Softwood Swamps of Vermont: Distribution, Ecology, Classification, and Some Sites of Ecological Significance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution Records of Aphids (Hemiptera: Phylloxeroidea, Aphidoidea) Associated with Main Forest-Forming Trees in Northern Europe
© Entomologica Fennica. 5 December 2012 Distribution records of aphids (Hemiptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe Andrey V. Stekolshchikov & Mikhail V. Kozlov Stekolshchikov, A. V.& Kozlov, M. V.2012: Distribution records of aphids (He- miptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe. — Entomol. Fennica 23: 206–214. We report records of 25 species of aphids collected from four species of woody plants (Pinus sylvestris, Picea abies, Betula pubescens and B. pendula)at50 study sites in Northern Europe, located from 59° to 70° N and from 10° to 60° E. Critical evaluation of earlier publications demonstrated that in spite of the obvi- ous limitations of our survey, the obtained information substantially contributed to the knowledge of the distribution of aphids in North European Russia, includ- ing Murmansk oblast (103 species recorded to date), Republic of Karelia (58 spe- cies), Arkhangelsk oblast (37 species), Vologda oblast (17 species) and Republic of Komi (29 species). We confirm the occurrence of Cinara nigritergi in South- ern Karelia; Pineus cembrae, Cinara pilosa and Monaphis antennata are for the first time recorded in Norway. A. V.Stekolshchikov, Zoological Institute, Russian Academy of Sciences, Univer- sitetskaya nab. 1, St. Petersburg 199034, Russia; E-mail: [email protected] M. V. Kozlov, Section of Ecology, University of Turku, FI-20014 Turku, Finland; E-mail: [email protected] Received 2 February 2012, accepted 5 April 2012 1. Introduction cades (e.g., Albrecht 2012), no comparable data (with rare exceptions) exist for the northern parts Species distributions and, consequently, spatial of the European Russia. -
Properties of Western Larch and Their Relation to Uses of the Wood
TECHNICAL BULLETIN NO. 285 MARCH, 1932 PROPERTIES OF WESTERN LARCH AND THEIR RELATION TO USES OF THE WOOD BY R. P. A. JOHNSON Engineer, Forest Products Laboratory AND M. I. BRADNER In Charge^ Office of Forest Products y Region I Branch of Research, Forest Service UNITED STATES DEPARTMENT OF AGRICULTURE, WASHINGTON, D. C. TECHNICAL BULLETIN NO. 285 MARCH, 1932 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. PROPERTIES OF WESTERN LARCH AND THEIR RELATION TO USES OF THE WOOD By R. P. A. JOHNSON, Engineer, Forest Products Laboratory^^ and M. I. BRADNER, in Charge, Office of Forest Products, Region 1, Branch of Research, Forest Service * CONTENTS Page Page Introduction 1 Mechanical and physical properties—Con. The larch-fir mixture 2 Resistance to decay, weathering, and Character and range of the western larch insects 39 forest __ 4 Reaction to preservative treatment 42 Occurrence 4 Heat and insulating properties 42 Character 4 Permeability by liquids 42 Size of stand 7 Tendency to impart odor or ñavor___:. _. 43 Cut and supply 9 Tendency to leach or exude extractives. _ 43 Merchandising practices 10 Chemical properties 43 distribution lO Fire resistance ., 43 Percentage of cut going into various lum- Characteristic defects of western larch 44 ber items 12 Natural defects 44 Descriptive properties of western larch 13 Seasoning defects 46 General description of the wood 13 Manufacturing defects 47 Heartwood content of lumber 13 Grades and their characteristics 47 Growth rings 14 Grade yield and production 48 Summer-wood content 14 Heartwood content 50 Figure. 14 Width of rings 50 How to distinguish western larch from other Grade descriptions . -
Economic and Ethnic Uses of Bryophytes
Economic and Ethnic Uses of Bryophytes Janice M. Glime Introduction Several attempts have been made to persuade geologists to use bryophytes for mineral prospecting. A general lack of commercial value, small size, and R. R. Brooks (1972) recommended bryophytes as guides inconspicuous place in the ecosystem have made the to mineralization, and D. C. Smith (1976) subsequently bryophytes appear to be of no use to most people. found good correlation between metal distribution in However, Stone Age people living in what is now mosses and that of stream sediments. Smith felt that Germany once collected the moss Neckera crispa bryophytes could solve three difficulties that are often (G. Grosse-Brauckmann 1979). Other scattered bits of associated with stream sediment sampling: shortage of evidence suggest a variety of uses by various cultures sediments, shortage of water for wet sieving, and shortage around the world (J. M. Glime and D. Saxena 1991). of time for adequate sampling of areas with