Draft Genome Sequence of Micromonospora Sp. DSW705 And

Total Page:16

File Type:pdf, Size:1020Kb

Draft Genome Sequence of Micromonospora Sp. DSW705 And Komaki et al. Standards in Genomic Sciences (2016) 11:84 DOI 10.1186/s40793-016-0206-2 SHORTGENOMEREPORT Open Access Draft genome sequence of Micromonospora sp. DSW705 and distribution of biosynthetic gene clusters for depsipeptides bearing 4-amino-2,4- pentadienoate in actinomycetes Hisayuki Komaki1*, Natsuko Ichikawa2, Akira Hosoyama2, Moriyuki Hamada1, Enjuro Harunari3, Arisa Ishikawa3 and Yasuhiro Igarashi3 Abstract Here, we report the draft genome sequence of Micromonospora sp. DSW705 (=NBRC 110037), a producer of antitumor cyclic depsipeptides rakicidins A and B, together with the features of this strain and generation, annotation, and analysis of the genome sequence. The 6.8 Mb genome of Micromonospora sp. DSW705 encodes 6,219 putative ORFs, of which 4,846 are assigned with COG categories. The genome harbors at least three type I polyketide synthase (PKS) gene clusters, one nonribosomal peptide synthetase (NRPS) gene clusters, and three hybrid PKS/NRPS gene clusters. A hybrid PKS/NRPS gene cluster encoded in scaffold 2 is responsible for rakicidin synthesis. DNA database search indicated that the biosynthetic gene clusters for depsipeptides bearing 4-amino-2,4-pentadienoate are widely present in taxonomically diverse actinomycetes. Keywords: Actinomycete, BE-43547, Micromonospora, Nonribosomal peptide synthetase, Polyketide synthase, Rakicidin, Taxonomy, Vinylamycin Introduction biosynthetic gene (rak) cluster for rakicidin D through In our screening of antitumor compounds from rare the genome analysis of Streptomyces sp. MWW064 and actinomycetes, Micromonospora sp. DSW705 collected proposed its biosynthetic pathway [8]. In this study, the from deep seawater was found to produce rakicidins A whole genome shotgun sequencing of Micromonospora and B. Rakicidins are fifteen-membered cyclic depsipep- sp. DSW705 was conducted to assess its potential in tides comprising three amino acids and a modified fatty secondary metabolism, to identify the biosynthetic genes acid. The most intriguing feature of rakicidins is the for rakicidins A and B, and to make a comparative analysis presence of a rare unusual amino acid, 4-amino-2,4-pen- with the gene cluster of rakicidin D in Streptomyces sp. tadienoate (APDA) in their cyclic structures, which is MWW064. We here report the draft genome sequence of present only in a limited range of secondary metabolites Micromonospora sp. DSW705, together with the taxonom- of actinomycetes [1–3]. To date, five rakicidin congeners ical identification of the strain, description of its genome have been reported; rakicidins A, B, and E were isolated properties, and annotation of the rakicidin gene cluster. from Micromonospora, and rakicidins C and D from Furthermore, we investigated distribution of the rak–like Streptomyces [4–7]. Recently, we disclosed the clusters in other bacterial strains to evaluate the gene distri- bution in taxonomically diverse actinomycetes. * Correspondence: [email protected] 1Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan Full list of author information is available at the end of the article © The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Komaki et al. Standards in Genomic Sciences (2016) 11:84 Page 2 of 10 Organism information On ISP 7 agars, the growth was poor. No growth was Classification and features observed on ISP 5 agar. No aerial mycelia were ob- In the screening of antitumor compounds from rare served. Substrate mycelium was orange, turning dark actinomycetes, Micromonospora sp. DSW705 was iso- brown on sporulation on ISP 2 agar. No diffusible lated from deep seawater collected in Toyama Bay, Japan pigment was observed on ISP 2, ISP 3, ISP 4, ISP 5, and found to