Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry REVIEW published: 18 January 2021 doi: 10.3389/fchem.2020.598487 Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry Ahsan Habib 1,2*, Lei Bi 1,3, Huanhuan Hong 1,3 and Luhong Wen 1,3* 1 The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China, 2 Department of Chemistry, University of Dhaka, Dhaka, Bangladesh, 3 China Innovation Instrument Co., Ltd., Ningbo, China In analytical science, mass spectrometry (MS) is known as a “gold analytical tool” because of its unique character of providing the direct molecular structural information of the relevant analyte molecules. Therefore, MS technique has widely been used in all branches of chemistry along with in proteomics, metabolomics, genomics, lipidomics, environmental monitoring etc. Mass spectrometry-based methods are very much needed for fast and reliable detection and quantification of drugs of abuse and explosives in order Edited by: to provide fingerprint information for criminal investigation as well as for public security Mário Barroso, Portuguese National Institute of Legal and safety at public places, respectively. Most of the compounds exist as their neutral Medicine and Forensic form in nature except proteins, peptides, nucleic acids that are in ionic forms intrinsically. Sciences, Portugal In MS, ion source is the heart of the MS that is used for ionizing the electrically neutral Reviewed by: molecules. Performance of MS in terms of sensitivity and selectivity depends mainly on Hani Nasser Abdelhamid, Assiut University, Egypt the efficiency of the ionization source. Accordingly, much attention has been paid to Keyller Bastos Borges, develop efficient ion sources for a wide range of compounds. Unfortunately, none of Universidade Federal de São João del-Rei, Brazil the commercial ion sources can be used for ionization of different types of compounds. *Correspondence: Moreover, in MS, analyte molecules must be released into the gaseous phase and Ahsan Habib then ionize by using a suitable ion source for detection/quantification. Under these [email protected] circumstances, fabrication of new ambient ion source and ultrasonic cutter blade-based Luhong Wen [email protected] non-thermal and thermal desorption methods have been taken into account. In this paper, challenges and strategies of mass spectrometry analysis of the drugs of abuse Specialty section: and explosives through fabrication of ambient ionization sources and new desorption This article was submitted to Analytical Chemistry, methods for non-volatile compounds have been described. We will focus the literature a section of the journal progress mostly in the last decade and present our views for the future study. Frontiers in Chemistry Keywords: drugs of abuse, explosives, ambient ionization source, hollow cathode discharge ionization, headspace Received: 24 August 2020 method, non-thermal desorption, tribological effect, mechanism of ionization and desorption Accepted: 04 December 2020 Published: 18 January 2021 Citation: INTRODUCTION Habib A, Bi L, Hong H and Wen L (2021) Challenges and Strategies of Chemical Analysis of Drugs of Abuse Mass spectrometry (MS) is one of the most powerful and widely used modern physical-chemical and Explosives by Mass Spectrometry. methods for analyzing all types of compounds and most of the elements in the periodic table with Front. Chem. 8:598487. high selectivity and sensitivity. In analytical science, MS is known as a “gold standard” because of doi: 10.3389/fchem.2020.598487 its unique character of providing the direct molecular structural information of the compounds Frontiers in Chemistry | www.frontiersin.org 1 January 2021 | Volume 8 | Article 598487 Habib et al. Mass Spectrometry for Drugs/Explosives of interest. Therefore, MS technique has been widely used in for detection and quantification of the relevant analytes (Fenn all branches of chemistry along in proteomics, metabolomics, et al., 1989; Gale and Smith, 1993; McLuckey et al., 1996; genomics, lipidomics, environmental monitoring etc. and also in Feng and Smith, 2000; Byrdwell, 2001; Cody et al., 2005; technology. MS-based techniques have already been proven as a Shiea et al., 2005; Takáts