difficult Now, contemporary plant scientists are considering access. By using bryophytes as mineral concentrators, bryophytes as sources of genes for modifying crop plants samples from numerous small streams in an area could to withstand the physiological stresses of the modern be pooled to provide sufficient material for analysis. world. This is ironic since numerous secondary compounds Subsequently, H. T. Shacklette (1984) suggested using make bryophytes unpalatable to most discriminating tastes, bryophytes for aquatic prospecting. With the exception and their nutritional value is questionable. of copper mosses (K. G. Limpricht [1885–]1890–1903, vol. 3), there is little evidence of there being good species to serve as indicators for specific minerals. -
Douglasfirdouglasfirfacts About
DouglasFirDouglasFirfacts about Douglas Fir, a distinctive North American tree growing in all states from the Rocky Mountains to the Pacific Ocean, is probably used for more Beams and Stringers as well as Posts and Timber grades include lumber and lumber product purposes than any other individual species Select Structural, Construction, Standard and Utility. Light Framing grown on the American Continent. lumber is divided into Select Structural, Construction, Standard, The total Douglas Fir sawtimber stand in the Western Woods Region is Utility, Economy, 1500f Industrial, and 1200f Industrial grades, estimated at 609 billion board feet. Douglas Fir lumber is used for all giving the user a broad selection from which to choose. purposes to which lumber is normally put - for residential building, light Factory lumber is graded according to the rules for all species, and and heavy construction, woodwork, boxes and crates, industrial usage, separated into Factory Select, No. 1 Shop, No. 2 Shop and No. 3 poles, ties and in the manufacture of specialty products. It is one of the Shop in 5/4 and thicker and into Inch Factory Select and No. 1 and volume woods of the Western Woods Region. No. 2 Shop in 4/4. Distribution Botanical Classification In the Western Douglas Fir is manufactured by a large number of Western Woods Douglas Fir was discovered and classified by botanist David Douglas in Woods Region, Region sawmills and is widely distributed throughout the United 1826. Botanically, it is not a true fir but a species distinct in itself known Douglas Fir trees States and foreign countries. Obtainable in straight car lots, it can as Pseudotsuga taxifolia. -
Tag Der Artenvielfalt 2018 in Weißbrunn, Ulten (Gemeinde Ulten, Südtirol, Italien)
Thomas Wilhalm Tag der Artenvielfalt 2018 in Weißbrunn, Ulten (Gemeinde Ulten, Südtirol, Italien) Keywords: species diversity, Abstract new records, Ulten, Val d’Ultimo, South Tyrol, Italy Biodiversity Day 2018 in Weißbrunn, Ulten Valley (municipality of Ultimo, South Tyrol, Italy) The 19 th Biodiversity Day in South Tyrol was held in the municipality of Ulten/Ultimo. A total of 886 taxa were found. Einleitung Der 19. Südtiroler Tag der Artenvielfalt wurde am 30. Juni 2018 im Talschluss von Ulten abgehalten. Wie in den Jahren zuvor oblag dem Naturmuseum Südtirol sowohl die Organisation im Vorfeld als auch die Koordination vor Ort. Begleitend zu den Felderhebungen der zahlreichen Fachleute (siehe einzelne Beiträge) war ein didakti- sches Rahmenprogramm vorgesehen, das eine vogelkundliche und eine naturkundliche Wanderung im Untersuchungsgebiet (Organisation: Nationalpark Stilfserjoch unter der Koordination von Ronald Oberhofer) sowie ein Kinder- und Familienprogramm im Nationalparkhaus Lahnersäge in St. Gertraud umfasste (Organisation und Durchführung durch die Mitarbeiterinnen des Naturmuseums Südtirol Johanna Platzgummer, Elisabeth Waldner und Verena Preyer). Für allgemeine Informationen (Konzept und Organisation) zum Tag der Artenvielfalt und insbesondere zur Südtiroler Ausgabe siehe HILPOLD & KRANEBITTER (2005) und SCHATZ (2016). Adresse der Autors: Thomas Wilhalm Naturmuseum Südtirol Bindergasse 1 I-39100 Bozen thomas.wilhalm@ naturmuseum.it DOI: 10.5281/ zenodo.3565390 Gredleriana | vol. 19/2019 247 | Untersuchungsgebiet Das Untersuchungsgebiet umfasste in seinem Kern die Flur „Weißbrunn“ im Talschluss von Ulten westlich der Ortschaft St. Gertraud, d.h. den Bereich zwischen dem Weißbrunnsee (Stausee) und der Mittleren Weißbrunnalm. Im Süden war das Gebiet begrenzt durch die Linie Fischersee-Fiechtalm-Lovesboden, im Nordwesten durch den Steig Nr. 12 östlich bis zur Hinteren Pilsbergalm. -