produce BU-4664 L and rakicidins A and B ISP 6, and ISP 7 agar media. The strain bored single (unpublished). The general feature of this strain is shown spore on short sporophore. The spores were spherical in Table 1. This strain grew well on ISP 2 and ISP 4 agars. (0.7–0.8 μm in diameter) with wrinkle surface. A scanning electron micrograph of the strain is shown Table 1 Classification and general features of Micromonospora in Fig. 1. Growth occurred at 20–45 °C (optimum sp. DSW705 [16] 37 °C) and pH 5–8 (optimum pH 7). Strain DSW705 MIGS ID Property Term Evidence codea exhibited growth with 0–3 % (w/v) NaCl (optimum Classification Domain Bacteria TAS [23] 0 % NaCl). Strain DSW705 utilized arabinose, Phylum Actinobacteria TAS [24] fructose, glucose, raffinose, sucrose, and xylose for Class Actinobacteria TAS [25] growth. This strain was deposited in the NBRC culture collection with the registration number of Order Actinomycetales TAS [25–28] NBRC 110037. The genes encoding 16S rRNA were Suborder TAS [25, 28] amplified by PCR using two universal primers, 9 F Micromonosporineae and 1541R. After purification of the PCR product by Family Micromonosporaceae TAS [25, 27–30] AMPure (Beckman Coulter), the sequencing was Genus Micromonospora TAS [27, 31] carried out according to an established method [9]. Species undetermined - Homology search of the sequence by EzTaxon-e [10] Strain DSW705 IDA indicated the highest similarity (99.66 %, 1448/1453) T Gram stain Not tested, likely positive NAS to Micromonospora chalcea DSM 43026 (X92594) as the closest type strain. A phylogenetic tree was recon- Cell shape Branched mycelia IDA structed using ClustalX2 [11] and NJPlot [12] on the Motility Not reported basis of the 16S rRNA gene sequence together with Sporulation Sporulating IDA those of taxonomically close type strains showing over Temperature Grows from 20 °C to 45 °C IDA 98.5 % similarities. Evolutionary distances were range calculated using Kimura’s two-parameter model [13]. Optimum 37 °C IDA The tree has been deposited into TreeBase (http:// temperature purl.org/phylo/treebase/phylows/study/TB2:S19405). In pH range; 5 to 8; 7 IDA the phylogenetic tree, strain DSW705 and M. chalcea Optimum DSM 43026T (X92594) formed a monophyletic cluster Carbon Arabinose, fructose, glucose, IDA with a bootstrap resampling value of 100 % (Fig. 2). source raffinose, sucrose, xylose MIGS-6 Habitat Sea water NAS MIGS-6.3 Salinity Grows from 0 % to 3 % NaCl IDA MIGS-22 Oxygen Aerobic IDA requirement MIGS-15 Biotic Free-living IDA relationship MIGS-14 Pathogenicity Not reported MIGS-4 Geographic Toyama Bay, Japan NAS location MIGS-5 Sample October 10, 2005 NAS collection MIGS-4.1 Latitude Not reported MIGS-4.2 Longitude Not reported MIGS-4.4 Altitude Not reported aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, Fig. 1 Scanning electron micrograph of Micromonospora sp. DSW705 but based on a generally accepted property for the species, or anecdotal grown on 1/2 ISP 2 agar for 7 days at 28 °C. Bar, 2 μm evidence). These evidence codes are from the Gene Ontology project [32] Komaki et al. Standards in Genomic Sciences (2016) 11:84 Page 3 of 10 Fig. 2 Phylogenetic tree of Micromonospora sp. DSW705 and phylogenetically close type strains showing over 98.5 % similarity to strain DSW705 based on 16S rRNA gene sequences. The accession numbers for 16S rRNA genes are shown in parentheses. The tree was reconstructed by the neighbor-joining method [34] using sequences aligned by ClustalX2 [11]. All positions containing gaps were eliminated. The building of the tree also involves a bootstrapping process repeated 1,000 times to generate a majority consensus tree, and only bootstrap values above 50 % are shown at T branching points. Actinoplanes teichomyceticus NBRC 13999 was used as an outgroup. Bar, 0.005 Knuc substitutions per