et al., 2005; Hiraoka et al., 2006, versatile analytical tool for solving many analytical problems such 2007, 2015; Song and Cooks, 2006; Ganeev et al., 2007; Na as characterization of biomolecules such as proteins, peptides, et al., 2007a,b; Cotte-Rodríguez et al., 2008; Harper et al., 2008; nucleic acids and also analysis of polymers. MS has widely Zhang et al., 2009; Chen et al., 2010, 2017; Nilles et al., 2010; been used to elucidate the structure of the compounds of Garcia-Reyes et al., 2011; Takada et al., 2011; Habib et al., interest through fragmentation using tandem MS (MS2) as well. 2013, 2014, 2015, 2020; Sekar et al., 2013; Su et al., 2013; In fact, MS technique is the method of choice for industrial, Groeneveld et al., 2015; Castiglioni et al., 2016; Damon et al., clinical, biological, forensic, environmental monitoring, isotope 2016; Kumano et al., 2018; Tavares et al., 2018; Usmanov et al., etc. analyses. The development of the MS-imaging system is a 2018; Borges et al., 2019; Feider et al., 2019; Ng et al., 2019) and/or milestone to the scientific world because of its precise medical couple with a separation technique (chromatographic) such as diagnosis such as tumor, cancer etc. through characterization gas chromatography (GC), liquid chromatography (LC), high of complex biomolecules (Rohner et al., 2005; McDonnell and performance liquid chromatography (HPLC), electrophoresis, Heeren, 2007; Addie et al., 2015). paper chromatography etc. and then coupled with an ionization Furthermore, application of MS in space research that started source for ionization (Horning et al., 1974; Carroll et al., 1975; in the 1950’s by the US Naval Research Laboratory has already Alexandrov et al., 1984; Whitehouse et al., 1985; Olivares et al., been proven its high-throughput as an indispensable analytical 1987; Smith et al., 1988a,b; Lee et al., 1989; Covey and Devanand, tool in science and technology (Robert, 2008; Arkin et al., 2010). 2002; Sigman et al., 2006; Pizzolato et al., 2007; Khan et al., Mass spectrometry has been used by the International Space 2015; Gilbert-López et al., 2019). Mass spectrometer comprises Station for monitoring air quality, propellant leakage of the Space an ion source, mass analyzer and a detector. In MS, ion source Shuttles etc. (NASA, 2007). Japan Aerospace Exploration Agency is considered as the heart of it because the sensitivity mostly (JAXA) has already been taken a collaborative research with the depends on the ionization efficiency of the ion source. Since the Indian Space Research Organization (ISRO) to send the H3- discovery of MS in the 1950’s, electron ionization (EI) (Dempster, launch vehicle and the rover called as lunar polar exploration 1918, 1921), chemical ionization (CI) (Fales et al., 1972; Harrison, mission that for searching the existence of water to the south 1992; Field, 2002), fast atom bombardment (FAB) ionization pole region of the moon in 2024 (Hoshino et al., 2019, 2020; (Barber et al., 1981a,b, 1982), Panning ionization (Penning, The Yomiuri Shimbun, 2019). It is noted that the outstanding 1927; Arango et al., 2006; Hiraoka et al., 2006) were widely analytical performance of MS-based techniques facilitated us to used for ionization of the compounds of interest under vacuum achieve adequate knowledge and understanding about the solar condition. In the 1970s, Carroll and co-workers at the Baylor system as well as the universe. College of Medicine invented the atmospheric pressure chemical Applications of the MS technique should be emphasized ionization (APCI) (Horning et al., 1973) that was applied to into two general types: (i) detection and characterization of gas chromatography-mass spectrometry (GC-MS) (Carroll et al., compounds introduced into the MS where it can be considered 1975) and liquid chromatography-mass spectrometry (LC-MS) as a powerful detector and (ii) investigation of physical and/or (Horning et al., 1974). In 1975, a corona discharge electrode chemical transformations of the compounds being studied. In developed that has widely been used as an APCI ion source for the former case, MS couples directly with an ionization source commercially available MS system (Byrdwell, 2001). In the history