Journal of Fungi Review A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification Robin Patel 1,2 1 Department of Laboratory Medicine and Pathology, Division of Clinical Microbiology, Mayo Clinic, Rochester, MN 55905, USA;
[email protected]; Tel.: +1-507-538-0579; Fax: +1-507-284-4272 2 Department of Medicine, Mayo Clinic, Division of Infectious Diseases, Rochester, MN 55905, USA Received: 15 November 2018; Accepted: 25 December 2018; Published: 3 January 2019 Abstract: As a result of its being inexpensive, easy to perform, fast and accurate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) is quickly becoming the standard means of bacterial identification from cultures in clinical microbiology laboratories. Its adoption for routine identification of yeasts and even dimorphic and filamentous fungi in cultures, while slower, is now being realized, with many of the same benefits as have been recognized on the bacterial side. In this review, the use of MALDI-ToF MS for identification of yeasts, and dimorphic and filamentous fungi grown in culture will be reviewed, with strengths and limitations addressed. Keywords: MALDI-ToF MS; yeast; fungus 1. Background and Introduction The concept of using mass spectrometry for bacterial identification was suggested by Catherine Fenselau and John Anhalt in 1975 [1], but at the time, intact proteins were not analyzable due to fragmentation during the mass spectrometry (MS) process, with mass spectrometric analysis of intact proteins only becoming possible a decade later. In 1985, Koichi Tanaka described a “soft desorption ionization” technique allowing mass spectrometry of biological macromolecules achieved using ultrafine metal powder and glycerol; for his discovery, he was awarded the Nobel Prize in Chemistry [2].