Using Multiple Methodologies to Understand Within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha) Tav Aronowitz University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2017 Using Multiple Methodologies to Understand within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha) Tav Aronowitz University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biology Commons, Entomology Commons, and the Environmental Sciences Commons Recommended Citation Aronowitz, Tav, "Using Multiple Methodologies to Understand within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha)" (2017). Graduate College Dissertations and Theses. 713. https://scholarworks.uvm.edu/graddis/713 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. USING MULTIPLE METHODOLOGIES TO UNDERSTAND WITHIN SPECIES VARIABILITY OF ADELGES AND PINEUS (HEMIPTERA: STERNORRHYNCHA) A Thesis Presented by Tav (Hanna) Aronowitz to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Natural Resources May, 2017 Defense Date: March 6, 2016 Thesis Examination Committee: Kimberly Wallin, Ph.D., Advisor Ingi Agnarsson, Ph.D., Chairperson James D. Murdoch, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The species of two genera in Insecta: Hemiptera: Adelgidae were investigated through the lenses of genetics, morphology, life cycle and host species. The systematics are unclear due to complex life cycles, including multigenerational polymorphism, host switching and cyclical parthenogenesis. I studied the hemlock adelgids, including the nonnative invasive hemlock woolly adelgid on the east coast of the United States, that are currently viewed as a single species. -
Hemiptera: Adelgidae)
The ISME Journal (2012) 6, 384–396 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae) Elena R Toenshoff1, Thomas Penz1, Thomas Narzt2, Astrid Collingro1, Stephan Schmitz-Esser1,3, Stefan Pfeiffer1, Waltraud Klepal2, Michael Wagner1, Thomas Weinmaier4, Thomas Rattei4 and Matthias Horn1 1Department of Microbial Ecology, University of Vienna, Vienna, Austria; 2Core Facility, Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria; 3Department of Veterinary Public Health and Food Science, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria and 4Department of Computational Systems Biology, University of Vienna, Vienna, Austria Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing o92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names ‘Candidatus Steffania adelgidicola’ and ‘Candidatus Ecksteinia adelgidicola’ are proposed for tentative classification. -
(Lonicera Caerulea L.) by James K. Dawson a Th
Concentration and Content of Secondary Metabolites in Fruit and Leaves of Haskap (Lonicera caerulea L.) by James K. Dawson A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In the Department of Plant Sciences ©James K. Dawson 2017 University of Saskatchewan All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Plant Sciences Dean University of Saskatchewan College of Graduate Studies and Saskatoon, Saskatchewan S7N 5A8 OR University of Saskatchewan Canada 107 Administration Place Saskatoon, Saskatchewan S7N 5A2 Canada i ABSTRACT The University of Saskatchewan (UofS) has been conducting crosses of Lonicera caerulea and releasing genotypes for fruit production under the name “Haskap”. -
Conserving Plant Diversity in New England
CONSERVING PLANT DIVERSITY IN NEW ENGLAND A COLLABORATION OF CONSERVING PLANT DIVERSITY IN NEW ENGLAND A COLLABORATION OF AUTHORS Mark Anderson Director of Conservation Science, Eastern United States, The Nature Conservancy Michael Piantedosi Director of Conservation, Native Plant Trust William Brumback Director of Conservation Emeritus, Native Plant Trust MAP PRODUCTION Arlene Olivero WEB TOOL Melissa Clark DESIGN Rachel Wolff-Lander Kate Wollensak Freeborn The authors wish to thank the six state Natural Heritage programs for sharing their data and for their support. ©2021 Published June 2021 © Peter James CONTENTS EXECUTIVE SUMMARY ES-1 PART ONE: CONSERVING PLANT DIVERSITY 1-1 Background 1-2 • Plant Diversity and Resilience 1-2 • Global Strategy for Plant Conservation and Global Deal for Nature 1-7 • Secured Lands and GAP Status 1-9 • New England Flora and Rare Taxa 1-11 • Threats to Plant Diversity in New England 1-14 • Conservation Actions to Counter Threats to Plant Diversity 1-17 Conservation of Habitats and Important Plant Areas 1-21 Introduction 1-21 • Terminology 1-21 • Overview and Methods 1-22 Conservation of Habitats: Progress Toward Global and Regional Goals 1-26 • Matrix Forests 1-26 • Wetlands 1-30 • Patch-forming Habitats 1-33 • Risk of Conversion 1-36 Conservation of Important Plant Areas (IPAs) 1-37 • Definition and Location of IPAs 1-37 • Conservation Status and Progress Toward Goals 1-40 • Representation of Habitats in the IPAs 1-42 Conservation of Threatened Species 1-48 • Threatened Plants Conserved in situ 1-48 • Threatened Plants Conserved in ex situ Collections 1-49 Results and Recommendations 1-58 i CONTENTS continued PART TWO: STATUS REPORT AND MAPS 2-1 Overview 2-4 New England’s Terrestrial Habitats 2-7 Map Page Layout 2-13 Upland Habitats: Matrix Forest 2-16 Upland Habitats: Patch-forming Habitats 2-53 Wetland Habitats 2-80 PART THREE: SUPPORTING MATERIAL 3-1 Bibliography 3-2 Appendices 3-11 1. -