of MS, development and application of electrospray ionization (ESI) opened a new research arena for the Abbreviations: MS, mass spectrometry; MS/MS, mass spectrometry/mass spectrometry; IMS, ion mobility spectrometry; GC, gas chromatography; LC, analysis of macromolecules and biological materials (Whitehouse liquid chromatography; HPLC, high performance liquid chromatography; GC- et al., 1985; Meng et al., 1988; Smith et al., 1988a, 1990; Fenn MS, gas chromatography-mass spectrometry; LC-MS, liquid chromatography- et al., 1989, 1990, 1997; Lee et al., 1989; Loo et al., 1990; Cole, mass spectrometry; HPLC-MS, high performance liquid chromatography- 1997; Kebarle, 2000). Electrospray ionization (ESI) is a technique mass spectrometry; MSE, microfluidic surface extractor; DBDI, dielectric that uses high voltage to generate ions from an aerosol of charged barrier discharge ionization; HCDI, hollow cathode discharge ionization; ac/dc-APCI-ac/dc, atmospheric pressure chemical ionization; ESI, electrospray liquid droplets. Since its first discover by Rayleigh (1882) for ionization; Nano-ESI, nano-electrospray
Recommended publications
  • Direct Analysis of Hops by Leaf Spray and Paper Spray Mass Spectrometry
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-2012 Direct Analysis of Hops by Leaf Spray and Paper Spray Mass Spectrometry Kari Blain Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Blain, Kari, "Direct Analysis of Hops by Leaf Spray and Paper Spray Mass Spectrometry" (2012). Master's Theses. 100. https://scholarworks.wmich.edu/masters_theses/100 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. DIRECT ANALYSIS OF HOPS BY LEAF SPRAY AND PAPER SPRAY MASS SPECTROMETRY Kari Blain, M.S. Western Michigan University, 2012 The objective of this research is to develop a new and innovative method of hops analysis, which is much faster than standard testing methods, as well as reduce the amount of consumables and solvent used. A detailed discussion on the development of an ambient ionization mass spectrometry method called paper spray (PS-MS) and leaf spray (LS-MS) mass spectrometry will be presented. This research investigates the use of PS-MS and LS-MS techniques to determine the α- and β- acids present in hops. PS-MS and LS-MS provide a fast way to analyze hops samples by delivering data as rapidly as a UV-Vis measurement while providing information similar to lengthy liquid chromatographic separations. The preliminary results shown here indicate that PS-MS could be used to determine cohumulone and α/β ratios.
    [Show full text]
  • Recent Progress in Laser Analytics
    KOLUMNE 417 CHIMIA 44 (1990) Nr.I~ (Ikzem""r) Chimia 44 (/990) 417 424 <&') Schll'ei=. Chemiker- Verhand; ISSN 0009 4293 Recent Progress in Laser Analytics Analytical methods are on their way to mass spectrometry (MS). In 1946, William penetrate the biological sciences. In this E. Stephens (University of Pennsylvania in trend, laser technology plays an important Philadelphia) described a mass spectrome- role, especially in the form of laser-desorp- ter with time dispersion, followed by the tion mass spectrometry (LD-MS). ion velocitron of A.E. Cameron and D.£. The remarkable progress made in this Eggers. These devices represented early field is nicely demonstrated by a statement forms of the time-of-flight mass spectrom- made in 1986 by Frank H. Field, a specialist eter (TOF-MS) first described by the Swiss in the mass spectrometric investigation of R. Keller in 1949. biomolecules and Professor at Rockefeller The first commercially successful TOF- University in New York. Citing Professor MS was introduced by Bendix Corpora- In dieser Kalwnne schreibl Field: 'The mass region of real interest for tion, and it was based on the design re- Prof Dr. H. M. Widmer proteins lies between 40000 and 100000 ported in 1955 by William C. Wile)' and Forse/lUng Analylik Da, and one can only speculate as to l. H. McLaren (Bendix Aviation Corpom- Ciha-Geigy AG. FO 3.2 CH 4{)()2 Basel whether such monster gaseos ions could be tion). In these early days of TOF-MS, the regelmiissig eigene Meinungsarlike/ oder liidl Giiste produced. My personal feeling is that to do ions were generated by electron impact ein.