nucleotide position Chemotaxonomic data Growth conditions and genomic DNA preparation The isomer of diaminopimelic acid in the whole-cell Micromonospora sp. DSW705 was deposited in the NBRC hydrolysate was analyzed according to the method culture collection with the registration number of NBRC described by Hasegawa et al. [14]. Isoprenoid quinones and 110037. The monoisolate of strain DSW705 was grown on cellular fatty acids were analyzed as described previously a polycarbonate membrane filter (Advantec) on double [15]. The whole-cell hydrolysate of strain DSW705 con- tained meso-diaminopimelic acid as its diagnostic peptido- Table 2 Project information glycan diamino acid. The predominant menaquinone was MIGS ID Property Term identified as MK-10(H4); MK-9(H4), MK-10(H2), and MK- MIGS 31 Finishing quality Improved-high-quality draft 10(H6) were also detected as minor components. The MIGS-28 Libraries used 454 shotgun library, Illumina major cellular fatty acids were found to be iso-C16:0, iso- paired-end library C15:0 and anteiso-C17:0. MIGS 29 Sequencing platforms 454 GS FLX+, Illumina HiSeq1000 MIGS 31.2 Fold coverage 5 ×, 100 ×, respectively MIGS 30 Assemblers Newbler v2.6, GenoFinisher Genome sequencing information MIGS 32 Gene calling method Progidal Genome project history Locus tag MSP03 In collaboration between Toyama Prefectural University and NBRC, the organism was selected for genome se- GenBank ID BBVA00000000 quencing to elucidate the rakicidin biosynthetic pathway. GenBank date of release March 30, 2016 The draft genome sequences have been deposited in the GOLD ID Not registered INSDC database under the accession number BioProject PRJDB3540 BBVA01000001-BBVA01000024. The project informa- MIGS 13 Source material identifier NBRC 110037 tion and its association with MIGS version 2.0 compli- Project relevance Industrial ance are summarized in Table 2 [16].
Recommended publications
  • Estimation of Antimicrobial Activities and Fatty Acid Composition Of
    Estimation of antimicrobial activities and fatty acid composition of actinobacteria isolated from water surface of underground lakes from Badzheyskaya and Okhotnichya caves in Siberia Irina V. Voytsekhovskaya1,*, Denis V. Axenov-Gribanov1,2,*, Svetlana A. Murzina3, Svetlana N. Pekkoeva3, Eugeniy S. Protasov1, Stanislav V. Gamaiunov2 and Maxim A. Timofeyev1 1 Irkutsk State University, Irkutsk, Russia 2 Baikal Research Centre, Irkutsk, Russia 3 Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Karelia, Russia * These authors contributed equally to this work. ABSTRACT Extreme and unusual ecosystems such as isolated ancient caves are considered as potential tools for the discovery of novel natural products with biological activities. Acti- nobacteria that inhabit these unusual ecosystems are examined as a promising source for the development of new drugs. In this study we focused on the preliminary estimation of fatty acid composition and antibacterial properties of culturable actinobacteria isolated from water surface of underground lakes located in Badzheyskaya and Okhotnichya caves in Siberia. Here we present isolation of 17 strains of actinobacteria that belong to the Streptomyces, Nocardia and Nocardiopsis genera. Using assays for antibacterial and antifungal activities, we found that a number of strains belonging to the genus Streptomyces isolated from Badzheyskaya cave demonstrated inhibition activity against Submitted 23 May 2018 bacteria and fungi. It was shown that representatives of the genera Nocardia and Accepted 24 September 2018 Nocardiopsis isolated from Okhotnichya cave did not demonstrate any tested antibiotic Published 25 October 2018 properties. However, despite the lack of antimicrobial and fungicidal activity of Corresponding author Nocardia extracts, those strains are specific in terms of their fatty acid spectrum.