4-H Wood Science Leader Guide Glossary of Woodworking Terms
4-H Wood Science Leader Guide Glossary of Woodworking Terms A. General Terms B. Terms Used in the Lumber Industry d—the abbreviation for “penny” in designating nail boards—Lumber less than 2 inches in nominal size; for example, 8d nails are 8 penny nails, 2½” long. thickness and 1 inch and wider in width. fiber—A general term used for any long, narrow cell of board foot—A measurement of wood. A piece of wood wood or bark, other than vessels. that is 1 foot long by 1 foot wide by 1 inch thick. It can also be other sizes that have the same total amount grain direction—The direction of the annual rings of wood. For example, a piece of wood 2 feet long, showing on the face and sides of a piece of lumber. 6 inches wide, and 1 inch thick; or a piece 1 foot long, hardwood—Wood from a broad leaved tree and 6 inches wide, and 2 inches thick would also be 1 board characterized by the presence of vessels. (Examples: foot. To get the number of board feet in a piece of oak, maple, ash, and birch.) lumber, measure your lumber and multiply Length (in feet) x Width (in feet) x Thickness (in inches). The heartwood—The older, harder, nonliving portion of formula is written: wood. It is usually darker, less permeable, and more durable than sapwood. T” x W’ x L’ T” x W’ x L’ = Board feet or = Board feet 12 kiln dried—Wood seasoned in a humidity and temperature controlled oven to minimize shrinkage T” x W’ x L’ or = Board feet and warping. -
(Lonicera L.) Genties Atstovų Genetinės Įvairovės Ir Filogenetiniai Tyrimai Dnr Ţymenų Metodais
VILNIAUS UNIVERSITETAS Donatas Naugţemys SAUSMEDŢIO (LONICERA L.) GENTIES ATSTOVŲ GENETINĖS ĮVAIROVĖS IR FILOGENETINIAI TYRIMAI DNR ŢYMENŲ METODAIS Daktaro disertacija Biomedicinos mokslai, biologija (01 B) Vilnius, 2011 Disertacija rengta 2006 – 2010 metais Vilniaus universitete. Mokslinis vadovas: prof. dr. Donatas Ţvingila (Vilniaus universitetas, biomedicinos mokslai, biologija – 01 B) Konsultantas: dr. Silva Ţilinskaitė (Vilniaus universitetas, biomedicinos mokslai, biologija – 01 B) 2 TURINYS SANTRUMPOS ..................................................................................................... 5 ĮVADAS ................................................................................................................. 7 I. LITERATŪROS APŢVALGA ......................................................................... 13 1. Sausmedţio genties apţvalga ....................................................................... 13 1.1. Lonicera L. genties sistematikos istorija ir problemos .......................... 15 1.2. Lonicera L. genties kilmė ...................................................................... 21 2. Molekuliniai ţymenys ir augalų filogenetiniai tyrimai ................................ 24 2.1. RAPD metodo taikymas augalų sistematikoje ...................................... 26 2.2. Chloroplastų DNR nekoduojančių specifinių regionų tyrimas sekoskaitos metodu .............................................................................................. 31 2.3. Lonicera L. genties filogenetikos molekuliniai tyrimai -
<I>Sphagnum</I> Peat Mosses
ORIGINAL ARTICLE doi:10.1111/evo.12547 Evolution of niche preference in Sphagnum peat mosses Matthew G. Johnson,1,2,3 Gustaf Granath,4,5,6 Teemu Tahvanainen, 7 Remy Pouliot,8 Hans K. Stenøien,9 Line Rochefort,8 Hakan˚ Rydin,4 and A. Jonathan Shaw1 1Department of Biology, Duke University, Durham, North Carolina 27708 2Current Address: Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, Illinois 60022 3E-mail: [email protected] 4Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvagen¨ 18D, SE-752 36, Uppsala, Sweden 5School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada 6Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden 7Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland 8Department of Plant Sciences and Northern Research Center (CEN), Laval University Quebec, Canada 9Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway Received March 26, 2014 Accepted September 23, 2014 Peat mosses (Sphagnum)areecosystemengineers—speciesinborealpeatlandssimultaneouslycreateandinhabitnarrowhabitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock–hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum.Usingadatasetof39speciesof Sphagnum,withan18-locusDNAalignmentandanecologicaldatasetencompassingthreelargepublishedstudies,wetested