    [Show full text]
  • Advances in Ionization for Mass Spectrometry † ‡ ‡ Patricia M
    Review pubs.acs.org/ac Advances in Ionization for Mass Spectrometry † ‡ ‡ Patricia M. Peacock, Wen-Jing Zhang, and Sarah Trimpin*, † First State IR, LLC, 118 Susan Drive, Hockessin, Delaware 19707, United States ‡ Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States ■ CONTENTS ■ EMERGING DEVELOPMENTS RELATED TO NEWER IONIZATION TECHNOLOGIES Scope 372 Emerging Developments Related to Newer Ioniza- A relatively new means of transferring small, large, volatile, and tion Technologies 372 nonvolatile compounds from the solid or solution state directly Electrospray-Based Ambient Ionization 375 into the gas phase as ions, falling under the general term inlet Discharge-Based Ambient Ionization 377 ionization and individually termed matrix-assisted ionization Traditional Ionization Methods for MS 381 (MAI), solvent-assisted ionization (SAI), or laserspray Technologies Using a Laser for Ionization 381 ionization inlet (LSI) if a laser is used, continues to be API Ionization 383 developed as a sensitive and robust ionization method in MS. Author Information 384 In MAI, specific small molecule matrix compounds have been Corresponding Author 384 discovered which require only exposure to subatmospheric ORCID 384 pressure conditions, by default available with all mass Notes 384 spectrometers, to produce gas-phase ions of peptides, proteins, Biographies 384 lipids, synthetic polymers, and carbohydrates for analysis by Acknowledgments 385 MS.16 Some MAI matrixes produce abundant ions without the References 385 need to apply thermal energy. Out of over 40 such matrixes, the top 10 have been categorized for positive and negative mode measurements. These matrixes sublime when placed under subatmospheric pressure so that, similar to solvents, they are pumped from the mass spectrometer eliminating matrix contamination.17 Several studies related to MAI were published in this period ■ SCOPE by Trimpin and collaborators.
    [Show full text]
  • 1 Introduction of Mass Spectrometry and Ambient Ionization Techniques
    1 1 Introduction of Mass Spectrometry and Ambient Ionization Techniques Yiyang Dong, Jiahui Liu, and Tianyang Guo College of Life Science & Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China 1.1 Evolution of Analytical Chemistry and Its Challenges in the Twenty-First Century The Chemical Revolution began in the eighteenth century, with the work of French chemist Antoine Lavoisier (1743–1794) representing a fundamental watershed that separated the “modern chemistry” era from the “protochemistry” era (Figure 1.1). However, analytical chemistry, a subdiscipline of chemistry, is an ancient science and its metrological tools, basic applications, and analytical processes can be dated back to early recorded history [1]. In chronological spans covering ancient times, the middle ages, the era of the nineteenth century, and the three chemical revolutionary periods, analytical chemistry has successfully evolved from the verge of the nineteenth century to modern and contemporary times, characterized by its versatile traits and unprecedented challenges in the twenty-first century. Historically, analytical chemistry can be termed as the mother of chemistry, as the nature and the composition of materials are always needed to be iden- tified first for specific utilizations subsequently; therefore, the development of analytical chemistry has always been ahead of general chemistry [2]. During pre-Hellenistic times when chemistry did not exist as a science, various ana- lytical processes, for example, qualitative touchstone method and quantitative fire-assay or cupellation scheme have been in existence as routine quality control measures for the purpose of noble goods authentication and anti-counterfeiting practices. Because of the unavailability of archeological clues for origin tracing, the chemical balance and the weights, as stated in the earliest documents ever found, was supposed to have been used only by the Gods [3].
    [Show full text]
  • Using Mass Spectrometry for Proteins by Martha M
    Chemical Education Today Report: Nobel Prize in Chemistry, 2002 Using Mass Spectrometry for Proteins by Martha M. Vestling The 2002 Chemistry Nobel Prize has mass spectrom- etrists everywhere celebrating. It recognizes work that put large proteins—10,000 Da and larger—into mass spectrom- eters. In order to obtain a mass spectrum of a protein, the protein must go through an ion source and an analyzer to reach the detector (see Figure 1). Half of the 2002 Nobel Prize was shared by Koichi Tanaka and John B. Fenn for ob- taining mass spectra of large biomolecules. To do this, they used two different innovations in ion source design that were developed in the 1980s. For their award winning experiments, Tanaka used laser desorption ionization while Fenn used electrospray ionization. These two techniques became com- mercially available in the early 1990s and have revolutionized the way mass spectrometry is done. Both laser desorption ionization and electrospray ioniza- tion can be used with all sorts and sizes of molecules, most of which could not be analyzed by mass spectrometry fifteen years Figure 2. Common ion types for mass spectrometry. ago. For example, small peptides char when heated and need derivatization for analysis with gas chromatography/mass spec- diameter) in glycerol, ethanol, and acetone and deposited on trometry (GCMS). Both laser desorption and electrospray eas- the sample holder. After vacuum drying, the holder was in- ily produce protonated peptide ions. Sugars like sucrose serted into a time-of-flight mass spectrometer where a nitro- caramelize when heated and without derivatization are not gen laser (337 nm) was fired at the sample spot.