    [Show full text]
  • Streptomyces As a Prominent Resource of Future Anti-MRSA Drugs
    REVIEW published: 24 September 2018 doi: 10.3389/fmicb.2018.02221 Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs Hefa Mangzira Kemung 1,2, Loh Teng-Hern Tan 1,2,3, Tahir Mehmood Khan 1,2,4, Kok-Gan Chan 5,6*, Priyia Pusparajah 3*, Bey-Hing Goh 1,2,7* and Learn-Han Lee 1,2,3,7* 1 Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 2 Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia, 4 The Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan, 5 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 6 International Genome Centre, Jiangsu University, Zhenjiang, China, 7 Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as Edited by: they tend to cause severe infections in vulnerable populations and are difficult to treat Miklos Fuzi, due to a limited range of effective antibiotics and also their ability to form biofilm. These Semmelweis University, Hungary organisms were once limited to hospital acquired infections but are now widely present Reviewed by: Dipesh Dhakal, in the community and even in animals. Furthermore, these organisms are constantly Sun Moon University, South Korea evolving to develop resistance to more antibiotics.
    [Show full text]
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Potential of Bioremediation and PGP Traits in Streptomyces As Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture
    pathogens Review Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture Neli Romano-Armada 1,2 , María Florencia Yañez-Yazlle 1,3, Verónica P. Irazusta 1,3, Verónica B. Rajal 1,2,4,* and Norma B. Moraga 1,2 1 Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; [email protected] (N.R.-A.); fl[email protected] (M.F.Y.-Y.); [email protected] (V.P.I.); [email protected] (N.B.M.) 2 Facultad de Ingeniería, UNSa, Salta 4400, Argentina 3 Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina 4 Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore * Correspondence: [email protected] Received: 15 December 2019; Accepted: 8 February 2020; Published: 13 February 2020 Abstract: Environmental limitations influence food production and distribution, adding up to global problems like world hunger. Conditions caused by climate change require global efforts to be improved, but others like soil degradation demand local management. For many years, saline soils were not a problem; indeed, natural salinity shaped different biomes around the world. However, overall saline soils present adverse conditions for plant growth, which then translate into limitations for agriculture. Shortage on the surface of productive land, either due to depletion of arable land or to soil degradation, represents a threat to the growing worldwide population. Hence, the need to use degraded land leads scientists to think of recovery alternatives.
    [Show full text]
  • Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacter Oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide
    marine drugs Article Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacter oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide Hongfei Liu 1, Wei Ren 1,2, Mingsheng Ly 1,3, Haifeng Li 4,* and Shujun Wang 1,3,* 1 Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China 2 Collaborative Innovation Center of Modern Bio-Manufacture, Anhui University, Hefei 230039, China 3 Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China 4 Medical College, Hangzhou Normal University, Hangzhou 311121, China * Correspondence: [email protected] (H.L.); [email protected] (S.W.); Tel.: +86-571-2886-5668 (H.L.); +86-518-8589-5421 (S.W.) Received: 16 May 2019; Accepted: 9 August 2019; Published: 19 August 2019 Abstract: A GH49 dextranase gene DexKQ was cloned from marine bacteria Arthrobacter oxydans KQ11. It was recombinantly expressed using an Escherichia coli system. Recombinant DexKQ dextranase of 66 kDa exhibited the highest catalytic activity at pH 9.0 and 55 ◦C. kcat/Km of 1 1 recombinant DexKQ at the optimum condition reached 3.03 s− µM− , which was six times that of 1 1 commercial dextranase (0.5 s− µM− ). DexKQ possessed a Km value of 67.99 µM against dextran T70 substrate with 70 kDa molecular weight. Thin-layer chromatography (TLC) analysis showed that main hydrolysis end products were isomalto-oligosaccharide (IMO) including isomaltotetraose, isomaltopantose, and isomaltohexaose. When compared with glucose, IMO could significantly improve growth of Bifidobacterium longum and Lactobacillus rhamnosus and inhibit growth of Escherichia coli and Staphylococcus aureus.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Induction of Secondary Metabolism Across Actinobacterial Genera
    Induction of secondary metabolism across actinobacterial genera A thesis submitted for the award Doctor of Philosophy at Flinders University of South Australia Rio Risandiansyah Department of Medical Biotechnology Faculty of Medicine, Nursing and Health Sciences Flinders University 2016 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................ ii TABLE OF FIGURES ............................................................................................. viii LIST OF TABLES .................................................................................................... xii SUMMARY ......................................................................................................... xiii DECLARATION ...................................................................................................... xv ACKNOWLEDGEMENTS ...................................................................................... xvi Chapter 1. Literature review ................................................................................. 1 1.1 Actinobacteria as a source of novel bioactive compounds ......................... 1 1.1.1 Natural product discovery from actinobacteria .................................... 1 1.1.2 The need for new antibiotics ............................................................... 3 1.1.3 Secondary metabolite biosynthetic pathways in actinobacteria ........... 4 1.1.4 Streptomyces genetic potential: cryptic/silent genes ..........................
