-1476, 2012 ISSN 1819-544X This is a refereed journal and all articles are professionally screened and reviewed ORIGINAL ARTICLES Investigation on some Streptomyces species produce antibiotic with immobilized cells by using calcium alginate Mona Ibrahim Mabrouk Microbiology Department, National Organization for Drug Control and Research, Egypt. ABSTRACT In the present work, fifty isolates of actinomycetes were isolated from soil from different governments in Egypt and only 32 isolates have been selected for their ability to the antimicrobial production but they differ in their levels of activities and there were 5 isolates gave the highest antimicrobial activity and all of them belong to Streptomyces genus by studying morphological and physiological characteristics. one isolate was chosen for their highest broad spectrum activity, sensitivity antibiotic of free and immobilized cells of Streptomyces showed that immobilized cells was more effective against tested organisms. This paper refers to the application of calcium alginate with immobilized cells as biocatalyst for 6 days, with starch as carbon and calcium nitrate as nitrogen The increased antibiotic production of in immobilized cells was observed when compared with that in free cells.. Key words: Streptomyces, antibiotic production, immobilization, Immobilized cells Introduction A large number of pathogenic bacteria have become resistant to antibiotics in common use, also the emerging disease and the toxicity of currently used
    [Show full text]
  • Taxonomic Characterization of Streptomyces Strain CH54-4 Isolated from Mangrove Sediment
    Ann Microbiol (2010) 60:299–305 DOI 10.1007/s13213-010-0041-4 ORIGINAL ARTICLE Taxonomic characterization of Streptomyces strain CH54-4 isolated from mangrove sediment Rattanaporn Srivibool & Kanpicha Jaidee & Morakot Sukchotiratana & Shinji Tokuyama & Wasu Pathom-aree Received: 19 January 2010 /Accepted: 9 March 2010 /Published online: 15 April 2010 # Springer-Verlag and the University of Milan 2010 Abstract An actinobacterium, designated as strain CH54-4, wall chemotype I with no characteristic sugar, and type II was isolated from mangrove sediment on the east coast of the polar lipids that typically contain diphosphatidyl glycerol, Gulf of Thailand using starch casein agar. This isolate was phosphatidylinositol, phosphatidylethanolamine, and phos- found to contain chemical markers typical of members of the phatidylinositol mannoside. Members of the genus Strepto- genus Streptomyces: This strain possessed a broad spectrum myces are widely distributed in soils and played important of antimicrobial activity against Gram-positive, Gram- role in soil ecology (Goodfellow and Williams 1983). They negative bacteria and fungi. In addition, this strain also are prolific sources of secondary metabolites, notably showed strong activity against breast cancer cells with an antibiotics (Lazzarini et al. 2000). −1 IC50 value of 2.91 µg ml . Phylogenetic analysis of a 16S The search and discovery of novel microbes for new rRNA gene sequence showed that strain CH54-4 forms a secondary metabolites is significant in the fight against distinct clade within the Streptomyces 16S rRNA gene tree antibiotic resistant pathogens (Bernan et al. 2004) and and closely related to Streptomyces thermocarboxydus. emerging diseases (Taylor et al. 2001). One strategy is to isolate novel actinomycetes from poorly studied habitats to Keywords Mangrove sediment .
    [Show full text]
  • Diversity and Antimicrobial Activity of Culturable Endophytic Actinobacteria Associated with Acanthaceae Plants
    R ESEARCH ARTICLE doi: 10.2306/scienceasia1513-1874.2020.036 Diversity and antimicrobial activity of culturable endophytic actinobacteria associated with Acanthaceae plants a,b, c a Wongsakorn Phongsopitanun ∗, Paranee Sripreechasak , Kanokorn Rueangsawang , Rungpech Panyawuta, Pattama Pittayakhajonwutd, Somboon Tanasupawatb a Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240 Thailand b Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330 Thailand c Department of Biotechnology, Faculty of Science, Burapha University, Chonburi 20131 Thailand d National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathumthani 12120 Thailand ∗Corresponding author, e-mail: [email protected] Received 20 Oct 2019 Accepted 20 Apr 2020 ABSTRACT: In this study, a total of 52 endophytic actinobacteria were isolated from 6 species of Acanthaceae plants collected in Thailand. Most actinobacteria were obtained from the root part. Based on 16S rRNA gene analysis and phylogenetic tree, these actinobacteria were classified into 4 families (Nocardiaceae, Micromonosporaceae, Streptosporangiaceae and Streptomycetaceae) and 6 genera including Actinomycetospora (1 isolate), Dactylosporangium (1 isolate), Nocardia (3 isolates), Microbispora (5 isolates), Micromonospora (10 isolates) and Streptomyces (32 isolates). The result of antimicrobial activity screening indicated that 8 isolates, including 1 Actinomycetospora and 7 Streptomyces,
    [Show full text]