    [Show full text]
  • Microarray-Based Mass Spectrometry for Mammalian Cell Culture Monitoring in Biotechnological Production Processes
    Research Collection Doctoral Thesis Microarray-based mass spectrometry for mammalian cell culture monitoring in biotechnological production processes Author(s): Steinhoff, Robert F. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010750104 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23665 Microarray-based mass spectrometry for mammalian cell culture monitoring in biotechnological production processes A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Robert Friedrich Steinhoff M.Sc. in Chemistry, Technical University Munich (TUM) born on 06.05.1985 citizen of Lindau (Bodensee), Germany accepted on the recommendation of Prof. Dr. Renato Zenobi, examiner Prof. Dr. Massimo Morbidelli, co-examiner 2016 ii Acknowledgements Dear reader, The present work on microarray MALDI mass spectrometry has been accomplished in the years 2012 to 2016 at ETH Zurich in the lab of Prof. Zenobi. The excellent infrastructure within ETH Zurich has been the fruitful foundation for this thesis. I am thankful to Prof. Renato Zenobi, who accepted me to work in his lab, firstly as a master student and later as PhD- student within the European Marie Curie initial training network ISOLATE. I am deeply grateful to my parents, my brother, my grandmas, my aunts – hereof especially aunt Gabriela Konietzko who always encouraged and supported me - my uncles, my cousins and their families for their endless understanding and support throughout my education.
    [Show full text]
  • Chemistry Nobel Prize 2002 Goes to Analytical Chemistry
    CHEMISTRY NOBEL PRIZE WINNERS 2002 73 CHIMIA 2003, 57, No. 1/2 Chimia 57 (2003) 73–73 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 Chemistry Nobel Prize 2002 Goes to Analytical Chemistry K. Wüthrich J.B. Fenn K. Tanaka October 2002 was a great month for complexes, the ribosome, or even intact 2nd Japan–China Joint Symposium on Swiss science with Kurt Wüthrich of the viruses by using ESI. Fenn did his original Mass Spectrometry, and published them in ETH Zürich winning the Chemistry Nobel work on ESI while a professor at Yale Uni- 1988 (Rapid Commun. Mass Spectrom. prize 2002. The other half of the 2002 versity in the early 1980s. Coming from the 1988, 2, 151–153). In his original work, Chemistry Nobel prize went jointly to field of molecular beams, he was following Tanaka and his coworkers used a sample John B. Fenn of the Virginia Common- up on earlier (but unsuccessful) work by preparation where the analyte is mixed with wealth University (Richmond, USA) and to Malcolm Dole to produce gas-phase ions ultrafine cobalt powder and glycerol as a Koichi Tanaka of Shimadzu Corp. (Kyoto, from very large molecules. Fenn’s experi- vacuum-stable binding medium. When ir- Japan), who independently developed tech- ence with molecular beam methods helped radiated with a pulse from a low energy ni- niques to ionize large molecules for study him to succeed where the earlier research in trogen laser, the metal particles heat up rap- by mass spectrometry. This recognition for this direction had failed. Because electro- idly, releasing glycerol and intact analyte the development of analytical methods for spray ionization produces multiply charged molecules into the gas phase.
    [Show full text]
  • An Ambient Detection System for Visualization of Charged Particles Generated with Ionization Methods at Atmospheric Pressure
    An ambient detection system for visualization of charged particles generated with ionization methods at atmospheric pressure Bob Hommersom1,2, Sarfaraz U. A. H. Syed1,4, Gert B. Eijkel1,2, David P. A. Kilgour3, David R. Goodlett3,5 and Ron M. A. Heeren1,2,4* 1FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands 2M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands 3University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, Maryland 21201, USA 4Amsterdam Scientific Instruments B.V., Science Park 105, 1098 XG Amsterdam, The Netherlands 5Deurion LLC, 3518 Fremont Avenue #503, Seatle, WA 98103, USA RATIONALE: With the current state-of-the-art detection of ions only taking place under vacuum conditions, active pixel detectors that operate under ambient conditions are of particular interest. These detectors are ideally suited to study and characterize the charge distributions generated by ambient ionization sources. METHODS: The direct imaging capabilities of the active pixel detector are used to investigate the spatial distributions of charged droplets generated by three ionization sources, named electrospray ionization (ESI), paper spray ionization (PSI) and surface acoustic wave nebulization (SAWN). The ionization spray (ESI/PSI) and ionization plume (SAWN) originating from each source are directly imaged. The effect of source parameters such as spray voltage for ESI and PSI, and the angle of the paper spray tip on the charge distributions, is investigated. Two types of SAWN liquid interface, progressive wave (PW) and standing wave (SW), are studied. RESULTS: Direct charge detection under ambient conditions is demonstrated using an active pixel detector.