    [Show full text]
  • Identification and Analysis of the Paulomycin Biosynthetic Gene Cluster and Titer Improvement of the Paulomycins in Streptomyces Paulus NRRL 8115
    RESEARCH ARTICLE Identification and Analysis of the Paulomycin Biosynthetic Gene Cluster and Titer Improvement of the Paulomycins in Streptomyces paulus NRRL 8115 Jine Li, Zhoujie Xie, Min Wang, Guomin Ai, Yihua Chen* State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R. China * [email protected] Abstract The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin produc- OPEN ACCESS ers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The Citation: Li J, Xie Z, Wang M, Ai G, Chen Y (2015) paulomycin biosynthetic gene clusters were defined by comparative analyses of the two ge- Identification and Analysis of the Paulomycin Biosynthetic Gene Cluster and Titer Improvement of nomes together with the genome of the third paulomycin producer Streptomyces albus the Paulomycins in Streptomyces paulus NRRL 8115. J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was con- PLoS ONE 10(3): e0120542. doi:10.1371/journal. firmed by inactivation of two genes involved in biosynthesis of the paulomycose branched pone.0120542 chain (pau11) and the ring A moiety (pau18)inStreptomyces paulus NRRL 8115. After de- Academic Editor: Marie-Joelle Virolle, University termining the gene cluster boundaries, a convergent biosynthetic model was proposed for Paris South, FRANCE paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high- Received: July 18, 2014 producing strain was constructed by expressing an activator-encoding gene (pau13)inS. Accepted: January 26, 2015 paulus, setting the stage for future investigations.
    [Show full text]
  • Genomic Characterization of a New Endophytic Streptomyces Kebangsaanensis Identifies Biosynthetic Pathway Gene Clusters for Novel Phenazine Antibiotic Production
    Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production Juwairiah Remali1, Nurul `Izzah Mohd Sarmin2, Chyan Leong Ng3, John J.L. Tiong4, Wan M. Aizat3, Loke Kok Keong3 and Noraziah Mohamad Zin1 1 School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia 2 Centre of PreClinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia 3 Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia 4 School of Pharmacy, Taylor's University, Subang Jaya, Selangor, Malaysia ABSTRACT Background. Streptomyces are well known for their capability to produce many bioac- tive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods. The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results. The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome Submitted 8 May 2017 with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and Accepted 4 August 2017 Published 29 November 2017 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as Corresponding author Noraziah Mohamad Zin, a gene cluster predicted to be responsible for phenazine biosynthesis.
    [Show full text]
  • Phylogenetic Characterization, Fermentation and Biological Activities of an Antibiotic Producing Streptomyces Clavuligerus Isolated from KSA
    Int.J.Curr.Microbiol.App.Sci (2014) 3(12) xx-xx ISSN: 2319-7706 Volume 3 Number 12 (2014) pp. 519-534 http://www.ijcmas.com Original Research Article Phylogenetic characterization, fermentation and biological activities of an antibiotic producing Streptomyces clavuligerus isolated from KSA Houssam M. Atta1,2* and Ayman M. Yassen2 1Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt 2Biotechnology Department, Faculty of Education and Science, Taif University, Al-Khurmah branch, KSA *Corresponding author A B S T R A C T This work was carried out for the biosynthesis of antimicrobial substance that demonstrated inhibitory effects against pathogenic microorganisms from Streptomyces sp. The KSA-T180 isolate has been considered the most potent, this was identified by biochemical, chemotaxonomic, morphological and physiological K e y w o r d s properties consistent with classification in the genus Streptomyces, with the nearest species being Streptomyces clavuligerus. Furthermore, a phylogenetic analysis of Actinomycetes, the 16S rDNA gene sequence and ribosomal database project consistent with Conventional conventional taxonomy confirmed that strain KSA-T180 was most similar to taxonomy, Streptomyces clavuligerus (98%). The active metabolite was extracted using n- Phylogenetic Butanol (1:1, v/v) at pH 7.0. The separation of the active ingredient of the analysis, antibacterial agent and its purification was performed using both thin layer Fermentation, chromatography (TLC) and column chromatography (CC) techniques. The Biological chemical characteristics of the antibacterial agent(s) viz. elemental analysis and activities and spectroscopic characteristics have been investigated. This analysis indicates a clavulanic acid suggested empirical formula of C8H8NO5, ultraviolet (UV) absorption spectrum recorded a maximum absorption peak at 285 nm, Infra-red (IR) spectrum showed characteristic twenty-three bands and Mass spectrum showed that the molecular weight at 200.0.
    [Show full text]
  • Bioinformatic Analysis of Streptomyces to Enable Improved Drug Discovery
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2019 BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY Kaitlyn Christina Belknap University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Belknap, Kaitlyn Christina, "BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY" (2019). Master's Theses and Capstones. 1268. https://scholars.unh.edu/thesis/1268 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY BY KAITLYN C. BELKNAP B.S Medical Microbiology, University of New Hampshire, 2017 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Genetics May, 2019 ii BIOINFORMATIC ANALYSIS OF STREPTOMYCES TO ENABLE IMPROVED DRUG DISCOVERY BY KAITLYN BELKNAP This thesis was examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Genetics by: Thesis Director, Brian Barth, Assistant Professor of Pharmacology Co-Thesis Director, Cheryl Andam, Assistant Professor of Microbial Ecology Krisztina Varga, Assistant Professor of Biochemistry Colin McGill, Associate Professor of Chemistry (University of Alaska Anchorage) On February 8th, 2019 Approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Draft Genome Sequence of Streptomyces Sp. TP-A0867, An
    Komaki et al. Standards in Genomic Sciences (2016) 11:85 DOI 10.1186/s40793-016-0207-1 SHORT GENOME REPORT Open Access Draft genome sequence of Streptomyces sp. TP-A0867, an alchivemycin producer Hisayuki Komaki1*, Natsuko Ichikawa2, Akio Oguchi2, Moriyuki Hamada1, Enjuro Harunari3, Shinya Kodani4, Nobuyuki Fujita2 and Yasuhiro Igarashi3 Abstract Streptomyces sp. TP-A0867 (=NBRC 109436) produces structurally complex polyketides designated alchivemycins A and B. Here, we report the draft genome sequence of this strain together with features of the organism and assembly, annotation, and analysis of the genome sequence. The 9.9 Mb genome of Streptomyces sp. TP-A0867 encodes 8,385 putative ORFs, of which 7,232 were assigned with COG categories. We successfully identified a hybrid polyketide synthase (PKS)/ nonribosomal peptide synthetase (NRPS) gene cluster that could be responsible for alchivemycin biosynthesis, and propose the biosynthetic pathway. The alchivemycin biosynthetic gene cluster is also present in Streptomyces rapamycinicus NRRL 5491T, Streptomyces hygroscopicus subsp. hygroscopicus NBRC 16556, and Streptomyces ascomycinicus NBRC 13981T, which are taxonomically highly close to strain TP-A0867. This study shows a representative example that distribution of secondary metabolite genes is correlated with evolution within the genus Streptomyces. Keywords: Alchivemycin, Biosynthetic gene cluster, Genome mining, Polyketide synthase, Streptomyces,Taxonomy Introduction has not been known to date. In this study, we performed Actinomycetes are known for their ability of producing a whole genome shotgun sequencing of the strain TP- variety of secondary metabolites with useful pharmaco- A0867 to elucidate the biosynthetic pathway of alchivemy- logical potency such as antimicrobial, antitumor, and cins. We herein present the draft genome sequence of immunosuppressive activities.
    [Show full text]