    [Show full text]
  • Capturing Fleeting Intermediates in a Catalytic C–H Amination Reaction Cycle
    Capturing fleeting intermediates in a catalytic C–H amination reaction cycle Richard H. Perry1, Thomas J. Cahill III1, Jennifer L. Roizen, Justin Du Bois2, and Richard N. Zare2 Department of Chemistry, Stanford University, Stanford, CA 94305-5080 Edited* by Robert G. Bergman, University of California, Berkeley, CA, and approved September 21, 2012 (received for review May 4, 2012) We have applied an ambient ionization technique, desorption impacts a surface containing a sample of interest and extracts electrospray ionization MS, to identify transient reactive species analyte into secondary microdroplets. Subsequent desolvation of an archetypal C–H amination reaction catalyzed by a dirhodium generates gas-phase ions that can be mass analyzed (16–21). By tetracarboxylate complex. Using this analytical method, we have coupling DESI to a high-resolution Orbitrap mass spectrometer detected previously proposed short-lived reaction intermediates, (23, 24), we are able to detect transient species with high mass including two nitrenoid complexes that differ in oxidation state. accuracy (1 to 5 ppm). In this study, we performed C–Hami- Our findings suggest that an Rh-nitrene oxidant can react with hy- nation experiments by spraying a solution of the sulfamate drocarbon substrates through a hydrogen atom abstraction pathway ester 2 (ROSO2NH2;R= CH2CCl3) and iodine(III) oxidant 3 – and raise the intriguing possibility that two catalytic C H amination at Rh2(esp)2 1 or a mixture of 1 and a hydrocarbon substrate pathways may be operative in a typical bulk solution reaction. As (adamantane) deposited on a paper surface (Fig. 2). This analyt- highlighted by these results, desorption electrospray ionization ical method (20–22, 25–28) provides direct evidence for Rh- MS should have broad applicability for the mechanistic study of nitrene formation and the ability of this two-electron oxidant to catalytic processes.
    [Show full text]
  • Early Detection of Unilateral Ureteral Obstruction by Desorption
    www.nature.com/scientificreports OPEN Early detection of unilateral ureteral obstruction by desorption electrospray ionization mass Received: 13 May 2019 Accepted: 16 July 2019 spectrometry Published: xx xx xxxx Shibdas Banerjee1,2, Anny Chuu-Yun Wong3, Xin Yan1, Bo Wu3, Hongjuan Zhao3, Robert J. Tibshirani4, Richard N. Zare1 & James D. Brooks 3 Desorption electrospray ionization mass spectrometry (DESI-MS) is an emerging analytical tool for rapid in situ assessment of metabolomic profles on tissue sections without tissue pretreatment or labeling. We applied DESI-MS to identify candidate metabolic biomarkers associated with kidney injury at the early stage. DESI-MS was performed on sections of kidneys from 80 mice over a time course following unilateral ureteral obstruction (UUO) and compared to sham controls. A predictive model of renal damage was constructed using the LASSO (least absolute shrinkage and selection operator) method. Levels of lipid and small metabolites were signifcantly altered and glycerophospholipids comprised a signifcant fraction of altered species. These changes correlate with altered expression of lipid metabolic genes, with most genes showing decreased expression. However, rapid upregulation of PG(22:6/22:6) level appeared to be a hitherto unknown feature of the metabolic shift observed in UUO. Using LASSO and SAM (signifcance analysis of microarrays), we identifed a set of well-measured metabolites that accurately predicted UUO-induced renal damage that was detectable by 12 h after UUO, prior to apparent histological changes. Thus, DESI-MS could serve as a useful adjunct to histology in identifying renal damage and demonstrates early and broad changes in membrane associated lipids. Renal biopsy is used commonly to assess the etiology of renal failure, where it has been reported to alter clinical management in approximately 40% of all patients and up to 70% of cases with acute kidney injury1,2.
    [Show full text]
  • Nature Milestones Mass Spectrometry October 2015
    October 2015 www.nature.com/milestones/mass-spec MILESTONES Mass Spectrometry Produced with support from: Produced by: Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols MILESTONES Mass Spectrometry MILESTONES COLLECTION 4 Timeline 5 Discovering the power of mass-to-charge (1910 ) NATURE METHODS: COMMENTARY 23 Mass spectrometry in high-throughput 6 Development of ionization methods (1929) proteomics: ready for the big time 7 Isotopes and ancient environments (1939) Tommy Nilsson, Matthias Mann, Ruedi Aebersold, John R Yates III, Amos Bairoch & John J M Bergeron 8 When a velocitron meets a reflectron (1946) 8 Spinning ion trajectories (1949) NATURE: REVIEW Fly out of the traps (1953) 9 28 The biological impact of mass-spectrometry- 10 Breaking down problems (1956) based proteomics 10 Amicable separations (1959) Benjamin F. Cravatt, Gabriel M. Simon & John R. Yates III 11 Solving the primary structure of peptides (1959) 12 A technique to carry a torch for (1961) NATURE: REVIEW 12 The pixelation of mass spectrometry (1962) 38 Metabolic phenotyping in clinical and surgical 13 Conquering carbohydrate complexity (1963) environments Jeremy K. Nicholson, Elaine Holmes, 14 Forming fragments (1966) James M. Kinross, Ara W. Darzi, Zoltan Takats & 14 Seeing the full picture of metabolism (1966) John C. Lindon 15 Electrospray makes molecular elephants fly (1968) 16 Signatures of disease (1975) 16 Reduce complexity by choosing your reactions (1978) 17 Enter the matrix (1985) 18 Dynamic protein structures (1991) 19 Protein discovery goes global (1993) 20 In pursuit of PTMs (1995) 21 Putting the pieces together (1999) CITING THE MILESTONES CONTRIBUTING JOURNALS UK/Europe/ROW (excluding Japan): The Nature Milestones: Mass Spectroscopy supplement has been published as Nature Methods, Nature, Nature Biotechnology, Nature Publishing Group, Subscriptions, a joint project between Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols.
    [Show full text]
  • STATUS and FUTURE TRENDS of the MINIATURIZATION of MASS SPECTROMETRY Richard R.A
    STATUS AND FUTURE TRENDS OF THE MINIATURIZATION OF MASS SPECTROMETRY Richard R.A. Syms*1 1EEE Dept., Imperial College London, London, UK ABSTRACT structures: the quadrupole filter and the quadrupole ion An overview of mass spectrometers incorporating trap. RF quadrupoles are workhorse instruments, with miniaturization technology is presented. A brief history of applications ranging from residual gas analysis to space conventional mass spectrometry is given, followed by a exploration. Related components such as RF ion guides summary of the status of miniaturized systems. are used for ion transport, while collision cells are used Applications for miniature/portable systems are reviewed, for ion cooling and fragmentation. In 1978, Richard Yost and opportunities and challenges are discussed. and Chris Enke introduced the triple quadrupole, in which the first quadrupole is used for initial mass analysis, a INTRODUCTION second for collision-induced dissociation, and the third for The development of microelectromechanical systems analysis of the resulting fragments, enabling so-called over the last 30 years has been dramatic, and MEMS now tandem mass spectrometry. The quadrupole ion trap was impact on most industrial sectors. Specific materials, developed commercially for Finnegan by Raymond device configurations and packaging have been developed March in 1983, and the linear quadrupole trap (which has for each application domain, and MEMS are available as an increased trapping volume) by Jae Schwartz in 2002. commodity items such as accelerometers or laboratory Other milestones include the development of the Fourier instruments such as atomic force microscopes. Until transform ion cyclotron resonance mass spectrometer by recently, one area that stubbornly resisted miniaturization Alan Marshal and Melvin Comisarow in 1976, and the was mass spectrometry.
    [Show full text]